Loading...
HomeMy WebLinkAbout182402-New-Waterford-Wastewater-Pre-Design-Summary-Report-Final 182402.00 / 187116.00 ● Final Report ● March 2020 Environmental Risk Assessments & Preliminary Design of Seven Future Wastewater Treatment Systems in CBRM New Waterford Wastewater Interception & Treatment System Pre-Design Summary Report Prepared by: Prepared for: New Waterford WW Interception & Treatment System Pre-Design Summary Report-Final March 27, 2020 Darrin McLean James Sheppard Darrin McLean New Waterford WW Interception & Treatment System Pre-Design Summary Report-Draft March 2, 2020 Darrin McLean James Sheppard Darrin McLean Issue or Revision Date Issued By: Reviewed By: Prepared By: This document was prepared for the party indicated herein. The material and information in the document reflects HE’s opinion and best judgment based on the information available at the time of preparation. Any use of this document or reliance on its content by third parties is the responsibility of the third party. HE accepts no responsibility for any damages suffered as a result of third party use of this document. 182402.00 NEW WATERFORD SUMMARY REPORT 2020-05-05.DOCX/md ED: 18/11/2020 11:30:00/PD: 18/11/2020 11:31:00 164 Charlotte St. PO Box 567 Sydney, NS B1P 6H4 March 27, 2020 Matt Viva, P.Eng. Manager Wastewater Operations Cape Breton Regional Municipality (CBRM) 320 Esplanade, Sydney, NS B1P 7B9 Dear Mr. Viva: RE: New Waterford Wastewater Interception & Treatment System – Pre-Design Summary Report Enclosed, please find, for your files, a copy of the final draft of the Pre-Design Summary Report for the New Waterford Wastewater Interception & Treatment System. This report presents a description of proposed wastewater interception and treatment infrastructure upgrades for the New Waterford Wastewater system, as well as an estimate of the capital, operating costs, and replacement costs for the proposed infrastructure. In addition, estimated costs of upgrades and assessments related to the existing wastewater collection system are provided. Also, a desktop geotechnical review of the wastewater treatment facility site is provided, along with an archaeological resources impact assessment review for all sites of proposed wastewater infrastructure. Finally, an Implementation Timeline is provided, which outlines a tentative schedule for implementation of the various proposed wastewater system upgrades. If you have any questions or require clarification on the content presented in the attached report, please do not hesitate to contact us. Yours very truly, Harbour Engineering Joint Venture Prepared by: Reviewed by: Darrin McLean, MBA, FEC, P.Eng. James Sheppard, P.Eng. Senior Municipal Engineer Civil Infrastructure Engineer Direct: 902-539-1330 (Ext. 3138) Direct: 902-562-9880 E-Mail: dmclean@cbcl.ca E-Mail: jsheppard@dillon.ca Project No: 182402.00 (CBCL) 187116.00 (Dillon) HEJV New Waterford Wastewater System Pre-Design Summary Report i Contents CHAPTER 1 Introduction & Background ........................................................................................ 1 1.1 Introduction ........................................................................................................................ 1 1.2 Background ......................................................................................................................... 1 1.3 Description of Existing Wastewater Collection System ...................................................... 1 1.4 Service Area Population ...................................................................................................... 2 CHAPTER 2 Wastewater Interceptor System ................................................................................. 3 2.1 Description of Proposed Wastewater Interceptor Infrastructure ...................................... 3 2.2 Interception Infrastructure Land/Easement Acquisition Requirements ............................ 3 2.2.1 Lift Station Sites ...................................................................................................... 3 2.2.2 Linear Infrastructure ............................................................................................... 4 CHAPTER 3 Existing Wastewater Collection System Upgrades / Assessments ................................ 5 3.1 Sewage Pump Station Upgrades ......................................................................................... 5 3.2 Asset Condition Assessment Program ................................................................................ 5 3.3 Sewer Separation Measures ............................................................................................... 5 CHAPTER 4 Wastewater Treatment System .................................................................................. 6 4.1 Recommended Wastewater Treatment Facility ................................................................. 6 4.2 Wastewater Treatment Facility Land Acquisition Requirements ....................................... 7 4.3 Wastewater Treatment Facility Site Desktop Geotechnical Review .................................. 7 CHAPTER 5 Wastewater System Archaeological Resources Impact Assessment ............................. 8 5.1 Archaeological Resources Impact Assessment ................................................................... 8 CHAPTER 6 Wastewater Infrastructure Costs .............................................................................. 10 6.1 Wastewater Interception & Treatment Capital Costs ...................................................... 10 6.2 Wastewater Interception & Treatment Annual Operating Costs ..................................... 11 6.3 Annual Capital Replacement Fund Contribution Costs..................................................... 11 6.4 Existing Wastewater Collection System Upgrades / Assessment Costs ........................... 13 CHAPTER 7 Project Implementation Timeline ............................................................................. 14 7.1 Implementation Schedule ................................................................................................. 14 Appendices A New Waterford Collection System Pre-Design Brief B New Waterford Wastewater Treatment System Pre-Design Brief C New Waterford Environmental Risk Assessment Report D New Waterford Wastewater Treatment Facility Site Desktop Geotechnical Review E New Waterford Wastewater System Archaeological Resources Impact Assessment HEJV New Waterford Wastewater System Pre-Design Summary Report 1 CHAPTER 1 INTRODUCTION & BACKGROUND 1.1 Introduction Harbour Engineering Joint Venture (HEJV) was retained by the Cape Breton Regional Municipality (CBRM) to provide engineering services associated with the preliminary design of wastewater interception and treatment infrastructure for the community of New Waterford, Nova Scotia as part of the greater Environmental Risk Assessment and Preliminary Design of 7 Future Wastewater Treatment Systems in CBRM project. This report presents a description of the proposed infrastructure upgrades for the New Waterford Wastewater system, as well as an estimate of the capital, operating and replacement costs for the proposed infrastructure. In addition, estimated costs of upgrades and assessments related to the existing wastewater collection system are provided. Also, a desktop geotechnical review of the wastewater treatment facility site is provided, along with an archaeological resources impact assessment review for all sites associated with proposed wastewater infrastructure. Finally, an Implementation Timeline is provided, which outlines a tentative schedule for implementation of the various proposed wastewater system upgrades. 1.2 Background The wastewater collection system in the community of New Waterford, as in many communities throughout CBRM, currently discharges untreated wastewater to the Atlantic Ocean. The evolution of the existing wastewater collection and disposal systems in CBRM included the creation of regions of a community which were serviced by a common wastewater collection system tied to a local marine outfall. Such design approaches have traditionally been the most cost-effective manner of providing centralized wastewater collection, and the marine environment has long been the preferred receiving water given the available dilution. Due to a changing regulatory environment, CBRM is working toward intercepting and treating the wastewater in these communities prior to discharge. The New Waterford system has been classified as low risk under the federal Wastewater System Effluent Regulations (WSER) under the Fisheries Act, requiring implementation of treatment systems by the year 2040. 1.3 Description of Existing Wastewater Collection System The New Waterford wastewater collection system includes the former Town of New Waterford, the community of Scotchtown, and a small portion of River Ryan. This area drains to two wastewater outfalls, both of which discharge at the Barachois. The system consists of approximately 70km of HEJV New Waterford Wastewater System Pre-Design Summary Report 2 gravity sewer and 2.6km of force mains. There are also a number of lift stations within the system located as follows:  Nicklewood Drive.  Columbus Street.  Oceanview Boulevard.  Hinchey Avenue.  New Waterford Highway (E-One systems). E-One systems are individual home sewage pumping systems that discharge to a common pressure sewer. In some instances, the flow is first discharged to a septic tank and the effluent from the septic tank is pumped. In other instances, flow is pumped directly from the home. The existing New Waterford collection system conveys sewage to two outfalls, both of which are located at the Barachois. 1.4 Service Area Population For New Waterford, the service area population was estimated to be 7,420 people in 3,735 residential units. The population of the CBRM has been declining and this trend is expected to continue. Recent population projection studies predict a 17.8% decrease in population in Cape Breton County between 2016 and 2036. For this reason, no allocation has been made for any future population growth. For the purpose of preliminary design, wastewater infrastructure has been sized based on the current population and measured flow data. While this may seem overly conservative, due to significant amounts of inflow and infiltration (I&I) observed in sewer systems in the CBRM, a given population decrease will not necessarily result in a proportional decrease in wastewater flow. Therefore, basing the design on current conditions is considered the most reasonable approach.   HEJV New Waterford Wastewater System Pre‐Design Summary Report 3   CHAPTER 2  WASTEWATER INTERCEPTOR SYSTEM    2.1 Description of Proposed Wastewater Interceptor Infrastructure  The proposed wastewater interceptor system for the New Waterford Wastewater System includes  the following major elements:   A new sewage pumping station, LS‐NW#1 is to be constructed near the end of Beach Street.   A 750 mm diameter interceptor gravity sewer will collect flow from the existing sewer mains  that currently convey flow to the NW#1 outfall.  The interceptor sewer will connect to the  existing sewer in three places to allow for a proper collection configuration to the proposed  LS‐NW#1 pump station.   The lift station will convey the intercepted sewage to the proposed WWTP site via a 400mm  diameter forcemain, 310m in length.   A combination air/vacuum release valve will be required at the high point, 56m from the lift  station along the forcemain alignment.   A new sewage pumping station, LS‐NW#2, is to be constructed near the proposed WWTP site  at the end of Mahon Street.  This station is required to convey flow to the proposed WWTP  from the portion of the existing collection system that flows through the NW#2 outfall.  A  30m length of 600mm diameter gravity sewer will re‐direct flow from the existing sewer  connected to the NW#2 outfall to the proposed pump station.  A 10m length of forcemain,  150mm in diameter, will be required and will be connected to the forcemain described above  for LSNW‐ 1 to act as a common header to the proposed WWTP site.   A Combined Sewer Overflow (CSO) Station is to be constructed at each of the two new sewage  pumping station locations.  These CSO Stations would direct wastewater to an overflow when  the flow rate in the interceptor sewer exceeds the design interception rate.  No screens on  raw wastewater overflows at these CSO Stations would be constructed.    A detailed description of the proposed wastewater interceptor system, including preliminary layout  drawings is provided in Appendix A.    2.2 Interception Infrastructure Land/Easement Acquisition Requirements  2.2.1 Lift Station Sites  Construction of sewage pumping stations will require property acquisitions as shown in the table  below.      HEJV New Waterford Wastewater System Pre‐Design Summary Report 4 Table 1 ‐ Lift Station Sites Land Acquisition Requirements  PID# Property  Owner Assessed Value Description Size Required Purchase Entire  Lot (Y/N)  15482730 PWGSC $1,900 PS Site N/A Y  15006943 PWGSC $48,700 Access Road  10mx20m  (irregular  shape)  N    2.2.2 Linear Infrastructure  Installation of linear infrastructure such as pressure and gravity sewer piping and manholes will  require property acquisitions or easements as shown in the table below.    Table 2 ‐ Linear Infrastructure Land Acquisition Requirements  PID# Property  Owner Assessed Value Description Size Required Purchase Entire  Lot (Y/N)  15483092 Collieries  Parish $87,100 Forcemain  10m (Construction)  6m (Final)  X 75m length  N  15483100 PWGSC $8,600 Forcemain &  Gravity  N/A   Y                                                      HEJV New Waterford Wastewater System Pre‐Design Summary Report 5   CHAPTER 3  EXISTING WASTEWATER COLLECTION SYSTEM  UPGRADES / ASSESSMENTS    3.1 Sewage Pump Station Upgrades  HEJV has reviewed the existing New Waterford Collection System for potential upgrades to the  existing sewage pumping stations.  There are currently four pump stations in the community of New  Waterford.  The age of the existing stations is on average 24‐years old.  The New Waterford WWTP  has been classified as a low priority system and has an implementation deadline of 2040.  Considering  that 2040 is 21‐years in the future, plans should be made to upgrade each of these stations as part of  the interception work to be completed in the community.  Due to their age, the necessity to upgrade  these stations may occur prior to the implementation of the interceptor sewer project.  Therefore,  the condition of each station should be verified at the time of detailed design to determine if an  upgrade of the existing station is required.    3.2 Asset Condition Assessment Program  To get a better sense of the condition of the existing New Waterford sewage collection system, HEJV  recommends completing a sewage collection system asset condition assessment program in the  community.  The program would carry out an investigation involving two components:  1. Visual inspection and assessment of all manholes in the collection system;  2. Video inspection of 20% of all sewers in the system    The program should be completed with the issuance of a Collection System Asset Condition  Assessment Report that would summarize the condition of the various assets inspected and include  opinions of probable costs for required upgrades.    3.3 Sewer Separation Measures  CBRM should consider completing further sewer separation investigation efforts in New Waterford.   The program would review catch basins that are currently connected or possibly connected to existing  sanitary sewers.  The program should also include the costing of the installation of new storm sewers  to disconnect catch basins from the existing sanitary sewer.            HEJV New Waterford Wastewater System Pre‐Design Summary Report 6   CHAPTER 4  WASTEWATER TREATMENT SYSTEM    4.1 Recommended Wastewater Treatment Facility  The recommended wastewater treatment facility for New Waterford is the Sequencing Batch Reactor  (SBR) process, which is an aerobic suspended‐growth biological treatment process.  The SBR process  is a batch process whereby secondary treatment, including nitrification, is achieved in one reactor.  It  involves a “fill and draw” type reactor where aeration and clarification occur in the same reactor.   Settling is initiated after the aeration cycle and supernatant is withdrawn through a decanter  mechanism.  The WWTP would provide the following general features:  1. Preliminary treatment involving raw wastewater screening and grit removal;  2. Secondary treatment involving two continuous‐flow SBR tanks;  3. Disinfection of the treated wastewater with the use of ultraviolet (UV) disinfection unit;  4. Sludge management by means of aerated sludge holding tanks, sludge dewatering centrifuge  and associated bin room;  5. Odour control equipment;  6. Staff work spaces, including office space, laboratory space, control room, locker room, lunch  room, and washrooms;  7. Site access and parking, along with site fencing; and,  8. Extension of outfall NW2, including replacement of the existing outfall.    The proposed site of the New Waterford WWTP is located at the end of Mahon Street.  The design  loads for the proposed WWTP are as shown in the table below.    Table 3 ‐ WWTP Design Loading Summary  Parameter Average Day Peak Day  Design Population 7,420  Flow (m3/day) 8,000 21,000  CBOD Load (kg/day) 890 1,780  TSS Load (kg/day) 670 1,340  TKN Load (kg/day) 100 200    A detailed description of the proposed wastewater treatment system, including preliminary layout  drawings is provided in Appendix B.      HEJV New Waterford Wastewater System Pre‐Design Summary Report 7 The associated Environmental Risk Assessment Report, which outlines effluent criteria for the  proposed wastewater treatment facility for New Waterford is provided in Appendix C.    4.2 Wastewater Treatment Facility Land Acquisition Requirements  Construction of the proposed wastewater treatment facility will require property acquisitions as  shown in the table below.    Table 4 ‐ WWTP Land Acquisition Requirements  PID# Property  Owner Assessed Value Description Size Required Purchase Entire  Lot (Y/N)  15483100 PWGSC $8,600 WWTP Site N/A Y  15006935 David Wilson $12,000 WWTP Site N/A Y  15484108 John Wilson  Sandra Wilson $85,300 WWTP Site N/A Y  15484090  David Allan  Wilson  Lori Anne  Wilson  $279,400 WWTP Site N/A Y    4.3 Wastewater Treatment Facility Site Desktop Geotechnical Review  A review of the subsurface soil conditions at the proposed site for the New Waterford Wastewater  Treatment Facility was carried out.  In general, the review involved a field visit to the site to observe  the general conditions and a desktop review of available documents with the intent of commenting  on the following issues:   site topography;   geology (surficial ground cover, probable overburden soil and bedrock type);   geotechnical problems and parameters;   previous land use (review of aerial photographs);   underground/surface mining activities; and   proposed supplemental ground investigation methods (test pits and/or boreholes)    The following geotechnical issues were noted at the site:  1. There is evidence of the erodibility of subsurface soils and bedrock exposure along the Atlantic  coastline and a Coastal Protection Plan will be required for the site.  2. The area west and southwest of the proposed construction site was undermined due to  historical coal mining activities and there is a potential for undocumented bootleg pits/mines  in the area.  3. There is the potential for a layer of limestone to be present underlying the surficial ground  and alternating layers of bedrock below the site.  Limestone is water soluble and has the  potential to develop karsts voids (sinkholes).    The review recommends an intrusive borehole program on the site to further define the subsurface  conditions.    A copy of the New Waterford WWTP site geotechnical review report is provided in Appendix D.          HEJV New Waterford Wastewater System Pre‐Design Summary Report 8   CHAPTER 5  WASTEWATER SYSTEM ARCHAEOLOGICAL  RESOURCES IMPACT ASSESSMENT    5.1 Archaeological Resources Impact Assessment  In October 2018, Davis MacIntyre & Associates Limited conducted a phase I archaeological resource  impact assessment at sites of proposed new wastewater infrastructure for the New Waterford  Wastewater System.  The assessment included a historic background study and reconnaissance in  order to determine the potential for archaeological resources in the impact area and to provide  recommendations for further mitigation, if necessary.    The historic background study indicates that the study area was occupied at least as early as the late  19th century and residential buildings as well as mine features occupied the nearby vicinity.  First  Nations peoples were known to have been present at nearby Lingan, as were European settlers in the  18th century.  However, the field reconnaissance indicated that the majority of the study area has  been significantly altered over time, in part due to mining activities and their subsequent  abandonment, but also in relation to development of the government harbour at the Barachois.  The  nearby cemetery is located well outside the study area and is a well‐established modern cemetery  whose bounds are believed to be well‐defined.  Therefore, the study area has been determined to be  of low potential for intact archaeological resources and no further active archaeological mitigation is  recommended for the project.    However, in the unlikely event that any archaeological resources are encountered at any time during  ground disturbance, it is required that all activity cease and the Coordinator of Special Places (902‐ 424‐6475) be contacted immediately regarding a suitable method of mitigation.  Furthermore, in the  event that development plans change so that areas not evaluated as part of this assessment will be  impacted, it is recommended that those areas be assessed by a qualified archaeologist.    Finally, it is recommended that, if available, a qualified palaeontologist or geologist be contracted to  examine any bedrock exposed during the project excavation, and to determine the need for any  further paleontological monitoring.       HEJV New Waterford Wastewater System Pre‐Design Summary Report 9 A copy of the detailed New Waterford Wastewater System Archaeological Resources Impact  Assessment Report is provided in Appendix E.  It should be noted that this report was registered with  the Nova Scotia Department of Communities, Culture and Heritage in April 2019.                                                                                       HEJV New Waterford Wastewater System Pre‐Design Summary Report 10   CHAPTER 6  WASTEWATER INFRASTRUCTURE COSTS    6.1 Wastewater Interception & Treatment Capital Costs  An opinion of probable capital cost for the recommended wastewater interception and treatment  system for New Waterford is presented in the table below.    Table 5 ‐ New Waterford Wastewater Interception & Treatment System Capital Costs  Project Component Capital Cost (Excluding Taxes)  Wastewater Interception System $2,114,000  Wastewater Interception System Land Acquisition $11,000  Subtotal 1:$2,125,000  Construction Contingency (25%):$529,000  Engineering (10%):$211,000  Total Wastewater Interception: $2,865,000  Wastewater Treatment Facility $18,044,000  Wastewater Treatment Facility Land Acquisition $300,000  Subtotal 2:$18,344,000  Construction Contingency (25%):$4,511,000  Engineering (12%):$2,165,000  Total Wastewater Treatment: $25,020,000  Total Interception & Treatment System: $27,885,000      HEJV New Waterford Wastewater System Pre‐Design Summary Report 11 6.2 Wastewater Interception & Treatment Annual Operating Costs  An opinion of probable annual operating costs for the recommended wastewater interception and  treatment system for New Waterford is presented in the table below.    Table 6 ‐ New Waterford Wastewater Interception & Treatment System Operating Costs  Project Component Annual Operating Cost  (Excluding Taxes)  Wastewater Interception System  General Linear Maintenance Cost $500  General Lift Station Maintenance Cost $7,000  Employee O&M Cost $7,000  Electrical Operational Cost $27,000  Backup Generator O&M Cost $6,300  Total Wastewater Interception Annual Operating Costs: $47,800  Wastewater Treatment Facility  Staffing $400,000  Power $111,000  Chemicals $20,000  Sludge Disposal $130,000  Maintenance Allowance $21,000  Total Wastewater Treatment Annual Operating Costs: $682,000  Total Interception & Treatment System Annual Operating Costs: $729,800    6.3 Annual Capital Replacement Fund Contribution Costs  The CBRM wishes to create a Capital Replacement Fund to which annual contributions would be made  to prepare for replacement of the wastewater assets at the end of their useful life.  The calculation of  annual contributions to this fund involves consideration of such factors as the type of asset, the asset  value, the expected useful life of the asset, and the corresponding annual depreciation rate for the  asset.  In consideration of these factors, the table below provides an estimate of the annual  contributions to a capital replacement fund for the proposed new wastewater interception and  treatment system infrastructure.  This calculation also adds the same contingency factors used in the  calculation of the Opinion of Probable Capital Cost, to provide an allowance for changes during the  design and construction period.  The actual Annual Capital Replacement Fund Contributions will be    HEJV New Waterford Wastewater System Pre‐Design Summary Report 12 calculated based on the final constructed asset value, the type of asset, the expected useful life of the  asset, and the corresponding annual depreciation rate for the asset type.  Please note that costs  shown below do not account for annual inflation and do not include applicable taxes.    Table 7 ‐ New Waterford Wastewater Interception & Treatment System Capital Replacement Fund  Costs  Description of Asset Asset Value  Asset Useful  Life  Expectancy  (Years)  Annual  Depreciation  Rate (%)  Annual Capital  Replacement  Fund  Contribution  Wastewater Interception System  Linear Assets (Piping, Manholes and  Other) $524,030 75 1.3% $6,812 Pump Station Structures (Concrete  Chambers, etc.) $874,280 50 2.0% $17,486 Pump Station Equipment (Mechanical  / Electrical) $715,320 20 5.0% $35,766 Subtotal $2,113,630 ‐  ‐ $60,064 Construction Contingency (Subtotal x 25%): $15,016 Engineering (Subtotal x 10%): $6,006 Wastewater Interception System Annual Capital Replacement Fund Contribution  Costs: $81,086 Wastewater Treatment System  Treatment Linear Assets (Outfall and  Yard Piping, Manholes and Other) $2,000,000 75 1.3% $27,000 Treatment Structures (Concrete  Chambers, etc.) $7,500,000 50 2.0% $150,000 Treatment Equipment (Mechanical /  Electrical, etc.) $8,600,000 20 5.0% $430,000 Subtotal $18,100,000 ‐  ‐ $607,000 Construction Contingency (Subtotal x 25%): $152,000 Engineering (Subtotal x 12%): $73,000 Wastewater Treatment System Annual Capital Replacement Fund Contribution  Costs: $832,000 Total Wastewater Interception & Treatment Annual Capital Replacement Fund  Contribution Costs: $913,086       HEJV New Waterford Wastewater System Pre‐Design Summary Report 13 6.4 Existing Wastewater Collection System Upgrades / Assessment Costs  The estimated costs of upgrades and assessments related to the existing wastewater collection  system as described in Chapter 3 are shown in the table below.    Table 8 ‐ Existing Wastewater Collection System Upgrades / Assessment Costs                                                  Item Cost  Sewage Pump Station Upgrades    Pump Station Infrastructure (controls, pumps, etc.) $841,000  Backup Power Generation $211,000  Engineering (12%) $126,000  Contingency (25%) $263,000  Total $1,441,000  Collection System Asset Condition Assessment Program   Condition Assessment of Manholes based  on 825 MH’s $155,000  Condition Assessment of Sewer Mains based on 14 km’s of infrastructure $125,000  Total $280,000  Sewer Separation Measures   Separation based on 70km’s of sewer @ $45,000/km $3,150,000  Engineering (10%) $315,000  Contingency (25%) $788,000  Total $4,253,000  Total Estimated Existing Collection System Upgrade and Assessment Costs $5,974,000    HEJV New Waterford Wastewater System Pre‐Design Summary Report 14   CHAPTER 7  PROJECT IMPLEMENTATION TIMELINE    7.1 Implementation Schedule  Figure 1 provides a tentative schedule for implementation of wastewater system upgrades for New  Waterford, including proposed wastewater interception and treatment infrastructure as well as  upgrades to and assessment of the existing collection system.    For the Low Risk systems such as New Waterford, it is expected that implementation of proposed  upgrades will proceed on a staggered basis over the next 20 years as dictated by funding availability.   As each of these systems have the same target deadline, the prioritization will likely depend on not  only the availability of funding but also external factors.  As the prioritization of the low risk systems  is not currently known, the project implementation schedule has been tentatively outlined on a  generalized basis (Year 1, Year 2, etc.) rather than with specified deadlines.    The schedule has been structured such that, in Year 1, asset condition assessments and investigations  to locate sources of extraneous water entering the system would be carried out.  The two subsequent  years are allotted for design/construction of recommended upgrades, however, it is conceivable that  this could be completed in one year, depending on the scope of work required.  It is proposed that,  during the following year, a follow‐up wastewater flow metering program would be carried out to  confirm design flows for new infrastructure and gauge the effect of upgrades to the existing collection  system.  The subsequent four years after the follow‐up flow metering program have been allotted to  carry out design/construction of the new interception and treatment system.  However, it is  conceivable that this work could be completed within three (3) years.  This results in a tentative  implementation schedule that covers an eight (8) year timeline, which as noted above could be  compressed to six (6) years to align with typical funding programs for major infrastructure.    It should be noted that, although the process of pursuing the acquisition of properties and easements  required to construct the proposed wastewater upgrades as outlined in previous sections is not shown  on the Project Implementation Schedule, it is recommended that the CBRM pursue these acquisitions  prior to the commencement of detailed design.            No. Project Component Period: Jan ‐ Mar Apr ‐ Jun Jul ‐ Sept Oct ‐ Dec Jan ‐ Mar Apr ‐ Jun Jul ‐ Sept Oct ‐ Dec Jan ‐ Mar Apr ‐ Jun Jul ‐ Sept Oct ‐ Dec Jan ‐ Mar Apr ‐ Jun Jul ‐ Sept Oct ‐ Dec Schedule: Cash Flow: Schedule: Cash Flow: Schedule: Cash Flow: Schedule: Cash Flow:$20,000 Schedule: Cash Flow: Schedule: Cash Flow: Schedule: Cash Flow: Schedule: Cash Flow: Schedule: Cash Flow: Schedule: Cash Flow: Schedule: Cash Flow: Figure 1 ‐ Project Implementation Schedule New Waterford Wastewater System 1234 1 Year: $155,000 Carry out video inspection and assessment of selected sanitary sewers in the existing collection system2 $125,000 11 Carry out tendering, construction, commissioning and initial systems operations for proposed  wastewater treatment infrastructure Carry out detailed design for proposed wastewater treatment infrastructure Carry out asset condition assessment of all manholes in the existing collection system Carry out Sewer Separation Investigation Study to locate sources of extraneous water entering the  collection system Carry out asset condition assessment of all sewage pumping stations in the existing collection system Carry out detailed design for recommended upgrades to the existing collection system based on  previous assessments Carry out tendering, construction and commissioning for recommended upgrades to the existing  collection system Carry out flow metering and wastewater testing in the existing collection system to confirm  wastewater flows and organic loading 3 4 5 6 7 $30,000 10 9 Carry out tendering, construction, commissioning and initial systems operations for proposed  wastewater interception infrastructure Carry out detailed design for proposed wastewater interception infrastructure8 $50,000 $88,200 $88,200 $2,758,800 $2,758,800 No. Project Component Period: Jan ‐ Mar Apr ‐ Jun Jul ‐ Sept Oct ‐ Dec Jan ‐ Mar Apr ‐ Jun Jul ‐ Sept Oct ‐ Dec Jan ‐ Mar Apr ‐ Jun Jul ‐ Sept Oct ‐ Dec Jan ‐ Mar Apr ‐ Jun Jul ‐ Sept Oct ‐ Dec Schedule: Cash Flow: Schedule: Cash Flow: Schedule: Cash Flow: Schedule: Cash Flow: Schedule: Cash Flow: Schedule: Cash Flow: Schedule: Cash Flow: Schedule: Cash Flow: Schedule: Cash Flow: Schedule: Cash Flow: Schedule: Cash Flow: Carry out asset condition assessment of all manholes in the existing collection system Carry out video inspection and assessment of selected sanitary sewers in the existing collection system Carry out Sewer Separation Investigation Study to locate sources of extraneous water entering the  collection system Carry out asset condition assessment of all sewage pumping stations in the existing collection system New Waterford Wastewater System 5678 Figure 1 ‐ Project Implementation Schedule Year: $24,154,000 Carry out tendering, construction, commissioning and initial systems operations for proposed  wastewater treatment infrastructure11 10 1 2 3 4 5 6 7 Carry out detailed design for recommended upgrades to the existing collection system based on  previous assessments Carry out tendering, construction and commissioning for recommended upgrades to the existing  collection system Carry out flow metering and wastewater testing in the existing collection system to confirm  wastewater flows and organic loading Carry out detailed design for proposed wastewater interception infrastructure Carry out tendering, construction, commissioning and initial systems operations for proposed  wastewater interception infrastructure 8 9 $84,400 $2,780,600 $866,000 Carry out detailed design for proposed wastewater treatment infrastructure HEJV New Waterford Wastewater System Pre‐Design Summary Report Appendices APPENDIX A  New Waterford Collection System Pre‐ Design Brief  187116 ●Final Brief ●April 2020 Environmental Risk Assessments & Preliminary Design of Seven Future Wastewater Treatment Systems in CBRM New Waterford Collection System Pre-Design Brief Prepared by: HEJVPrepared for: CBRM March 2020 March 27, 2020 275 Charlotte Street Sydney, Nova Scotia Canada B1P 1C6 Tel: 902-562-9880 Fax: 902-562-9890 _________________ NEW WATERFORD COLLECTION SYSTEM PRE DESIGN BRIEF 09OCT20119/ek ED: 20/04/2020 11:58:00/PD: 20/04/2020 11:58:00 April 20, 2020 Matthew D. Viva, P.Eng. Manager of Wastewater Operations Cape Breton Regional Municipality 320 Esplanade, Sydney, NS B1P 7B9 Dear Mr. Viva: RE: Environmental Risk Assessments & Preliminary Design of Seven Future Wastewater Treatment Systems in CBRM – New Waterford Collection System Pre-Design Brief Harbour Engineering Joint Venture (HEJV) is pleased to submit the following Collection System Pre-Design Brief for your review and comment. This Brief summarizes the interceptors, local sewers and pumping station that will form the proposed wastewater collection for the community of New Waterford. The collection system will convey sewage to a future Wastewater Treatment Facility that will be located north east of Mahon Street. The Brief also outlines the design requirements and standards for the required collection system infrastructure components. Yours very truly, Harbour Engineering Joint Venture Prepared by: Reviewed by: James Sheppard, P.Eng. Darrin McLean, MBA, FEC, P.Eng. Civil Infrastructure Engineer Senior Civil Engineer Direct: 902-562-9880 Direct: 902-539-1330 E-Mail:jsheppard@dillon.ca E-Mail:dmclean@cbcl.ca Project No: 187116 (Dillon) and 182402.00 (CBCL) March 27, 2020 Harbour Engineering Joint Venture New Waterford Collection System Pre-Design Brief i Contents CHAPTER 1 Introduction & Background ........................................................................................... 1 1.1 Introduction ................................................................................................................... 1 1.2 System Background ........................................................................................................ 1 CHAPTER 2 Design Parameters & Standards .................................................................................... 3 2.1 General Overview ........................................................................................................... 3 2.2 Design Standards ............................................................................................................ 3 CHAPTER 3 Wastewater Interceptor Pre- Design ............................................................................. 5 3.1 General Overview ........................................................................................................... 5 3.2 Design Flows .................................................................................................................. 5 3.2.1 Theoretical Flow ................................................................................................. 5 3.2.2 Observed Flow .................................................................................................... 6 3.2.3 Flow Conclusions & Recommendations ............................................................... 8 3.2.4 Wet Weather Conditions Assessment ................................................................. 9 3.3 Interceptor System ....................................................................................................... 10 3.4 Combined Sewer Overflows.......................................................................................... 12 3.5 Pumping Stations ......................................................................................................... 13 3.5.1 Pumping Design Capacity .................................................................................. 13 3.5.2 Safety Features ................................................................................................. 14 3.5.3 Wetwell ............................................................................................................ 14 3.5.4 Station Piping.................................................................................................... 15 3.5.5 Equipment Access ............................................................................................. 15 3.5.6 Emergency Power ............................................................................................. 15 3.5.7 Controls ............................................................................................................ 15 3.5.8 Security ............................................................................................................ 16 CHAPTER 4 Existing Collection System Upgrades ........................................................................... 17 4.1 Sewage Pump Station Upgrades ................................................................................... 17 4.2 Asset Condition Assessment Program ........................................................................... 17 4.3 Sewer Separation Measures ......................................................................................... 17 CHAPTER 5 Pipe Material Selection and Design ............................................................................. 18 5.1 Pipe Material ................................................................................................................ 18 CHAPTER 6 Land and Easement Requirements .............................................................................. 20 6.1 Lift Station Sites............................................................................................................ 20 Harbour Engineering Joint Venture New Waterford Collection System Pre-Design Brief ii 6.2 WWTP Site ................................................................................................................... 20 6.3 Linear Infrastructure ..................................................................................................... 21 CHAPTER 7 Site Specific Constraints ............................................................................................... 22 7.1 Construction Constraints .............................................................................................. 22 7.2 Environmental Constraints ........................................................................................... 22 7.3 Access Requirements.................................................................................................... 22 7.4 Power Supply Requirements ......................................................................................... 23 CHAPTER 8 Opinion of Probable Costs ........................................................................................... 24 8.1 Opinion of Probable Costs ............................................................................................ 24 8.2 Opinion of Operating Costs ........................................................................................... 24 8.3 Opinion of Existing Collection System Upgrades and Assessment Costs ........................ 25 8.4 Opinion of Annual Capital Replacement Fund Contributions ......................................... 26 CHAPTER 9 References ................................................................................................................... 27 Tables Table 2-1 Sewer Design Criteria ............................................................................................... 3 Table 2-2 Pumping Station Design Criteria ............................................................................... 4 Table 3-1 Theoretical Flow Summary ....................................................................................... 6 Table 3-2 Flow Monitoring Location Summary ......................................................................... 7 Table 3-3 Average Dry Weather and Design Flows Results ....................................................... 7 Table 3-4 NW#1 outfall interpolation ....................................................................................... 8 Table 3-5 Adjusted Design Flows .............................................................................................. 8 Table 3-6 Observed Flows during Rainfall Events...................................................................... 9 Table 3-7 Pump Station Summary .......................................................................................... 14 Table 3-8 Wetwell Sizing Summary ........................................................................................ 14 Table 5-1 Comparison of Pipe Materials ................................................................................. 18 Table 6-1 Lift Station Land Acquisition Details ........................................................................ 20 Table 6-2 WWTP Land Acquisition Details .............................................................................. 21 Table 6-3 Linear Infrastructure Land Acquisition Details ......................................................... 21 Table 8-1 Annual Operations and Maintenance Cost .............................................................. 24 Table 8-2 Estimated Existing Collection System Upgrade and Assessment Costs..................... 26 Table 8-3 Estimated Annual Capital Replacement Fund Contributions.................................... 26 Appendices Appendix A –Drawings Appendix B – Flow Master Reports Appendix C – Opinion of Probable Construction Costs Harbour Engineering Joint Venture New Waterford Collection System Pre-Design Brief 1 CHAPTER 1 INTRODUCTION &BACKGROUND 1.1 Introduction Harbour Engineering Joint Venture (HEJV) has been engaged by the Cape Breton Regional Municipality (CBRM) to carry out Environmental Risk Assessments (ERAs) and Preliminary Design of seven future wastewater treatment Systems in the CBRM. The future wastewater collection and treatment systems will serve the communities of Glace Bay, Port Morien, North Sydney & Sydney Mines, New Waterford, New Victoria, Louisbourg and Donkin, which currently have no wastewater treatment facilities. The preliminary design of the wastewater interceptor systems are being completed as an addition to the existing wastewater systems in each community. In general, the proposed interceptor sewers will convey wastewater from the existing outfalls to the proposed Wastewater Treatment Plant (WWTP) in each location. The complexity of each system is directly related to the number of outfalls, geographic size and topography of each community. In general, the scope of work on the interceptor system generally includes the following: ®Determination of design wastewater flows; ®Making recommendations on the best sites for proposed wastewater treatment facilities; ®Development of the most appropriate and cost-effective configurations for wastewater interception; and, ®Estimation of capital and operations costs for recommended wastewater components. This document relates to the interceptors, local sewers and pumping stations that will form the wastewater interceptor system for the proposed WWTP in the community of New Waterford. This brief outlines the design requirements and standards for the required infrastructure components. Information regarding the preliminary design of the proposed wastewater treatment facility for New Waterford will be provided in a separate Design Brief. 1.2 System Background There are two wastewater sewersheds in the community of New Waterford. The sewersheds employ a combination of gravity sewers and pumped systems to convey sewage. Pipe sizes in the gravity network range from 200 to 750mm in diameter. There are several pumping stations in the existing collection system including Nicklewood Drive, Columbus Street, Oceanview Boulevard and Hinchey Avenue. Harbour Engineering Joint Venture New Waterford Collection System Pre-Design Brief 2 Details for each of the pump stations are as follows: ®Nicklewood Drive – located at the southern end of Nicklewood Drive o Installed in 1996; o Duplex submersible station with 30hp pumps; o Does not have emergency backup power; o Does not have an emergency overflow; and, o Station pumps flow to a high point on Ryan Street; ®Oceanview Boulevard – located at the northern end of Oceanview Boulevard o Installed in 1996; o Duplex submersible station; o Does not have emergency backup power; o Does have an emergency overflow complete with a septic tank; and, o Station pumps flow to a high point on Hinchey Avenue. ®Columbus Street – located at the southern end of Columbus Street o Installed in 1996; o Duplex submersible station; o Does not have emergency backup power; o Does have an emergency overflow; and, o Station pumps flow to a high point on Ryan Street. ®Hinchey Avenue – located west of Ocenview Boulevard. o Duplex submersible station; o Does not have emergency backup power; o Does have an emergency overflow; and, o Station pumps flow to a high point on Hinchey Avenue (approximately 450m to the west). The existing New Waterford collection system conveys sewage to two outfalls, both of which are located at the Barachois. Not much information is known about the NW#1 outfall. The gravity network upstream of the outfall is 750mm in diameter. The outfall is submerged and is adjacent to the community wharf/breakwater. The NW#2 outfall is located east of the northern end of Mahon Street. The outfall is 450mm in diameter. The outfall is constructed on the shoreline and is concrete encased. A drawing of the existing New Waterford sewer system is located in Appendix A for reference. Harbour Engineering Joint Venture New Waterford Collection System Pre-Design Brief 3 CHAPTER 2 DESIGN PARAMETERS &STANDARDS 2.1 General Overview The development of a wastewater interceptor system for each of the communities is highly dependent upon the selection of appropriate design parameters. HEJV has reviewed applicable design standards and has developed the preliminary design of the interceptor sewer to meet and exceed these industry standards. 2.2 Design Standards The design of the interceptor system has been based on the following reference documents and standards: ®Atlantic Canada Wastewater Guidelines Manual for Collection, Treatment, and Disposal (ACWGM) (Environment Canada, 2006); and ®Water Environment Federation: Manual of Practice FD-4, Design of Wastewater and Stormwater Pumping Stations. The key design criteria that have been established for this project are presented in Table 2-1 and Table 2-2. Table 2-1 Sewer Design Criteria Description Unit Design Criteria Source Comments Hydraulic Capacity l/s Location dependent HEJV Flow has been set to minimize overflow events. See discussion in Chapter 3. Material for forcemains PVC, HDPE or ductile iron pipe with the specified corrosion protection CBRM See discussion in Chapter 5 Minimum forcemain velocity m/s 0.6 ACWGM For self-cleansing purposes Forcemain minimum depth of cover m 1.8 ACWGM Subject to Interferences Material of gravity pipe PVC or Reinforced concrete CBRM See discussion in Chapter 5 Hydraulic design gravity Manning’s Formula ACWGM n = 0.013 Hydraulic design forcemain Hazen Williams Formula ACWGM C = 120 Maximum spacing between manholes m 120 for pipes up to and including 600 mm and 150 for pipes over 600 mm ACWGM Gravity pipe minimum design flow velocity m/s 0.6 ACWGM Harbour Engineering Joint Venture New Waterford Collection System Pre-Design Brief 4 Description Unit Design Criteria Source Comments Gravity pipe maximum flow velocity m/s 4.5 ACWGM Pipe crossings separation mm 450 minimum Minimum separation must also meet Nova Scotia Environment (NSE) requirements. Horizontal pipe separation forcemain to watermain m 3.0 NSE Horizontal pipe separation gravity pipe to water main m 3.0 ACWGM Can be laid closer if the installation meets the criteria in Section 2.8.3.1 Gravity pipe minimum depth of cover m 1.5 HEJV Subject to Interferences Gravity pipe maximum depth of cover m 4.5 HEJV Subject to Interferences. Increased depth may be considered where warranted Table 2-2 provides a summary of the key design criteria for the Pumping Stations. Table 2-2 Pumping Station Design Criteria Description Unit Design Criteria Source Comments Pump cycle time 1 hour 5 < cycle <10 WEF/ ACWGM Number of pumps Minimum of two. Must be able to pump design flow with the largest pump out of service. ACWGM Three minimum for stations with flows greater than 52 l/s. Inlet sewer One maximum ACWGM Only a single sewer entry is permitted to the wetwell. Header pipe diameter mm 100 minimum ACWGM Solids handling mm 75 (minimum)ACWGM Smaller diameter permissible for macerator type pumps. Emergency power generation To be provided for firm capacity of the facility. ACWGM Can employ overflow options per 3.3.1. Option to run one pump if conditions of 3.3.5.1 are met. Pump station wetwell ventilation Air changes/ hour 30 (Wetwell) 12 (Valve Chamber) ACWGM Based on intermittent activation when operating in the wet well. Harbour Engineering Joint Venture New Waterford Collection System Pre-Design Brief 5 CHAPTER 3 WASTEWATER INTERCEPTOR PRE-DESIGN 3.1 General Overview A drawing of the existing New Waterford collection system has been included in Appendix A. The drawing was created using background data collected from various sources to depict the layout of the existing sanitary sewer network. The proposed wastewater interceptor system for New Waterford will include two sewage pump stations. The first, LS-NW#1 will be located east of the northern end of Beach Street, adjacent to the community wharf. A new gravity interceptor will connect with existing infrastructure and redirect flow from the existing NW#1 outfall to a CSO chamber. Flow from the CSO chamber, under normal conditions (as defined in this chapter) will be directed to a proposed sewage pump station. Flow above normal conditions, will overflow though the CSO chamber, back to the existing NW1 outfall. The pump station will convey wastewater via. A 400 mm diameter forcemain under Irish Brook to the proposed WWTP, approximately 310 metres away. The second pump station, LS-NW#2, will convey flow from the NW#2 outfall to the proposed WWTP. A gravity connection to the existing sewer will be completed and direct flow from the NW#2 outfall to a proposed CSO chamber. The CSO chamber will direct flow to the pump station under normal conditions (as defined in this chapter) and to the NW#2 outfall during periods of excessive flows. For this Pre-Design Brief, HEJV has compiled a preliminary plan and profile drawing of the proposed linear infrastructure. The locations of the pump stations, existing outfalls and the proposed WWTP location have also been illustrated on the drawings and are included in Appendix A. 3.2 Design Flows HEJV completed a review of the theoretical and observed sanitary flows for the New Waterford sewersheds. The purpose of the assessment was to estimate average and design flows for the environmental risk assessment (ERA) and the preliminary design of the future WWTP and interception system. 3.2.1 Theoretical Flow Theoretical flow was calculated based on design factors contained in the ACWGM. The population for the New Waterford sewer sheds was based on the 2016 Census data from CBRM’s GIS database using the following procedure: Each residential unit within the sewer shed area boundary from CBRM’s structure database was multiplied by the average household size for the census Harbour Engineering Joint Venture New Waterford Collection System Pre-Design Brief 6 dissemination area that it falls within. For New Waterford, the service area population was estimated to be 7,420 people in 3,735 residential units. Population estimates are shown in Table 3-1 and Table 3-4. Peak design flow was calculated using the following equation (1): ܳ(݀)=ܲݍܯ 86.4 +ܫܣ (1) Where: Q(d) = Peak domesƟc sewage flow (l/s) P = PopulaƟon (in thousands) q = Average daily per capita domesƟc flow (l/day per capita) M = Peaking factor (Harman Method) I = unit of extraneous flow (l/s) A = Subcatchment area (hectares) ACWGM recommends an average daily domestic sanitary flow of 340 l/day per person for private residential dwellings. The unit of extraneous flow was assumed to be approximately 0.21 l/s/ha based on typical ranges outlined in ACWGM. The peaking factor used in Equation 1 was determined using the Harman Formula (2) shown below: Harman Formula ܯ =1+14 4+ܲ଴.ହ (2) The estimated average dry weather flow (ADWF), 3.5xADWF and peak design flows based on the ACWGM methods discussed above are presented in Table 3-1. Please note that the value of 3.5xADWF was recommended by UMA Engineering Limited as the minimum sewage flow rate that should be treated for New Waterford in the report “Industrial Cape Breton Wastewater Characterization Program – Phase II” prepared in 1994. As such, HEJV recommends this value be carried forward as the minimum amount of sewage that should be treated for New Waterford. Table 3-1 Theoretical Flow Summary Station Estimated Area (ha) Estimated Population1 ADWF2 (l/s)3.5x ADWF (l/s) Peak Design Flow3 (l/s) NW#1 208 2910 11.45 40.08 83.22 NW#2 79 1046 4.11 14.39 32.18 1 2016 Cape Breton Census from StaƟsƟcs Canada 2Based on average daily sewer flows of 340 L/day/person (ACWGM 2006) 3EsƟmated using ACWGM equaƟon for peak domesƟc sewage flows (including extraneous flows and peaking factor) 3.2.2 Observed Flow A summary of the flow meter deployment locations and monitoring durations are provided in Table 3- 2. Initially, HEJV installed one meter at the NW#2 outfall to be used to determine design flows for the New Waterford Interceptor System and future WWTP. The flows that were obtained in the February 28th to April 17th meter deployment were reviewed against values that had been previously been captured by UMA Engineering in the 1990’s. The flows obtained from the initial flow metering program were much larger than those collected in the past (near 3x’s larger). HEJV at that time Harbour Engineering Joint Venture New Waterford Collection System Pre-Design Brief 7 recommended to CBRM that a flow monitoring program should be conducted at both outfall sites to confirm the data from the initial deployment as the larger NW#1 flows would be derived from the larger than anticipated flows for the NW#2 outfall meter location. Table 3-2 Flow Monitoring Location Summary Station Northing Easting Monitoring Start-End Dates Days of Data NW#1-Mahon St.5125090.661 4609004.525 August 1-17, 2018 17 NW#2 –Mahon St.5125090.661 4609004.525 February 28-April 17, 2018 August 1-22, 2018 71 Analysis for observed dry weather flows were completed using the United States Environmental Protection Agency’s (EPA) Sanitary Sewer Overflow Analysis and Planning (SSOAP) toolbox. The SSOAP toolbox is a suite of computer software tools used for capacity analysis and condition assessments of sanitary sewer systems. Flow and precipitation data were input into the SSOAP program, along with sewershed data for each of the metered areas. To determine average dry weather flow (ADWF), days that were influenced by rainfall were deleted. This was done in the SSOAP model by removing data from days that had any rain within the last 24 hours, more than 5 mm in the previous 48 hours, and more than 5 mm per day additional in the subsequent days (e.g. 10 mm in the last 3 days). The calculated ADWF estimates based on monitored flow data evaluated using the SSOAP program are presented in Table 3-3. Table 3-3 Average Dry Weather and Design Flows Results Monitoring Station ADWF From SSOAP Model (l/s) 3.5x ADWF (l/s) Average Daily Observed Flow (l/s) Peak Daily Average Flow (l/s) NW#1 (Monitored Portion)39.40 137.90 41.40 59.21 NW#2 8.90 35.60 13.44 73.31 Values for the remaining portion of the NW#1 sewershed were derived from the observed flow data from the NW#1 outfall.Table 3-4 presents a summary of the collected and interpolated flows for the NW#1 sewershed. Harbour Engineering Joint Venture New Waterford Collection System Pre-Design Brief 8 Table 3-4 NW#1 outfall interpolation Site Contributing Population Contributing Area (ha)3.5xADWF From SSOAP Model(l/s) NW#1 (Monitored Portion)2910 208 137.90 NW#1 (Not Monitored)3464 217 164.15 NW#1 Total 6374 425 302.05 3.2.3 Flow Conclusions & Recommendations HEJV reviewed the data collected for NW#1 and NW#2. When the values obtained for ADWF were converted to a per person value, it was noted that the values obtained in NW#1 were quite high, and over 1000 l/p/d (liters/per person/day). The value returned for NW#1 was approximately 1200 l/p/d, and the value returned for NW#2 was 875 l/p/d. Please note that the calculation for NW#2 also contains the data that was collected during the initial flow metering program. In contrast, the dry weather flows obtained during the second flow meter deployment, returned a value of 330 l/p/d. HEJV reviewed the existing collection system for a possible rationale as to why the flows were so much higher for the NW#1 outfall. The average overnight flow minimums were examined for both NW#1 and NW#2 sewershed data. The overnight minimum flow in NW#2 was 158 l/p/d and 520 l/p/d for NW#1. Wastewater production at 3am is typically very low, but not zero. If the minimum flows in NW#2 are assumed to be reasonable for overnight flow, then NW#1 flows should be able to approach this level during dry weather, in the absence of an industrial process that discharges significant volumes at nights; therefore, the difference in overnight flow rates between the two sewersheds is likely to be unnecessary extraneous flow. This may result from heavy groundwater infiltration or from a stream entering the sewer in NW#1. Flow equivalent to (520-158 = 362 l/p/d) for the NW#1 sewershed was therefore removed from the design flows. Please see Table 3-5 below for updated design flows that were utilized in the preliminary design of the interceptor system. Table 3-5 Adjusted Design Flows Site ADWF (From SSOAP & Interpolation) (l/s) ADWF (reduction) (l/s) ADWF (Adjusted) (l/s) 3.5xADWF (Adjusted) (l/s) NW#1 86.30 26.70 59.60 208.60 NW#2 8.90 -8.90 31.15 Based on the analysis presented in the above sections, HEJV’s recommended design flow for LS- NW#1 is 208.60 l/s based on the adjusted 3.5xADWF value. For LS-NW#2, HEJV recommends a design flow of 31.15 l/s based on the 3.5XADWF value that was determined from the raw data collected from both flow monitoring programs. Harbour Engineering Joint Venture New Waterford Collection System Pre-Design Brief 9 As the New Waterford WWTP has been characterized as a low risk system, the implementation date for the proposed work may not occur till 2040 (21 years into the future). HEJV recommends re- visiting the above noted adjusted design flows during the detailed design of the project. Due to the time span, there is opportunity for CBRM to complete upgrades to the existing system to reduce the impact of I&I into the system. Concurrently, if no upgrades are made to the system, then the flow conditions may increase, as the existing system may be further plagued by I&I issues. A future flow monitoring program during detailed design would be recommended to confirm the final flows used for the design of the New Waterford Interceptor Sewer and WWTP. The time span would also allow for revisions to the design standards referenced in Chapter 2.2,which could impact the design flows presented in Table 3-5. 3.2.4 Wet Weather Conditions Assessment To evaluate performance of the proposed lift station during wet weather conditions, metered flows during rainfall events have also been considered. A minimum rainfall depth of 10 mm is assumed to be the minimum rainfall required to result in meaningful wet weather flows in the sewer. The measured flow was compared to the recommended design flow to indicate if overflow is expected. The results of the wet weather flow analysis can be seen in Table 3-6. Table 3-6 Observed Flows during Rainfall Events Monitoring Station Minor Rainfall Event (10-25 mm Daily Rainfall) Major Rainfall Event (>25 mm Daily Rainfall) # of Events Daily Average Flow (l/s) Expected Overflow1 (Y/N)# of Events Daily Average Flow (l/s) Expected Overflow1 (Y/N) NW#1 2 50 No Data Available NW#2 7 24 N 1 43 Y 1 Overflow expected when observed flow exceeds design flow It is important to note that only one rainfall event having daily rainfall amounts in excess of 25 mm was measured during the monitoring period. To consider the effects of moderate rainfall, daily rainfall for the Sydney CS climate station (Environment Canada Station #8207502) was reviewed for the past 10 years of complete data (2008 – 2017). Review of these data suggests that moderate rainfall events (i.e. daily rainfall greater than 25 mm) are expected to occur frequently within a given year. Based on this review, it is expected that these moderate rainfalls would occur on average between 10 and 15 times each year and therefore overflow may be expected during these events. Rapid snow melt may lead to additional overflow events, the occurrence of which would largely be confined to the spring freshet season. According to the U.S. Environmental Protection Agency, peak rainfall events establish peak sewer flows rather than snow melt (EPA 2007). This is reasonable since snow is temporarily stored within the watershed as snow pack and gradually melts over time (i.e. rather than sudden peak flows generated by intense rainfall). Harbour Engineering Joint Venture New Waterford Collection System Pre-Design Brief 10 Mean daily temperatures were reviewed during wet periods to consider the impacts of snow accumulation and melt during the winter observation period. Mean temperatures were found to be above 0oC for the precipitation events considered in this study. A few of the events occurred with temperatures close to 0oC and are likely to have fallen as a rain-snow mix. Given these relatively mild temperatures, it is expected that the SSOAP analysis generally accounted for snow- melt wet weather inputs in estimating dry weather flows. 3.3 Interceptor System The proposed interceptor system for the New Waterford WWTP is presented on the plan and profile drawing attached in Appendix A. The proposed interceptor system is made up of segments of pressure and gravity sewers and two new lift stations. The first step in laying out the interceptor sewer route was to determine the optimal location of the future WWTP that will serve the town of New Waterford. Historically, the Barachois has been reviewed as the optimal location for a plant development. All of the sanitary sewer flow from the community of New Waterford is conveyed to two sewer outfalls, both located at the Barachois site. HEJV commenced with a review for a remote location in the Barachois area. In this case, a remote location would be defined as being at least 150 m from isolated human habitation as required by ACWGM. After reviewing the area it was concluded that there were no feasible sites to be developed at the Barachois that met the 150m separation distance. As part of our pre-design efforts, HEJV met with NSE to discuss locations for future treatment plants that do not meet the ACWGM guidelines for setback distances, but ultimately make the most sense for a community from an economic stand point. NSE’s feedback to HEJV was that if the location of the WWTP did not meet the ACWGM guidelines but ultimately made the most sense for a community, the detailed design of the plant would need to include odour controls, to minimize the impact to neighbouring properties. HEJV reviewed two sites in the area of the Barachois for suitability to construct the New Waterford WWTP. Site #1 is on the west side of the Barrachois at the end of Mahon Street on PID’s 15006935, 15484108, and 15483100. Site #2 is on the east side of the Barrachois just west of the existing cemetery at the end of Hudson Street on PID 15483100. The location of the two sites is shown on Sheet 1 in Appendix A. The following provides a detailed review of the characteristics of each site as it relates to the suitability for the location of the proposed WWTP. For purposes of this review a fenced area approximately 90 m x 90 m is considered to be large enough to encompass the WWTP buildings and to provide maneuvering space around the buildings for passage of large trucks that would be required on site on a regular basis. Site #1 The treatment plant buildings for Site #1 would be within 150 m of about 8 households on Mahon Street. One household on PID 15484108 at the end of Mahon Street would have to be purchased and removed to provide space for the new WWTP compound. Harbour Engineering Joint Venture New Waterford Collection System Pre-Design Brief 11 Site #1 is moderately sloped and elevations across the site range from about 5.0m to about 8.0m. The average elevation of Site #1 is approximately 6.5m. During discussions with CBRM on the potential WWTP sites, a concern was expressed with regard to erosion of the coastline north of Site #1. Accordingly, HEJV carried out a review of how much coastal erosion has occurred over time at this site based on aerial photographs that date back to 1931. It was noted that coastal erosion rates in that area range from about 0.2 m/year to about 0.6 m/year. A projected coastline was then calculated to the year 2090, which assumes that the New Waterford WWTP is built in 2040 and has a 50 year life expectancy. Assuming that the coastline erodes at a rate of 0.3 m per year, this results in movement of the existing coastline to a point about 21m to the south. The projected coastline is shown on Sheet 3 in Appendix A. The proposed WWTP compound footprint is approximately 20 m to the south of the 2090 projected coastline. It is recommended that shoreline protection measures such as armour stone be placed along the section of shoreline that fronts the proposed location of the wastewater treatment plant to slow the pace of shoreline erosion. There are known underground coal mine workings and coal seams on Site #1 as depicted on Sheet 3 in Appendix A. This drawing shows the approximate location of the former Barrachois Mine workings, as well as the approximate depth of cover over the Hub Coal Seam, which ranges in depth from about 1 m to 21 m under Site #1. There is also the possibility that the Hub Coal Seam has undocumented bootleg mines. The Harbour and Phalen Coal Seams and associated mine workings also underlie Site #1, however those seams are quite deep – in the vicinity of 130 m and 275 m in depth respectively and do not likely pose a risk of subsidence. Although there are known shallow documented and possibly undocumented underground mine workings on the site, given their shallow depth, it would not be unreasonable to assume that the workings could be located, excavated and replaced with structural fill during construction of the WWTP. The outfall for the WWTP Site #1 would likely be placed along a similar route as the current NW#2 outfall. A new outfall pipe from the WWTP would have to be placed on the ocean bottom to a distance of approximately 150m from the existing shoreline to achieve a minimum 1.0m depth of water over the end of the outfall pipe at low tide. Site #2 The treatment plant buildings for Site #2 would be within 150 m of about 25 households fronting various streets in the area, including Mahon Street, Clarke Avenue, Elm Avenue, Patrick Street, and Hudson Street. There is a cemetery just west of Site #2. Site #2 is moderately sloped and elevations across the site range from about 8.0m to about 4.0m. The average elevation of Site #2 is approximately 6.0m. The Harbour and Phalen Coal Seams and associated mine workings also underlie Site #2, however those seams are quite deep – in the vicinity of 104 m and 250 m in respectively and do not likely pose a risk of subsidence. Harbour Engineering Joint Venture New Waterford Collection System Pre-Design Brief 12 The outfall for the WWTP Site #2 would likely be placed along a similar route as the current NW#1 outfall. A new outfall pipe from the WWTP would have to be placed on the ocean bottom to a distance of approximately 200m from the existing shoreline to achieve a minimum 1.0m depth of water over the end of the outfall pipe at low tide. At the very least, the new outfall pipe would likely have to extend past the existing breakwater to the north of Site #2 to achieve sufficient effluent dilution. The alignment of the new outfall pipe at the Site #2 location would likely extend past the boating lane to the small harbour adjacent to the breakwater and, depending on the configuration of armour stone pipe protection, it may create an impediment to boating traffic passing into and out of the harbour. Recommended Site In consideration of the factors that influence the suitability of each site as the preferred location for the New Waterford WWTP, including proximity to households, ease of site development, preferred outfall pipe routing, coastal erosion and risk of subsidence due to underground mine workings, it is recommended that Site #1 be chosen as the WWTP location. Given that the same parcel of land encompasses Site #1 and Site #2, it is recommended that CBRM purchase the entire parcel rather than a portion of the property. This would allow some flexibility in siting the WWTP in the future. Proposed Interceptor System The proposed interceptor system for the New Waterford WWTP is presented on the plan and profile drawing attached in Appendix A. The major elements of the interceptor system include: ®LS-NW#1 located near the end of Beach Street. A 750 mm diameter interceptor gravity sewer will collect flow from the existing sewer mains that currently convey flow to the NW#1 outfall. The interceptor sewer will connect to the existing sewer in three places to allow for a proper collection configuration to the proposed LS-NW#1 pump station. ®The lift station will convey the intercepted sewer to proposed WWTP site via a 400mm diameter forcemain, 310m in length. ®A combination air/vacuum release valve will be required at the high point, 56m from the lift station along the forcemain alignment. ®A second pump station, LS-NW#2, will be required to convey flow to the proposed WWTP from the existing collection system that conveys to the NW#2 outfall. A 30m length of 600mm diameter gravity sewer will re-direct flow from the existing sewer connected to the NW#2 outfall to the proposed pump station. A 10m length of forcemain, 150mm in diameter, will be required and will be connected to the forcemain described above for LS- NW-1 to act as a common header to the proposed WWTP site. Flow Master Reports for the proposed linear infrastructure, illustrated on Sheet 1 in Appendix A, have been included in Appendix B. 3.4 Combined Sewer Overflows A Combined Sewer Overflow (CSO) should be utilized in the proposed interceptor system where flows directed to a pump station exceed the interception design rate defined in Section 3.2.3. The proposed locations for the chambers have been illustrated on the plan and profile drawing included in Appendix A. Harbour Engineering Joint Venture New Waterford Collection System Pre-Design Brief 13 In general, the interceptor system has been designed for a capacity of 3.5xADWF. The CSO chambers depicted on the plan and profile drawing permit the connection to each of the existing outfalls, while only permitting the recommended interception design flows (3.5xADWF) into the proposed interceptor system. For the proposed New Waterford interceptor sewer, CSO chambers are required at each of the pump station sites. This will limit the flow to the pump station at a maximum of 3.5xADWF. Flow above 3.5xADWF will be directed back to the existing NW#1 and upgraded NW#2 outfalls. 3.5 Pumping Stations As discussed above, two new pumping stations will be required in the proposed New Waterford interceptor system to convey wastewater to the proposed WWTP. The pump stations should be equipped with non-clog submersible sewage pumps with an underground wetwell and a building that will accommodate the mechanical piping, valves, electrical system, control systems and instrumentation. The building for LS-NW#1 should be sized to house a backup generator. Due to its’ proximity, backup generation for LS-NW#2 should be provided from the proposed WWTP. A hydraulic analysis should be completed on the forcemain to determine if surge valves are warranted, in addition to the variable speed drives that are proposed for the proposed pump stations (as described in Section 3.5.1). If required, the valves should be installed prior to the forcemain exiting the lift station building to protect the pipe against unwanted surge forces. A standard lift station schematic has been presented in Appendix A for illustrative purposes. 3.5.1 Pumping Design Capacity The pump stations are designed to pump the intercepted flows defined in Section 3.2.2 with one pump out of service. All pumps should be supplied and operated with variable frequency drives (VFD). A VFD will provide the following benefits to the pumping system: ®Energy savings by operating the pump at its best efficiency point; ®Prevent motor overload; ®Energy savings by eliminating the surge at pump start up; and ®Water hammer mitigation. 3.5.1.1 BEACH STREET LIFT STATION –LS#1 This station will convey flow to the proposed WWTP from the NW#1 outfall. The pump station will be a triplex station, with two duty and one standby pumps. These pumps should have a combined capacity of 210 l/s, with a TDH of 15.15 m. 3.5.1.2 MAHON STREET LIFT STATION –LS#2 This station will convey flow to the proposed WWTP via a 150mm forcemain that will tie into the NW#2 interceptor. The pump station will be a duplex station, with one duty and one standby pump. These pumps should have a combined capacity of 32 l/s with a TDH of 11.11 m. Harbour Engineering Joint Venture New Waterford Collection System Pre-Design Brief 14 3.5.1.3 PUMP STATION SUMMARY Table 3-7 Pump Station Summary Pumping Station Beach Street –LS-NW#1 Mahon Street –LS-NW#2 Duty Pumps 2 1 Standby Pumps 1 1 ADWF (L/s)59.60 8.90 Interception Design Flow (L/s)208.6 31.15 Pump Capacity (L/s, each pump, Duty Pump(s) running) 210 32 Forcemain Diameter (mm)400 150 TDH (m) at Maximum Design Flow 15.15 11.11 Maximum Velocity (2 pumps running) m/s 1.7 1.8 Minimum Velocity (1 or 2 pump running) m/s 0.6 0.6 Approximate power requirement (each pump) kW 26 5.6 3.5.2 Safety Features The stations should report alarm conditions to the CBRM SCADA network. The stations should also incorporate external visual alarms to notify those outside of the building of an alarm condition. External audible alarms should not be used as the stations are in populated areas and disturbance to the local community should be kept to a minimum. All access hatches should include safety grating similar to Safe-Hatch by Flygt. 3.5.3 Wetwell The wetwells should be constructed with a benched floor to promote self-cleansing and to minimize any potential dead spots. The size of the wetwells should be based on factors such as the volume required for pump cycling, dimensional requirements to avoid turbulence problems, the vertical separation between pump control points, the inlet sewer elevation, capacity required between alarm levels, overflow elevations, the number of pumps and the required horizontal spacing between pumps. The operating wetwell volumes for the pumping stations should be based on alternating pump starts between available pumps while reducing retention times to avoid resultant odours from septic conditions. At this time HEJV recommends a precast unit for each station. Based on the conditions discussed above, the sizing for each of the wetwells is presented below. Table 3-8 Wetwell Sizing Summary Pumping Station Size and Shape (m) Depth (m) Beach Street –LS-NW#1 2.4 x 3.6 Rectangular 8.1 Mahon Street –LS-NW#2 2.4 Circular 4.4 Harbour Engineering Joint Venture New Waterford Collection System Pre-Design Brief 15 3.5.4 Station Piping Pump station internal piping should be ductile iron class 350 with coal tar epoxy lining or stainless steel with a diameter of 150 mm at the LS#2 and 400 mm at LS#1. Threaded flanges or Victaulic couplings should be used for ductile iron pipe joints, fittings and connections within the station. Pressed or rolled 15vanstone neck flanges should be used for stainless steel pipe joints, fittings and connections. Piping layout should be designed to provide minimum friction loss and to provide easy access to all valving, instrumentation and equipment for the operators. A common flow meter on the discharge header should be provided for the stations to monitor flows. 3.5.5 Equipment Access Pump installaƟon and removal for the staƟons should be achieved using a liŌing davit and electric hoist that would access the pumps through hatches located above the pumps. Due to maintenance issues associated with exterior davit sockets and portable davits, staƟonary davits should be installed inside these pump staƟons and accessed through a roll up door. A heated building should be provided for each of the liŌ staƟons to eliminate maintenance issues with valve chambers. All valves and instrumentaƟon should be above ground in the heated building to allow for easy access and maintenance. 3.5.6 Emergency Power The pump stations should have access to a backup generator sized to provide power to all equipment, lights, and other accessories during power interruptions. For NW-LS#1 a backup generator should be provided within the lift station building. For LS-NW#2, a connection to the backup generator at the nearby proposed WWTP should be provided. An automatic power transfer switch should transfer the station’s power supply to the generator during a power disruption and should return to normal operation when power has been restored. The generator should be supplied with noise suppression equipment to limit disruption to existing neighbours. If a diesel generator is selected, the fuel tank should be external to the generator and designed to meet the requirements of the National Fire Code of Canada, Section 4 and should meet the requirements of the Contained Tank assembly document ULC-S653. Due to the size of the building required for the LS-NW#1 pump station valving, instrumentation and electrical infrastructure, HEJV recommends also locating the backup generator inside the pump station building. In addition, the site has potential for sea spray and wave action from the nearby shoreline that could be potentially harmful to the standby generator. The added protection from the elements would greatly increase the life expectancy of the backup generator. 3.5.7 Controls All equipment should be controlled through a local control panel mounted in the lift station building. The local control panel would be a custom panel designed to be integrated into the CBRM SCADA network. The panel should provide a Hand/Off/Auto control selector to allow for manual control of Harbour Engineering Joint Venture New Waterford Collection System Pre-Design Brief 16 the station. The control system should report remotely to CBRM’s SCADA system including alarm conditions. Control instrumentation and equipment should include the following: ®Level sensors/transmitters in the wetwell ®Flow meter/transmitter on the discharge forcemain(s) ®Pressure transmitter ®Surge valve position indication (if required) ®Level alarms ®Unauthorized building access ®Low fuel level ®Pump or generator fault ®Generator operation The level in the wetwell utilizing ultrasonic level instruments should control the operation of the pumps. Auxiliary floats will provide high and low level alarms as well as back-up control in the event of a failure in the ultrasonic equipment. 3.5.8 Security Security fencing will be installed at the pumping station on the boundary of the land parcel. The structures will be monitored with an alarm system (via SCADA) to identify unauthorized access. Harbour Engineering Joint Venture New Waterford Collection System Pre-Design Brief 17 CHAPTER 4 EXISTING COLLECTION SYSTEM UPGRADES 4.1 Sewage Pump Station Upgrades HEJV has reviewed the existing New Waterford Collection System for potential upgrades to the existing sewage pumping stations. There are currently four pump stations in the community of New Waterford. The age of the existing stations is on average 24 years old. The New Waterford WWTP has been classified as a low priority system and has an implementation deadline of 2040. Considering that 2040 is 21 years in the future, plans should be made to upgrade each of these stations as part of the interception work to be completed in the community. Due to their age, the necessity to upgrade these stations may occur prior to the implementation of the interceptor sewer project. Therefore, the condition of each station should be verified at the time of detailed design to determine if an upgrade of the existing station is required. 4.2 Asset Condition Assessment Program To get a better sense of the condition of the existing New Waterford sewage collection system, HEJV recommends completing a sewage collection system asset condition assessment program in the community. The program would carry out an investigation involving two components: ®Visual inspection and assessment of all manholes in the collection system ®Video inspection of 20% of all sewers in the system The program should be completed with the issuance of a Collection System Asset Condition Assessment Report that would summarize the condition of the various assets inspected and include opinions of probable costs for required upgrades. 4.3 Sewer Separation Measures As indicated during the flow metering program, there appears to be very high amounts of extraneous water entering the collection system, particularly in the NW#1 sewershed. CBRM should consider completing further sewer separation investigation efforts in New Waterford. The program would review catch basins that are currently connected or possibly connected to existing sanitary sewers. The program should also include the costing of the installation of new storm sewers to disconnect catch basins from the existing sanitary sewer. Harbour Engineering Joint Venture New Waterford Collection System Pre-Design Brief 18 CHAPTER 5 PIPE MATERIAL SELECTION AND DESIGN 5.1 Pipe Material Four pipe materials (Ductile Iron, HDPE, PVC, and Reinforced Concrete) were considered for this project and were evaluated against various factors. Ductile Iron, HDPE and PVC were reviewed for a suitable forcemain material for the project. PVC and Reinforced Concrete were reviewed against each other for a suitable gravity pipe material. A summary of the advantages and disadvantages of the different materials is presented in Table 5-1. Table 5-1 Comparison of Pipe Materials Pipe Material Advantages Disadvantages Ductile Iron ·Is forgiving with regard to problems caused by improper bedding ·Thinnest wall, greatest strength ·Standard testing method ·CBRM staff and contractors are familiar with installation of DI forcemains ·Pipe, and fittings are susceptible to corrosion ·High weight ·Installation cost is high HDPE ·Excellent corrosion resistance of pipe ·Long laying lengths (where practical) ·Relatively easy to handle ·Requires good bedding ·Requires butt fusing ·Careful handling is required due to abrasion ·Long distances of open trench ·Not designed for vacuum conditions ·Installation cost is high if long lay lengths are not possible PVC ·CBRM standard ·Excellent corrosion resistance of pipe ·Standard testing method ·Light weight ·High impact strength ·CBRM staff and contractors are familiar with installation of PVC forcemains ·Cost competitive ·Requires good bedding ·Must be handled carefully in freezing conditions ·Fittings are susceptible to corrosion Reinforced Concrete ·High strength ·Standard testing method ·CBRM staff and contractors are familiar with installation ·Heavy – harder to handle ·Susceptible to attached by H2S and acids when not coated ·Requires careful installation to avoid cracking ·Short laying lengths Harbour Engineering Joint Venture New Waterford Collection System Pre-Design Brief 19 Based on the above comparison, HEJV recommends that the gravity sewer be PVC. As there will be a section of forcemain to be installed via directional drilling, HEJV recommends that the forcemain piping for the New Waterford interceptor sewer be HDPE. Harbour Engineering Joint Venture New Waterford Collection System Pre-Design Brief 20 CHAPTER 6 LAND AND EASEMENT REQUIREMENTS HEJV has reviewed the requirements for land acquisition and easements. Most of the proposed system, gravity sewers and forcemains, will be constructed on land owned by Public Works and Government Services Canada. However, an easement will be required for a section of forcemain on private land, and a portion of the WWTP will be located on two parcels of private land. 6.1 Lift Station Sites HEJV proposes that the land parcel for the LS-NW#1 site be purchased due to the development being a permanent above ground structure requiring regular access from CBRM staff. HEJV considers easements to be an acceptable option to both CBRM and residential land owners for the construction and maintenance of the interceptor linear infrastructure. The parcel of land associated with LS-NW#2 would be part of the overall WWTP development, and would be included with the costs associated with land acquisition for the WWTP site. Find below a summary of the required land acquisitions that should be undertaken to permit the installation of the required LS-NW#1 infrastructure. The table below lists the PID, property owner, assessed value, size of parcel required and whether or not HEJV recommends purchasing the entire lot. In some circumstances, due to the size of the lot, it might make more sense to purchase the entire lot from the existing land owner, versus negotiating a piece that would considerably limit the development on the remaining site. Table 6-1 Lift Station Land Acquisition Details PID Property Owner Assessed Value Description Size Required Purchase Entire Lot (Y/N) 15482730 PWGSC $1,900 PS Site N/A Y 15006943 PWGSC $48,700 Access Road 10mx20m (irregular shape) N 6.2 WWTP Site As discussed in Section 3.3, the WWTP and LS-NW#2 lift station will be located on a parcel of land owned by Public Works and Government Services Canada (PWGSC). Given that the same parcel of land owned by PWGSC encompasses the WWTP Site #1 and Site #2 and the two proposed lift Harbour Engineering Joint Venture New Waterford Collection System Pre-Design Brief 21 stations, it is recommended that CBRM purchase the entire parcel rather than a portion of the property. This would allow some flexibility in siting the WWTP in future. Table 6-2 WWTP Land Acquisition Details PID Property Owner Assessed Value Description Size Required Purchase Entire Lot (Y/N) 15483100 PWGSC $8,600 WWTP Site N/A Y 15006935 David Wilson $12,000 WWTP Site N/A Y 15484108 John Wilson Sandra Wilson $85,300 WWTP Site N/A Y 15484090 David Allan Wilson Lori Anne Wilson $279,400 WWTP Site N/A Y 6.3 Linear Infrastructure The installation of linear infrastructure will require an easement through PID 15483092 and 15483100. The remaining linear infrastructure will be installed within the PWGSC parcel of land that HEJV has recommended for purchase. Details on the required easement area is as follows: Table 6-3 Linear Infrastructure Land Acquisition Details PID Property Owner Assessed Value Description Size Required Purchase Entire Lot (Y/N) 15483092 Collieries Parish $87,100 Forcemain 10m (Construction) 6m (Final) X 75m length N 15483100 PWGSC $8,600 Forcemain & Gravity N/A Y Harbour Engineering Joint Venture New Waterford Collection System Pre-Design Brief 22 CHAPTER 7 SITE SPECIFIC CONSTRAINTS During the preliminary design of the interceptor system, HEJV has reviewed the site for the lift station and pipe routing for potential constraints. HEJV reviewed construction constraints, environmental constraints, access requirements and power supply requirements for the proposed interceptor infrastructure. A summary of HEJV’s review follows in the next sections of the Design Brief. As part of this preliminary design project, HEJV recommended an archaeological assessment be undertaken to review the proposed WWTP site and interception route for culturally sensitive lands. CBRM agreed with this recommendation and a review was completed by Davis MacIntyre & Associated Ltd. Refer to the report “CBRM WWTP Project: New Waterford Archaeological Resource Impact Assessment” dated December 14, 2018, which was submitted to CBRM under a separate cover. 7.1 Construction Constraints HEJV has reviewed the preliminary design of the interceptor system from a construction constraints perspective. One construction constraint exists at the proposed location for LS-NW#1. The site is in close proximity to the shoreline. The site for the lift station was selected taking sea level rise and increasing storm surge events into consideration. The detailed design of the station will need to confirm that the grade at the lift station site is suitably selected for such future conditions. 7.2 Environmental Constraints The proposed pipe routing will cross a brook between the proposed locations of the lift station and the WWTP. The brook crossing (Station 0+160) has been proposed to be completed by directional drilling which will prevent the need for a temporary stream diversion and a work in the dry program. A wet lands is indicated on the provincial mapping for the Barrachois area, approximately below the 2m contour to the east of the WWTP site. HEJV recommends that this wetland be delineated in the field by a qualified wetland delineator prior to the detailed design of the WWTP. 7.3 Access Requirements Access to the LS-NW#1 site should be fairly straight forward, as it is adjacent to Beach Street. A driveway should be extended from Beach Street. The perimeter of the pump station site will be fenced so an entrance gate would also be required. Near Beach Street a gate should be provided to limit access to the site driveway. Harbour Engineering Joint Venture New Waterford Collection System Pre-Design Brief 23 The WWTP location is adjacent to Mahon Street and will require an access driveway to be constructed along with an entrance gate for security purposes. Access requirements for the WWTP site will be further detailed in the New Waterford WWTP Pre-Design Brief. Access to the LS-NW#2 would be accommodated through the WWTP site. 7.4 Power Supply Requirements Three phase power will be required for each of the pump stations. For LS-NW#1, three phase power is currently accessible on Hincey Avenue. Approximately 410m of new overhead conductors and a series of utility poles will be required. For LS-NW#2, three phase power is accessible on Ellsworth Avenue. Three phase power will need to be extended an approximate distance of 600m, along Mahon Street to the site for the pump station and WWTP site. Harbour Engineering Joint Venture New Waterford Collection System Pre-Design Brief 24 CHAPTER 8 OPINION OF PROBABLE COSTS 8.1 Opinion of Probable Costs An opinion of Probable Construction Costs has been completed for the project. A detailed breakdown of the estimate has been provided in Appendix C. The estimate is made up of the linear infrastructure, associated land acquisition costs and lift stations required to collect and convey sanitary sewer in New Waterford to the proposed WWTP. For land acquisition costs, HEJV has used a ratio of the amount of land that is affected by the required easement/property acquisition multiplied by the assessed value of the entire lot. The Opinion of Probable Construction Costs for the interceptor sewer for New Waterford is $2,865,530. This estimate is considered to be Class ‘C’, accurate within plus or minus 30%. 8.2 Opinion of Operating Costs HEJV completed an Opinion of Operating Costs for the interceptor system using data provided by CBRM for typical annual operating costs of their existing submersible lift stations, typical employee salaries, Nova Scotia Power rates, and experience from similar stations for general maintenance. The opinion of operating costing includes general lift station maintenance costs, general linear maintenance costs, employee operation and maintenance costs, electrical operational costs and backup generator operation. Table 8-1 Annual Operations and Maintenance Cost The general station maintenance cost presented above includes pump repairs (impellers, bearings, seals), minor building maintenance (painting, siding repairs, roof repairs), electrical repairs and instrumentation repairs and servicing. Item Anticipated Cost/yr General Linear Maintenance Cost $500/yr General Lift Station Maintenance Cost $7,000/yr Employee O&M Cost $7,000/yr Electrical Operational Cost $27,000/yr Backup Generator O&M Cost $6,300/yr Harbour Engineering Joint Venture New Waterford Collection System Pre-Design Brief 25 The general linear maintenance cost for the interceptor system has been estimated to be $500 per year in 2019 dollars. This includes flushing, inspection, and refurbishment of structures along the linear portion of the collection system. Employee O&M costs were averaged from data provided by CBRM. It was determined that staffing to maintain their existing lift stations requires an average of 100 hours of effort per submersible lift station per year. For the electrical operation cost, HEJV assumed the lift station buildings would require heat for 5 months of the year. Basic electrical loads for instrumentation were assumed. Electrical demand from the pumping system was determined based on the yearly average flow of the station. Backup generator operation and maintenance costs assumed that a diesel backup generator would be utilized. The costs include an annual diesel fuel cost assuming that the generator is run for four hours each month, as well as annual maintenance for the generator (change of filters and oil, inspection of the generator, and load bank testing). 8.3 Opinion of Existing Collection System Upgrades and Assessment Costs Opinions of probable cost have been provided to complete the work that was discussed in Chapter 4. For sewage pumping stations, the opinion of probable cost includes a full retrofit of each of the existing stations noted in Chapter 4 including new pumps, controls and backup power generation. The need to upgrade these stations should be verified at detailed design, as discussed in Chapter 4. Lift station upgrade costs are presented in Table 8-2. HEJV has provided an allowance of 12% on the cost of construction for engineering and 25% for contingency allowance. An opinion of probable costs has been provided for the collection system asset condition assessment program described in Chapter 4. These costs include the video inspection and flushing of 20% of the existing sanitary sewer network, visual inspection of manholes, traffic control and the preparation of a collection system asset condition assessment report. For sewer separation measures, budgetary pricing has been calculated by reviewing recent costs of sewer separation measures in CBRM involving installation of new storm sewers to remove extraneous flow from existing sanitary sewers. These costs have been translated into a cost per lineal meter of sewer main. This unit rate was then applied to the overall collection system. The cost also includes an allowance of 10% on the cost of construction for engineering and 25% for contingency allowance. Estimates of costs for upgrades to and assessment of the existing collection system as outlined in Table 8-2 are considered to be Class ‘D’, accurate to within plus or minus 45%. Harbour Engineering Joint Venture New Waterford Collection System Pre-Design Brief 26 Table 8-2 Estimated Existing Collection System Upgrade and Assessment Costs 8.4 Opinion of Annual Capital Replacement Fund Contributions The CBRM wishes to create a Capital Replacement Fund to which annual contributions would be made to prepare for replacement of the assets at the end of their useful life. The calculation of annual contributions to this fund involves consideration of such factors as the type of asset, the asset value, the expected useful life of the asset, and the corresponding annual depreciation rate for the asset. In consideration of these factors,Table 8-3 provides an estimation of the annual contributions to a capital replacement fund for the proposed new wastewater collection and interception infrastructure. Table 8-3 Estimated Annual Capital Replacement Fund Contributions Description of Asset Asset Value Asset Useful Life Expectancy (Years) Annual Depreciation Rate (%) Annual Capital Replacement Fund Contribution Linear Assets (Piping, Manholes and Other)$524,030 75 1.3%$6,812 Pump Station Structures (Concrete Chambers, etc.)$874,280 50 2.0%$17,486 Pump Station Equipment (Mechanical / Electrical)$715,320 20 5.0%$35,766 Subtotal $2,113,630 --$60,064 Contingency Allowance (Subtotal x 25%):$15,016 Engineering (Subtotal x 10%):$6,006 Opinion of Probable Annual Capital Replacement Fund Contribution:$81,086 Note: Annual contribuƟons do not account for annual inflaƟon. Item Cost Sewage Pump Station Upgrades Pump Station Infrastructure (controls, pumps, etc.)$841,000 Backup Power Generation $211,000 Engineering (12%)$126,000 Contingency (25%)$263,000 Total $1,441,000 Collection System Asset Condition Assessment Program Condition Assessment of Manholes based on 825 MH’s $155,000 Condition Assessment of Sewer Mains based on 14 km’s of infrastructure $125,000 Total $280,000 Sewer Separation Measures Separation based on 70km’s of sewer @ $45,000/km $3,150,000 Engineering (10%)$315,000 Contingency (25%)$788,000 Total $4,253,000 Total Estimated Existing Collection System Upgrade and Assessment Costs $5,974,000 Harbour Engineering Joint Venture New Waterford Collection System Pre-Design Brief 27 CHAPTER 9 REFERENCES Environment Canada (2006) –Atlantic Canada Wastewater Gidelines Manual for Collection, Treatment and Disposal. Harbour Engineering Inc. (2011).Cape Breton Regional Municipality Wastewater Strategy 2009. Nova Scotia Environment (2018).Environment Act. Nova Scotia Utility and Review Board (2013).Water Utility Accounting and Reporting Handbook. UMA Engineering Ltd. (1994). Industrial Cape Breton Wastewater Characterization Programme – Phase II. Water Environment Federation (2009),Design of Wastewater and Stormwater Pumping Stations. Harbour Engineering Joint Venture New Waterford Collection System Pre-Design Brief 28 APPENDIX A Drawings NW2 NW1 NEW W A T E R F O R D H I G H W A Y NEW W A T E R F O R D H I G H W A Y NW2 OL I V E S T ELLSWORTH AVE MA H O N S T MINER AVE KI N G S T SM I T H S T PLUMMER AVE LIN G S T PLUMM E R A V E EL L S W O R T H A V E ELLSWORTH AVE LIN G S T MA H O N S T EMERALD ST DUGGAN AVE UN I O N H I G H W A Y EMERALD ST KI N G S T ROA C H E S R D WILSON AVEWILSON AVE WILSON AVE EMERALD ST MAY ST PA T R I C K S T UNI O N H I G H W A Y NICK L E W O O D D R MINER AVE HINCHEY AVE PLUMMER AVE KI N G S T OC E A N V I E W B L V D 1 ENVIRONMENTAL RISK ASSESSMENTS & PRELIMINARY DESIGN CDL CDL JRS JRS 18-7116 1:8000 MARCH 2019 HA R B O U R E N G I N E E R I N G J O I N T V E N T U R E , 2 7 5 C H A R L O T T E S T R E E T , S Y D N E Y , N S , B 1 P 1 C 6 A B ISSUED FOR DRAFT BREIF ISSUED FOR FINAL BRIEF 12/20/18 03/06/19 JRS JRS NEW WATERFORD INTERCEPTOR EXISTING PLAN DATE DESIGN DRAWN PROJECT NO. SHEET NO. No.DATE BYISSUED FOR written permission from Dillon Consulting Limited. than those intended at the time of its preparation without prior Do not scale dimensions from drawing. Report any discrepancies to Dillon Consulting Limited. Verify elevations and/or dimensions on drawing prior to use. Conditions of Use REVIEWED BY CHECKED BY Do not modify drawing, re-use it, or use it for purposes other SCALEj o i n t v e n t u r e PLAN 1:2500 2000 1:8,000SCALE METRES 200 15483092 (COLLERIES PARISH) NW2 NW1 NW2 O L I V E S T ELLSW O R T H A V E M A H O N S T MINER A V E K I N G S T S M I T H S T L I N G S T MINER A V E HINCH E Y A V E PLUMM E R A V E K I N G S T PROPOSED 400mmØ FORCEMAIN 50m OF 400mmØ FORCEMAIN TO BE DIRECTIONAL DRILLED PROPOSED GRAVITY SEWER CONNECTION (750mmØ) 15482730 (PUBLIC WORKS AND GOVERNMENT SERVICES CANADA)15484108 (JOHN/SANDRA WILSON) OUTLINE OF PROPERTY REQUIRING EASEMENT OUTLINE OF PROPERTY REQUIRING ACQUISITION 15483100 (PUBLIC WORKS AND GOVERNMENT SERVICES CANADA) 15006935 (DAVID ALLEN WILSON) LS-NW1 PROPOSED GRAVITY SEWER CONNECTIONS (2 - 600mmØ) PROPOSED CSO OVERFLOW CONNECTION (750mmØ) PROPOSED GRAVITY SEWER CONNECTIONS ( 2 REQ'D - 750mmØ) CSO-1 PROPOSED 150mmØ FORCEMAIN LS-NW2 CSO-2 15484090 (DAVID ALLAN WILSON) PROPOSED WWTP SITE PROPOSED 400mmØ FORCEMAIN EXISTING GROUND PROFILE PROPOSED COMBINATION AIR/VACUUM RELEASE VALVE 15 0 m m Ø L S - N W 2 CO N N E C T I O N WW T P EXISTING 600mmØ GRAVITY SEWER EXISTING 600mmØ GRAVITY SEWER 2 ENVIRONMENTAL RISK ASSESSMENTS & PRELIMINARY DESIGN CDL CDL JRS JRS 18-7116 1:2500 MARCH 2019 HA R B O U R E N G I N E E R I N G J O I N T V E N T U R E , 2 7 5 C H A R L O T T E S T R E E T , S Y D N E Y , N S , B 1 P 1 C 6 A B ISSUED FOR DRAFT BRIEF ISSUED FOR FINAL BRIEF 10/15/18 03/06/19 JRS JRS NEW WATERFORD INTERCEPTOR PLAN/PROFILE DATE DESIGN DRAWN PROJECT NO. SHEET NO. No.DATE BYISSUED FOR written permission from Dillon Consulting Limited. than those intended at the time of its preparation without prior Do not scale dimensions from drawing. Report any discrepancies to Dillon Consulting Limited. Verify elevations and/or dimensions on drawing prior to use. Conditions of Use REVIEWED BY CHECKED BY Do not modify drawing, re-use it, or use it for purposes other SCALEj o i n t v e n t u r e PLAN 1:2500 PROFILE HOR:1:2500\VERT:1:500 0 50 1:2,500SCALE METRES 50 3 ENVIRONMENTAL RISK ASSESSMENTS & PRELIMINARY DESIGN AMA/JRS DFM DFM 18-7116 1:500 APRIL 2019 HA R B O U R E N G I N E E R I N G J O I N T V E N T U R E , 2 7 5 C H A R L O T T E S T R E E T , S Y D N E Y , N S , B 1 P 1 C 6 A ISSUED FOR DRAFT BRIEF 04/15/19 JRS BARRACHOIS AREA EROSION AND HUB SEAM MINE FEATURES DATE DESIGN DRAWN PROJECT NO. SHEET NO. No.DATE BYISSUED FOR written permission from Dillon Consulting Limited. than those intended at the time of its preparation without prior Do not scale dimensions from drawing. Report any discrepancies to Dillon Consulting Limited. Verify elevations and/or dimensions on drawing prior to use. Conditions of Use REVIEWED BY CHECKED BY Do not modify drawing, re-use it, or use it for purposes other SCALEj o i n t v e n t u r e 0 10 1:500SCALE METRES 10 1 5 ___ 1 5 ___ FLUSH MOUNT ALUMINUM HATCH C/W SAFETY GATE. CLEAR OPENING 900x1500 100Ø VENT AND 150Ø CAP 150Ø FLOW METER ON VERTICAL (TYP.) AIR RELEASE VALVE (TYP.) WATER SERVICE 150Ø CHECK VALVE AND PLUG VALVE ON VERTICAL (TYP.2) CONCRETE SLAB DAVIT SOCKET ELECTRICAL ROOMPROCESS ROOM 21692679 j o i n t v e n t u r e DATE DESIGN DRAWN PROJECT NO. SHEET NO. No.DATE BYISSUED FOR written permission from Dillon Consulting Limited. than those intended at the time of its preparation without prior Do not scale dimensions from drawing. Report any discrepancies to Dillon Consulting Limited.Verify elevations and/or dimensions on drawing prior to use. Conditions of Use REVIEWED BY CHECKED BY Do not modify drawing, re-use it, or use it for purposes other SCALE FIL E N A M E : C : \ P R O J E C T W I S E \ W O R K I N G D I R E C T O R Y \ P R O J E C T S 2 0 1 8 \ 5 4 M S R \ D M S 3 0 8 0 5 \ P O R T M O R I E N P U M P S T A T I O N D R A W I N G B L O C K . D W G P L O T T E D B Y : R O D G E R S , M A T T H E W PL O T D A T E : 2 0 1 8 - 0 6 - 2 5 @ 2 : 4 1 : 3 1 P M P L O T S C A L E : 1 : 2 . 5 8 5 P L O T S T Y L E : C A N R A I L - M A R Y R I V E R . C T B NTSAISSUED FOR DRAFT DESIGN BRIEF 04/09/19 JRS 18-7116OF 7 FUTURE WASTEWATER TREATMENT SYSTEMS IN CBRM ENVIRONMENTAL RISK ASSESSMENTS & PRELIMINARY DESIGN APRIL 2019 SMZ ASW 4 ASW MAB PLAN NEW WATERFORD DUPLEX LIFT STATION SCALE:SCALE:NTS WET WELL - ABOVE GRADE SCALE:SCALE: MODEL VIEW I 150Ø FLOW METER 150Ø SWING CHECK VALVE (TYP.2) 150Ø PLUG VALVE (TYP.3) FORCEMAIN AIR RELEASE VALVE (TYP.) SS PIPE FROM PUMPS FLUSH MOUNT ALUMINUM HATCH C/W SAFETY GATE. CLEAR OPENING 900x1500 PVC INLET PIPE INLET BAFFLE FORCEMAIN 100Ø VENT AND 150Ø VENT CAP j o i n t v e n t u r e DATE DESIGN DRAWN PROJECT NO. SHEET NO. No.DATE BYISSUED FOR written permission from Dillon Consulting Limited. than those intended at the time of its preparation without prior Do not scale dimensions from drawing. Report any discrepancies to Dillon Consulting Limited.Verify elevations and/or dimensions on drawing prior to use. Conditions of Use REVIEWED BY CHECKED BY Do not modify drawing, re-use it, or use it for purposes other SCALE FIL E N A M E : C : \ P R O J E C T W I S E \ W O R K I N G D I R E C T O R Y \ P R O J E C T S 2 0 1 8 \ 5 4 M S R \ D M S 3 0 8 0 5 \ P O R T M O R I E N P U M P S T A T I O N D R A W I N G B L O C K . D W G P L O T T E D B Y : R O D G E R S , M A T T H E W PL O T D A T E : 2 0 1 8 - 0 6 - 2 5 @ 2 : 4 1 : 3 1 P M P L O T S C A L E : 1 : 2 . 5 8 5 P L O T S T Y L E : C A N R A I L - M A R Y R I V E R . C T B NTSAISSUED FOR DRAFT DESIGN BRIEF 04/09/19 JRS 18-7116OF 7 FUTURE WASTEWATER TREATMENT SYSTEMS IN CBRM ENVIRONMENTAL RISK ASSESSMENTS & PRELIMINARY DESIGN APRIL 2019 SMZ ASW 5 ASW MAB SECTIONS NEW WATERFORD DUPLEX LIFT STATION SCALE:SCALE:NTS SECTION 1 SCALE:SCALE:NTS WET WELL - BELOW GRADE 400Ø FLOW METER (TYP.) 250Ø CHECK VALVE 1 7 ___ 1 7 ___ 2 7 ___2 7 ___ ELECTRICAL ROOM 250Ø PLUG VALVE AIR RELEASE VALVE TO BE VENTED TO WET WELL (TYP) FO R C E M A I N GENERATOR ROOM 80 8 3 21 2 1 27 0 5 32 5 7 8180 54472736 2900 50 0 400Ø PROCESS PIPING 250Ø PROCESS PIPING 400Ø PLUG VALVE 20 0 0 80 0 1260 1260 1 7 ___ 1 7 ___ WET WELL FOOTING 150Ø VENT AND 200Ø CAP INLET BAFFLE 24 0 0 3600 FLUSH MOUNT ALUMINUM HATCH C/W WITH SAFETY GRATE 1200Ø SEWER INLET SLUICE GATE 1800 x 1800 MANHOLE 1200Ø SEWER INLET OVERFLOW PLAN 3D MODEL j o i n t v e n t u r e DATE DESIGN DRAWN PROJECT NO. SHEET NO. No.DATE BYISSUED FOR written permission from Dillon Consulting Limited. than those intended at the time of its preparation without prior Do not scale dimensions from drawing. Report any discrepancies to Dillon Consulting Limited.Verify elevations and/or dimensions on drawing prior to use. Conditions of Use REVIEWED BY CHECKED BY Do not modify drawing, re-use it, or use it for purposes other SCALE FIL E N A M E : C : \ P R O J E C T W I S E \ W O R K I N G D I R E C T O R Y \ P R O J E C T S 2 0 1 8 \ 5 4 M S R \ D M S 3 0 8 0 5 \ P O R T M O R I E N P U M P S T A T I O N D R A W I N G B L O C K . D W G P L O T T E D B Y : R O D G E R S , M A T T H E W PL O T D A T E : 2 0 1 8 - 0 6 - 2 5 @ 2 : 4 1 : 3 1 P M P L O T S C A L E : 1 : 2 . 5 8 5 P L O T S T Y L E : C A N R A I L - M A R Y R I V E R . C T B N.T.SAISSUED FOR DRAFT DESIGN BRIEF 04/09/19 JRS 18-7116OF 7 FUTURE WASTEWATER TREATMENT SYSTEMS IN CBRM ENVIRONMENTAL RISK ASSESSMENTS & PRELIMINARY DESIGN APRIL 2019 MSR ASW 6 ASW MAB PLAN NEW WATERFORD TRIPLEX PUMP STATIONS WET WELL PLAN 250Ø PIPE PUMP GUIDE BARS (TYP.) DISCHARGE PIPE SUPPORTS (TYP.) FORCEMAIN 400Ø FLOW METER (TYP.) AIR RELEASE VALVE (TYP.3) PUMP LIFTING CHAIN TO EXTEND AND ATTACH TO CHAMBER LID (TYP.3) WET WELL BENCHING CONCRETE MUD SLABCLEAR STONE BEDDING (TYP.) PRESSURE TRANSDUCER (TYP.) MULTITRODE LIQUID LEVEL SENSOR (TYP.)TIE DOWN ANCHOR SYSTEM TO RESIST BUOYANT UPLIFT PRESSURE. PRECAST CONCRETE BASE, RISERS AND COVER (TYP.) HORIZONTAL LEVEL REGULATOR HANGER BASE SLAB TO EXTEND DI PVCTRANSITION COUPLING AT 1m OUTSIDE FOUNDATION (TYP.) 400Ø AIR RELEASE VALVE INLET BAFFLE. SEE PLAN INLET 500 400Ø 40 0 Ø 250x400 REDUCER 25 0 Ø 250Ø 400Ø PLUG VALVE 2000 800 250Ø PLUG VALVE 250Ø CHECK VALVE 250Ø CHECK VALVE AND 250Ø PLUG VALVE ON HORIZONTAL. (TYP.3) SEE PLAN. 250Ø PIPE PRECAST CONCRETE BASE, RISERS AND COVER (TYP.) PUMP (TYP.) WET WELL BENCHING NOTE: BAFFLE WALL NOT SHOWN FOR CLARITY. SEE PLAN. AIR RELEASE VALVE (TYP.) 250Ø PIPE j o i n t v e n t u r e DATE DESIGN DRAWN PROJECT NO. SHEET NO. No.DATE BYISSUED FOR written permission from Dillon Consulting Limited. than those intended at the time of its preparation without prior Do not scale dimensions from drawing. Report any discrepancies to Dillon Consulting Limited. Verify elevations and/or dimensions on drawing prior to use. Conditions of Use REVIEWED BY CHECKED BY Do not modify drawing, re-use it, or use it for purposes other SCALE FI L E N A M E : C : \ P R O J E C T W I S E \ W O R K I N G D I R E C T O R Y \ P R O J E C T S 2 0 1 8 \ 5 4 M S R \ D M S 3 0 8 0 5 \ P O R T M O R I E N P U M P S T A T I O N D R A W I N G B L O C K . D W G P L O T T E D B Y : R O D G E R S , M A T T H E W PL O T D A T E : 2 0 1 8 - 0 6 - 2 5 @ 2 : 4 1 : 3 1 P M P L O T S C A L E : 1 : 2 . 5 8 5 P L O T S T Y L E : C A N R A I L - M A R Y R I V E R . C T B N.T.SAISSUED FOR DRAFT DESIGN BRIEF 04/09/19 JRS 18-7116OF 7 FUTURE WASTEWATER TREATMENT SYSTEMS IN CBRM ENVIRONMENTAL RISK ASSESSMENTS & PRELIMINARY DESIGN APRIL 2019 MSR ASW 7 ASW MAB SECTIONS NEW WATERFORD TRIPLEX PUMP STATIONS SECTION 1 SECTION 2 Harbour Engineering Joint Venture New Waterford Collection System Pre-Design Brief 29 APPENDIX B Flow Master Reports Project Description Friction Method Manning Formula Solve For Discharge Input Data Roughness Coefficient 0.015 Channel Slope 0.06000 % Normal Depth 0.75 m Diameter 0.75 m Results Discharge 236.34 L/s Flow Area 0.44 m² Wetted Perimeter 2.36 m Hydraulic Radius 0.19 m Top Width 0.00 m Critical Depth 0.29 m Percent Full 100.0 % Critical Slope 0.56557 % Velocity 0.53 m/s Velocity Head 0.01 m Specific Energy 0.76 m Froude Number 0.00 Maximum Discharge 0.25 m³/s Discharge Full 236.34 L/s Slope Full 0.06000 % Flow Type SubCritical GVF Input Data Downstream Depth 0.00 m Length 0.00 m Number Of Steps 0 GVF Output Data Upstream Depth 0.00 m Profile Description Profile Headloss 0.00 m Average End Depth Over Rise 0.00 % Normal Depth Over Rise 100.00 % Downstream Velocity Infinity m/s Interceptor Connection 750mm 2019-04-25 3:22:37 PM Bentley Systems, Inc. Haestad Methods Solution CenterBentley FlowMaster V8i (SELECTseries 1) [08.11.01.03] 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 2of1Page GVF Output Data Upstream Velocity Infinity m/s Normal Depth 0.75 m Critical Depth 0.29 m Channel Slope 0.06000 % Critical Slope 0.56557 % Interceptor Connection 750mm 2019-04-25 3:22:37 PM Bentley Systems, Inc. Haestad Methods Solution CenterBentley FlowMaster V8i (SELECTseries 1) [08.11.01.03] 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 2of2Page Project Description Friction Method Manning Formula Solve For Discharge Input Data Roughness Coefficient 0.015 Channel Slope 0.08000 % Normal Depth 0.60 m Diameter 0.60 m Results Discharge 150.51 L/s Flow Area 0.28 m² Wetted Perimeter 1.88 m Hydraulic Radius 0.15 m Top Width 0.00 m Critical Depth 0.25 m Percent Full 100.0 % Critical Slope 0.61560 % Velocity 0.53 m/s Velocity Head 0.01 m Specific Energy 0.61 m Froude Number 0.00 Maximum Discharge 0.16 m³/s Discharge Full 150.51 L/s Slope Full 0.08000 % Flow Type SubCritical GVF Input Data Downstream Depth 0.00 m Length 0.00 m Number Of Steps 0 GVF Output Data Upstream Depth 0.00 m Profile Description Profile Headloss 0.00 m Average End Depth Over Rise 0.00 % Normal Depth Over Rise 100.00 % Downstream Velocity Infinity m/s CSO-1 To LS1 600mm 2019-04-25 3:31:40 PM Bentley Systems, Inc. Haestad Methods Solution CenterBentley FlowMaster V8i (SELECTseries 1) [08.11.01.03] 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 2of1Page GVF Output Data Upstream Velocity Infinity m/s Normal Depth 0.60 m Critical Depth 0.25 m Channel Slope 0.08000 % Critical Slope 0.61560 % CSO-1 To LS1 600mm 2019-04-25 3:31:40 PM Bentley Systems, Inc. Haestad Methods Solution CenterBentley FlowMaster V8i (SELECTseries 1) [08.11.01.03] 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 2of2Page Project Description Friction Method Manning Formula Solve For Discharge Input Data Roughness Coefficient 0.015 Channel Slope 0.06000 % Normal Depth 0.75 m Diameter 0.75 m Results Discharge 236.34 L/s Flow Area 0.44 m² Wetted Perimeter 2.36 m Hydraulic Radius 0.19 m Top Width 0.00 m Critical Depth 0.29 m Percent Full 100.0 % Critical Slope 0.56557 % Velocity 0.53 m/s Velocity Head 0.01 m Specific Energy 0.76 m Froude Number 0.00 Maximum Discharge 0.25 m³/s Discharge Full 236.34 L/s Slope Full 0.06000 % Flow Type SubCritical GVF Input Data Downstream Depth 0.00 m Length 0.00 m Number Of Steps 0 GVF Output Data Upstream Depth 0.00 m Profile Description Profile Headloss 0.00 m Average End Depth Over Rise 0.00 % Normal Depth Over Rise 100.00 % Downstream Velocity Infinity m/s CSO-1 Overflow To NW1 750mm 2019-04-25 4:05:28 PM Bentley Systems, Inc. Haestad Methods Solution CenterBentley FlowMaster V8i (SELECTseries 1) [08.11.01.03] 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 2of1Page GVF Output Data Upstream Velocity Infinity m/s Normal Depth 0.75 m Critical Depth 0.29 m Channel Slope 0.06000 % Critical Slope 0.56557 % CSO-1 Overflow To NW1 750mm 2019-04-25 4:05:28 PM Bentley Systems, Inc. Haestad Methods Solution CenterBentley FlowMaster V8i (SELECTseries 1) [08.11.01.03] 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 2of2Page Project Description Friction Method Manning Formula Solve For Discharge Input Data Roughness Coefficient 0.015 Channel Slope 0.08000 % Normal Depth 0.60 m Diameter 0.60 m Results Discharge 150.51 L/s Flow Area 0.28 m² Wetted Perimeter 1.88 m Hydraulic Radius 0.15 m Top Width 0.00 m Critical Depth 0.25 m Percent Full 100.0 % Critical Slope 0.61560 % Velocity 0.53 m/s Velocity Head 0.01 m Specific Energy 0.61 m Froude Number 0.00 Maximum Discharge 0.16 m³/s Discharge Full 150.51 L/s Slope Full 0.08000 % Flow Type SubCritical GVF Input Data Downstream Depth 0.00 m Length 0.00 m Number Of Steps 0 GVF Output Data Upstream Depth 0.00 m Profile Description Profile Headloss 0.00 m Average End Depth Over Rise 0.00 % Normal Depth Over Rise 100.00 % Downstream Velocity Infinity m/s Interceptor Connection 600mm 2019-04-25 3:25:56 PM Bentley Systems, Inc. Haestad Methods Solution CenterBentley FlowMaster V8i (SELECTseries 1) [08.11.01.03] 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 2of1Page GVF Output Data Upstream Velocity Infinity m/s Normal Depth 0.60 m Critical Depth 0.25 m Channel Slope 0.08000 % Critical Slope 0.61560 % Interceptor Connection 600mm 2019-04-25 3:25:56 PM Bentley Systems, Inc. Haestad Methods Solution CenterBentley FlowMaster V8i (SELECTseries 1) [08.11.01.03] 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 2of2Page Project Description Friction Method Manning Formula Solve For Discharge Input Data Roughness Coefficient 0.015 Channel Slope 0.22000 % Normal Depth 0.30 m Diameter 0.30 m Results Discharge 39.31 L/s Flow Area 0.07 m² Wetted Perimeter 0.94 m Hydraulic Radius 0.08 m Top Width 0.00 m Critical Depth 0.15 m Percent Full 100.0 % Critical Slope 0.82791 % Velocity 0.56 m/s Velocity Head 0.02 m Specific Energy 0.32 m Froude Number 0.00 Maximum Discharge 0.04 m³/s Discharge Full 39.31 L/s Slope Full 0.22000 % Flow Type SubCritical GVF Input Data Downstream Depth 0.00 m Length 0.00 m Number Of Steps 0 GVF Output Data Upstream Depth 0.00 m Profile Description Profile Headloss 0.00 m Average End Depth Over Rise 0.00 % Normal Depth Over Rise 100.00 % Downstream Velocity Infinity m/s CSO-2 To LS2 300mm 2019-04-25 3:30:42 PM Bentley Systems, Inc. Haestad Methods Solution CenterBentley FlowMaster V8i (SELECTseries 1) [08.11.01.03] 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 2of1Page GVF Output Data Upstream Velocity Infinity m/s Normal Depth 0.30 m Critical Depth 0.15 m Channel Slope 0.22000 % Critical Slope 0.82791 % CSO-2 To LS2 300mm 2019-04-25 3:30:42 PM Bentley Systems, Inc. Haestad Methods Solution CenterBentley FlowMaster V8i (SELECTseries 1) [08.11.01.03] 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 2of2Page Project Description Friction Method Manning Formula Solve For Discharge Input Data Roughness Coefficient 0.015 Channel Slope 0.08000 % Normal Depth 0.60 m Diameter 0.60 m Results Discharge 150.51 L/s Flow Area 0.28 m² Wetted Perimeter 1.88 m Hydraulic Radius 0.15 m Top Width 0.00 m Critical Depth 0.25 m Percent Full 100.0 % Critical Slope 0.61560 % Velocity 0.53 m/s Velocity Head 0.01 m Specific Energy 0.61 m Froude Number 0.00 Maximum Discharge 0.16 m³/s Discharge Full 150.51 L/s Slope Full 0.08000 % Flow Type SubCritical GVF Input Data Downstream Depth 0.00 m Length 0.00 m Number Of Steps 0 GVF Output Data Upstream Depth 0.00 m Profile Description Profile Headloss 0.00 m Average End Depth Over Rise 0.00 % Normal Depth Over Rise 100.00 % Downstream Velocity Infinity m/s CSO-2 Overflow To NW2 600mm 2019-04-25 4:04:02 PM Bentley Systems, Inc. Haestad Methods Solution CenterBentley FlowMaster V8i (SELECTseries 1) [08.11.01.03] 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 2of1Page GVF Output Data Upstream Velocity Infinity m/s Normal Depth 0.60 m Critical Depth 0.25 m Channel Slope 0.08000 % Critical Slope 0.61560 % CSO-2 Overflow To NW2 600mm 2019-04-25 4:04:02 PM Bentley Systems, Inc. Haestad Methods Solution CenterBentley FlowMaster V8i (SELECTseries 1) [08.11.01.03] 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 2of2Page Project Description Friction Method Hazen-Williams Formula Solve For Pressure at 2 Input Data Pressure 1 0.00 psi Elevation 1 -0.92 m Elevation 2 2.11 m Length 242.00 m Roughness Coefficient 120.000 Diameter 0.40 m Discharge 208.60 L/s Results Pressure 2 -6.77 psi Headloss 1.73 m Energy Grade 1 -0.78 m Energy Grade 2 -2.51 m Hydraulic Grade 1 -0.92 m Hydraulic Grade 2 -2.65 m Flow Area 0.13 m² Wetted Perimeter 1.26 m Velocity 1.66 m/s Velocity Head 0.14 m Friction Slope 0.71682 % 400mm Forcemain 2019-04-26 11:16:53 AM Bentley Systems, Inc. Haestad Methods Solution CenterBentley FlowMaster V8i (SELECTseries 1) [08.11.01.03] 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 1of1Page Project Description Friction Method Hazen-Williams Formula Solve For Pressure at 2 Input Data Pressure 1 0.00 psi Elevation 1 -2.00 m Elevation 2 2.11 m Length 18.60 m Roughness Coefficient 120.000 Diameter 0.40 m Discharge 239.75 L/s Results Pressure 2 -6.09 psi Headloss 0.17 m Energy Grade 1 -1.81 m Energy Grade 2 -1.99 m Hydraulic Grade 1 -2.00 m Hydraulic Grade 2 -2.17 m Flow Area 0.13 m² Wetted Perimeter 1.26 m Velocity 1.91 m/s Velocity Head 0.19 m Friction Slope 0.92757 % 400mm Common Forcemain 2019-04-26 11:15:47 AM Bentley Systems, Inc. Haestad Methods Solution CenterBentley FlowMaster V8i (SELECTseries 1) [08.11.01.03] 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 1of1Page Harbour Engineering Joint Venture New Waterford Collection System Pre-Design Brief 30 APPENDIX C Opinion of Probable Construction Costs OPINION OF PROBABLE COST, CLASS 'C' Preliminary Collection Project Manager:D. McLean and Interception Infrastructure Costs Only Est. by: C. Lund Checked by: D. McLean New Waterford, NS PROJECT No.:187116 (Dillon) 182402.00 (CBCL) UPDATED:April 20, 2020 NUMBER UNIT Linear Infrastructure $324,030.00 300 mm Diameter PVC gravity sewer 10 m $480.00 $4,800.00 600 mm Diameter PVC gravity sewer 40 m $480.00 $19,200.00 750 mm Diameter PVC gravity sewer 60 m $550.00 $33,000.00 150 mm Diameter HDPE forcemain 5 m $300.00 $1,500.00 400 mm Diameter HDPE forcemain 265 m $390.00 $103,350.00 400 mm Diameter Directional Drilled HDPE forcemain 50 m $900.00 $45,000.00 Air Release Chamber 1 each $13,500.00 $13,500.00 1800mm dia. Manhole 2 each $8,500.00 $17,000.00 Connection to Existing Main (c/w 1800mm dia. MH)5 each $15,000.00 $75,000.00 Closed Circuit Televsion Inspection 110 m $8.00 $880.00 Trench Excavation - Rock 120 m3 $60.00 $7,200.00 Trench Excavation - Unsuitable Material 120 m3 $10.00 $1,200.00 Replacement of Unsuitable with Site Material 60 m3 $10.00 $600.00 Replacement of Unsuitable with Pit Run Gravel 60 m3 $30.00 $1,800.00 Beach Street Lift Station $1,022,300.00 Pump Station 1 L.S.$950,000.00 $950,000.00 Site Work 1 L.S.$70,000.00 $70,000.00 Mass Excavation - Rock 25 m3 $60.00 $1,500.00 MassExcavation - Unsuitable Material 25 m3 $10.00 $250.00 Replacement of Unsuitable with Site Material 10 m3 $10.00 $100.00 Replacement of Unsuitable with Pit Run Gravel 15 m3 $30.00 $450.00 Mahon Street Lift Station $567,300.00 Pump Station 1 L.S.$500,000.00 $500,000.00 Site Work 1 L.S.$65,000.00 $65,000.00 Mass Excavation - Rock 25 m3 $60.00 $1,500.00 MassExcavation - Unsuitable Material 25 m3 $10.00 $250.00 Replacement of Unsuitable with Site Material 10 m3 $10.00 $100.00 Replacement of Unsuitable with Pit Run Gravel 15 m3 $30.00 $450.00 Combined Sewer Overflow $200,000.00 Combined Sewer Overflow 2 L.S.$100,000.00 $200,000.00 SUBTOTAL (Construction Cost)$2,113,630.00 Contingency Allowance (Subtotal x 25 %)$529,000.00 Engineering (Subtotal x 10 %)$212,000.00 Land Acquisition $10,900.00 OPINION OF PROBABLE COST (Including Contingency)$2,865,530.00 PREPARED FOR: Cape Breton Regional Municipality EXTENDED TOTALS QUANTITY TOTALUNIT COSTITEM DESCRIPTION March 27, 2020 HEJV New Waterford Wastewater System Pre‐Design Summary Report Appendices APPENDIX B  New Waterford Treatment System  Pre‐Design Brief     182402.00   ●   Final Brief  ● April 2020 Environmental Risk Assessments & Preliminary  Design of Seven Future Wastewater Treatment Systems in CBRM   New Waterford Wastewater Treatment Plant Preliminary Design Brief Prepared by:     Prepared for:   March 2020                                                                   New Waterford WW Treatment  System Preliminary Design Brief ‐  Final  April 21, 2020 Darrin McLean Mike Abbott  Dave McKenna Sarah Ensslin  New Waterford WW Treatment  System Preliminary Design Brief May 9, 2019 Darrin McLean Mike Abbott  Dave McKenna Sarah Ensslin  Issue or Revision Date Issued By: Reviewed By: Prepared By:  This document was prepared for the party indicated herein. The material and information in the document reflects HE’s opinion and best judgment based on the information available at the time of preparation. Any use of this document or reliance on its content by third parties is the responsibility of the third party. HE accepts no responsibility for any damages suffered as a result of third party use of this document.                             182402.00  March 27, 2020   182402.00 NW WWTP PRELIMINARY DESIGN BRIEF DRAFT 20190508 FINAL.DOCX2020‐04‐21/klm  ED: 21/04/2020 11:13:00/PD: 21/04/2020 11:13:00   275 Charlotte Street    Sydney, Nova Scotia    Canada B1P 1C6      Tel:  902‐562‐9880    Fax:  902‐562‐9890  April 21, 2020      Matt Viva, P.Eng.  Manager Wastewater Operations  Cape Breton Regional Municipality (CBRM)  320 Esplanade,  Sydney, NS B1P 7B9      Dear Mr. Viva:    RE: New Waterford Wastewater Treatment Plant Preliminary Design    Enclosed, please find a copy of the Preliminary Design Brief for the New Waterford  Wastewater Treatment Plant (WWTP).    The report presents an evaluation of treatment process alternatives for the New Waterford  WWTP. It also presents a preliminary design based on the recommended SBR treatment  process.    If you have any questions or require clarification on the content presented in the attached  report, please do not hesitate to contact us.    Yours very truly,    Harbour Engineering Joint Venture          Prepared by: Reviewed by:  Sarah Ensslin, M.Sc., P.Eng Mike Abbott, P.Eng., M.Eng.  Process Engineer Manager Process Department  Direct:  902‐421‐7241 (Ext. 2238)  E‐Mail:  sensslin@cbcl.ca    Reviewed by:   Dave McKenna, P.Eng., M.Eng.   Associate / Technical Service Lead    Project No: 182402.00 (CBCL)  187116.00 (Dillon)         March 27, 2020   HEJV New Waterford WWTP Preliminary Design Brief i  Contents    CHAPTER 1 Introduction ................................................................................................................ 1  1.1 Introduction ........................................................................................................................ 1  1.2 Background ......................................................................................................................... 1  1.3 Objectives ........................................................................................................................... 1  CHAPTER 2 Existing Conditions ...................................................................................................... 2  2.1 Description of Existing Infrastructure ................................................................................. 2  2.2 Wastewater Flow Characteristics ....................................................................................... 2  2.2.1 Dry Weather Flows ................................................................................................. 3  2.2.2 Average Day Flows .................................................................................................. 4  2.2.3 Peak Day Flow ......................................................................................................... 5  2.2.4 Extraneous Flow Reduction .................................................................................... 6  2.3 Wastewater Quality Characteristics ................................................................................... 6  2.4 Wastewater Loading Analysis ............................................................................................. 7  CHAPTER 3 Basis of Design ............................................................................................................ 9  3.1 Service Area Population ...................................................................................................... 9  3.2 Design Flows and Loads ...................................................................................................... 9  3.3 Effluent Requirements ...................................................................................................... 11  3.4 Design Loads ..................................................................................................................... 12  CHAPTER 4 Treatment Process Alternatives ................................................................................. 13  4.1 Preliminary Treatment ...................................................................................................... 13  4.1.1 Screening .............................................................................................................. 13  4.1.2 Grit Removal ......................................................................................................... 14  4.2 Secondary Treatment ....................................................................................................... 15  4.2.1 Site‐specific Suitability .......................................................................................... 15  4.2.2 Description of Candidate Processes for Secondary Treatment ............................ 16  4.3 Disinfection ....................................................................................................................... 22  4.3.1 CAS/MBBR Effluent Disinfection ........................................................................... 22  4.3.2 SBR Effluent Disinfection ...................................................................................... 23  4.4 Sludge Management ......................................................................................................... 23  4.5 Secondary Treatment Option Evaluation ......................................................................... 24  4.5.1 Capital Cost Estimate ............................................................................................ 24  4.5.2 Operating Cost Estimate ....................................................................................... 24    HEJV New Waterford WWTP Preliminary Design Brief ii  4.5.3 Life Cycle Cost Estimate ........................................................................................ 24  4.5.4 Qualitative Evaluation Factors .............................................................................. 26  4.5.5 Recommended Secondary Treatment Process ..................................................... 26  CHAPTER 5 Preliminary Design .................................................................................................... 27  5.1 Process Description ........................................................................................................... 27  5.2 Unit Process Descriptions ................................................................................................. 27  5.2.1 Preliminary Treatment .......................................................................................... 27  5.2.2 Secondary Treatment ........................................................................................... 28  5.2.3 Disinfection ........................................................................................................... 29  5.2.4 Sludge Management ............................................................................................. 30  5.3 Facilities Description ......................................................................................................... 31  5.3.1 Civil and Site Work ................................................................................................ 32  5.3.2 Odour Control ....................................................................................................... 32  5.3.3 Architectural ......................................................................................................... 32  5.3.4 Mechanical ............................................................................................................ 33  5.3.5 Electrical ................................................................................................................ 33  5.3.6 Lighting ................................................................................................................. 33  5.3.7 Instrumentation .................................................................................................... 33  5.4 Staffing Requirements ...................................................................................................... 36  CHAPTER 6 Project Costs ............................................................................................................. 37  6.1 Opinion of Probable Capital Costs .................................................................................... 37  6.2 Opinion of Annual Operating Costs .................................................................................. 37  6.3 Opinion of Annual Capital Replacement Fund Contributions ........................................... 39  CHAPTER 7 References ................................................................................................................ 40    Appendices     A Flow Meter Data    B Environmental Risk Assessment      C Preliminary Design Drawings        HEJV New Waterford WWTP Preliminary Design Brief 1 CHAPTER 1  INTRODUCTION    1.1 Introduction  Harbour Engineering Joint Venture (HEJV) was retained by the Cape Breton Regional Municipality  (CBRM) to provide engineering services associated with the preliminary design of a wastewater  treatment plant (WWTP) for the community of New Waterford, Nova Scotia as part of the greater  Environmental Risk Assessment and Preliminary Design of 7 Future Wastewater Treatment Systems in  CBRM project. This report will present preliminary design options for the new WWTP, as well as a  detailed discussion of the processes involved and their associated costs.    1.2 Background  The wastewater collection system in the community of New Waterford, as in many communities  throughout CBRM, currently discharges untreated wastewater to the Atlantic Ocean. The evolution of the  existing wastewater collection and disposal systems in CBRM included the creation of regions of a  community which were serviced by a common wastewater collection system tied to a local marine outfall.  Such design approaches have traditionally been the most cost‐effective manner of providing centralized  wastewater collection, and the marine environment has long been the preferred receiving water given the  available dilution. Due to a changing regulatory environment, CBRM is working toward intercepting and  treating the wastewater in these communities prior to discharge.    1.3 Objectives  The objectives of this report will be to:   Establish design parameters for a new WWTP.   Evaluate treatment process alternatives.   Present a preliminary engineering design, with capital and operating cost estimates, for a new  WWTP to meet the design requirements.         HEJV New Waterford WWTP Preliminary Design Brief 2 CHAPTER 2  EXISTING CONDITIONS    2.1 Description of Existing Infrastructure  The New Waterford wastewater collection system includes the former Town of New Waterford, the  community of Scotchtown and a small portion of River Ryan. This area drains to two wastewater  outfalls, both of which discharge at the Barachois. The system consists of approximately 70km of gravity  sewer and 2.6km of force main. There are also a number of lift stations within the system located as  follows:   Nicklewood Drive.   Columbus Street.   Oceanview Boulevard.   Hinchey Avenue.   New Waterford Highway (E‐One system).    E‐One systems are individual home sewage pumping systems that discharge to a common pressure sewer.  In some instances, the flow is first discharged to a septic tank and the effluent from the septic tank is  pumped. In other instances, flow is pumped directly from the home.    2.2 Wastewater Flow Characteristics  Flow meters were installed in the sewer system, upstream of the NW1 and NW2 outfalls, in summer of  2018. A flow meter was previously installed upstream of the NW2 outfall in spring of 2018. The meter  on the NW1 outfall catchment was installed as close to the outfall as possible, but upstream of the area  of tidal influence.  This meant that some areas of the NW1 catchment could not be included in the  metering. Results of the flow metering activities are summarized in this section. Flow meter data is  plotted on a series of Figures in Appendix A. The dates of flow data collection at each location are  summarized in Table 2.1.    Table 2.1: Flow Meter Installation Summary  Meter Dates  NW1 August 1 – August 17, 2018  NW2 February 28 – May 11, 2018  August 1 – August 22, 2018      HEJV New Waterford WWTP Preliminary Design Brief 3 2.2.1 Dry Weather Flows  The average dry weather flow (ADWF) results for each of the meter locations is summarized in  Table 2.2. Please refer to the New Waterford Collection System Pre‐Design Brief (Dillon Consulting  Limited, 2019) for more details on the ADWF analysis.  The average dry weather flow was defined as the  average flow for flows that met the following criteria:   No rain within the last 24 hours.   No more than 5 mm in the previous 48 hours.   No more than 5 mm per day additional in the subsequent days (e.g. 10 mm in the last 3 days).    Table 2.2: Flow Meter Data Summary – Average Dry Weather Flows  Meter Area (ha) Population ADWF (m3/day) ADWF  (L/cap/d) ADWF (m3/ha/d)  NW1 207.2 2,910 3,404 1,170 16.4  NW2 79.6 1,046 769 735 9.7  Metered Total 286.8 3,956 4,173 1,055 14.6    The dry weather flow in NW1 is very high, at more than 1000 L per person per day (L/cap/d).  This flow  was metered during a period of very low rainfall following a month of very low rainfall, during the  summer of 2018.  In contrast, the dry weather flow for NW2 during the same summer period was only  297 L/cap/d, which shows low influence from groundwater infiltration.   The overall dry weather flow for  NW2 in Table 2.2 is increased due to higher dry weather flows in the spring runoff season, which is  typical for this season, and is further broken down by season in Table 2.3.      Table 2.3: Flow Meter Data Summary – NW2 Sewershed ADWF by Season   Meter ADWF (m3/day) ADWF (L/cap/d)  NW2 (Spring) 1,123 1,074  NW2 (Summer) 311 297  NW2 Metered Total 769 735    In order to determine a projected total ADWF, the flow for the unmetered areas was calculated using  unit flow rates from Table 2.2. Since the entire unmetered area, with a population of 3464, is located in  the NW1 sewershed, unit rates for this area were used for the projection to the serviced total ADWF. As  shown in Table 2.4, below, the total projected ADWF was calculated to be 7,456 m³/d when calculating  the unmetered flow based on population, and is slightly lower based on area. The metered data  represents approximately 53% of the total population, and 56% of the total area.     Table 2.4: NW1 Sewershed ADWF Projection Based on Area and Population  Meter Area (ha) ADWF by area  (m3/day) Population ADWF by population  (m3/day)  NW1 (metered) 207 3,404 2,910 3,404  NW1 (unmetered) 223 3,667 3,464 4,052  NW1 Total 430 7,071 6,374 7,456    HEJV New Waterford WWTP Preliminary Design Brief 4 In order to remove the effect of the excessive dry season flows in NW1, the average overnight flow  minimums were examined for both NW1 and NW2 sewershed data, for a week’s worth of flow in the  driest week for which we have data.  The overnight minimum flow in NW2 was 158 L/cap/d, and the  overnight minimum flow for NW1 was 520 L/cap/d.  Wastewater production at 3 am is typically very  low, but not zero.  If the minimum flows in NW2 are assumed to be reasonable overnight flow, then  NW1 flows should be able to approach this level during dry weather, in the absence of an industrial  process that discharges significant volumes at night; therefore, the difference in overnight flow rates  between the two catchments is likely to be unnecessary extraneous flow.  This may result from heavy  groundwater infiltration or from a stream entering the sewer in NW1. Flow equivalent to (520–158=362  L/cap/d) for NW1 catchment was therefore removed from the design flows.     The resulting flows following projection to the full serviced population and adjustment for excessive  extraneous flows as described above are shown in Table 2.5, below.    Table 2.5:  Projected and Adjusted Average Dry Weather Flows  Parameter ADWF (L/s, adjusted) ADWF (m3/day, adjusted)  NW1 Flow 59.6 5,150  NW2 Flow  8.9 770  Projected Total Flow 68.5 5,920    2.2.2 Average Day Flows  The average daily flow (ADF) results for each of the meter locations and periods is summarized in Table  2.6. This incorporates all metered data, including rain events.     Table 2.6: Flow Meter Data Summary – Average Daily Flows  Meter Area (ha) Population ADF (m3/day) ADF (L/cap/d) ADF (m3/ha/d)  NW1 Metered Total 207.2 2910 3558 1223 17.2  NW2 (Spring) 79.6 1046 1,822 1742 22.9  NW2 (Summer) 79.6 1046 661 632 8.3  NW2 Metered Total 79.6 1046 1565 1496 19.7  Metered Total  286.8 3,956 5,123 1,295 17.9    In order to project the flow to the entire NW1 sewershed, the unit rates in Table 2.6 were applied for both  area and population, and an assumed seasonal factor of 1.2 x metered ADF was applied to calculate the  total NW1 ADF since the flow data was collected during a period with very little rain, and we would not  expect the actual ADF to be so close to the ADWF.  The results are shown in Table 2.7, below.  The total  projected ADF was calculated to be 9,352 m3/day when calculating the unmetered flow based on  population. When calculating the unmetered flow based on area, the result was similar. The metered data  represents approximately 53% of the total population and 56% of the total catchment area.      HEJV New Waterford WWTP Preliminary Design Brief 5 Table 2.7: Projected NW1 Average Daily Flows  Parameter Area (ha) ADF by area  (m3/day) Population ADF by pop.  (m3/day)  NW1 (metered) 207 3,558 2,910 3,558  NW1 (unmetered) 223 3,833 3,464 4,235  NW1 Total with Seasonal Factor of 1.2 430 8,869 6,374 9,352    The estimated total average flows currently produced are shown in Table 2.8, below.  Due to the limited  data for NW1, the flows for this area were projected using unit rates and then uprated by a seasonal  factor of 1.2, as described above.  For NW2, because most of the data were collected in spring, the  average spring flow (likely the highest of the year) was calculated along with the average summer flow  (likely the lowest), and these two averages were equally weighted instead of being weighted by the  respective number of days in each monitoring period.      Table 2.8: Current Total Average Flows  Sewershed Projected ADF (m³/day)  NW1 9,352  NW2 1,255  Total Average Flow 10,607    2.2.3 Peak Day Flow  A selection of measured peak day flows (PDF) from each of the meter locations and periods is displayed  in Table 2.9.     Table 2.9: Flow Meter Data Summary – Peak Day Flow  Meter (Season) 48hr Rainfall  (mm)  Area  (ha) Population PDF  m3/day L/cap/d m3/ha/d  NW1 (Summer) 17.1 207.2 2,910 5,116 1,758 25  NW2 (Summer) 17.1 79.6 1,046 834 797 10  NW2 (Summer) 47.8 79.6 1,046 3,700 3,537 46  NW2 (Spring) 51.0 79.6 1,046 14,388 13,755 181    It is unlikely that any of these data points reflect the true peak flows, due to the limited data collected.   Comparing the two sewersheds in summer, NW2 displays sharper rises in flow from the surrounding  average flow than does NW1, given the same amount of rain.  This is expected because it has less I&I  present in the summer months, and therefore a smaller base flow.  Spring peak flows in NW2 are more  extreme than in summer, and on a per person basis, are very high.  This is anticipated to some extent,  because dry ground has more capacity to absorb flow without runoff; however, the spring flows in NW2  are so high per person that it appears there is excessive I&I entering the system during wet weather,  which should be investigated and addressed.        HEJV New Waterford WWTP Preliminary Design Brief 6 2.2.4 Extraneous Flow Reduction   It is strongly recommended that, at a minimum, additional metering be conducted at the NW1 location  during spring conditions prior to detailed design, in order to identify sources of I&I. Due to the high dry  weather flows and the extremely high wet weather flows observed upstream of NW2 during spring, and  the high dry weather flows observed upstream of NW1 during summer, it is strongly recommended that  efforts be made to locate and reduce sources of inflow and infiltration in both sewersheds prior to  detailed design.     Efforts to identify and prevent excessive extraneous flow are necessary to allow successful and cost‐ effective treatment of the wastewater, and are assumed to take place in order to develop these design  parameters.  If these flows are not able to be removed to the degree assumed, then the WWTP may  experience significant occurrences and/or periods of flow bypass because the design capacity of the  plant is less than the actual flows that the collection system conveys.     Nonetheless, a significant amount of inflow and infiltration (I&I) will be collected and treated under the  design parameters developed in this report, and opportunities remain, in both sewersheds, for  additional I&I reduction and potential WWTP size reduction and resulting cost savings.    2.3 Wastewater Quality Characteristics  HEJV collected one untreated wastewater sample upstream of each outfall.  The samples for NW1 and  NW2 were collected on April 25, 2018, and April 23, 2018, respectively, and the results are summarized  in Table 2.10. For simplicity, only the parameters of relevance to the preliminary design are included.  Refer to the ERA report for the complete analytical results.     Table 2.10: 2018 Wastewater Characterization Results – General Chemistry  Parameter Outfall  NW1 NW2  CBOD5 (mg/L) 93 140  COD (mg/L) 170 260  Total NH3‐N (mg/L) 2.3 3.1  TSS (mg/L) 110 60  TP (mg/L) 1.4 1.6  TKN (mg/L) 9.9 10  pH  6.59 6.58  Un‐ionized NH3 (mg/L)  0.0025 0.0032   E. coli (MPN/100mL) 1,000,000 >240,000    CBRM collected a number of untreated wastewater samples from 2015 through 2018 at NW1, Dillon  Consulting collected one sample at each of the outfalls in 2014, and UMA Engineering collected a  number of samples in 1992 from both NW1 and NW2.  The results of these historical samples are  summarised in Table 2.11.       HEJV New Waterford WWTP Preliminary Design Brief 7 Table 2.11: Historical Wastewater Characterization Results  Outfall Pop.  TSS (mg/L) CBOD (mg/L) Total Ammonia  (mg/L) TKN (mg/L) pH  #  Samples Avg #  Samples Avg #  Samples Avg #  Samples Avg #  Samples Avg  NW1 6,374 106 74 106 105 27 6.41 5.00 39.1 57 6.98  NW2 1,046 26 69 26 104 1 3.30 4.00 45.6 26 7.24  Weighted Average  (by population) ‐ 73 ‐ 105 ‐ 5.97 ‐ 40.0 ‐ 7.01    2.4 Wastewater Loading Analysis  The theoretical per person loading rates listed in the Atlantic Canada Wastewater Guidelines Manual  (ACWGM) (ABL Environmental Consultants Limited, 2006) are 0.08 kg CBOD/person/day and  0.09 kg TSS/person/day. The reference theoretical TKN loading rate of 0.0133 kg TKN/person/day is  stated in Wastewater Engineering: Treatment and Reuse (Metcalf & Eddy, Inc, 2003).     Loads were calculated from three samples with concurrent flow data available (two from NW1 and one  from NW2).  The average value for 2018 was also calculated based on the calculated average flow rate  of the NW1 sewershed (including all measured extraneous flows, and assuming that the average flow is  about 1.2 times the average flow calculated from the summer flow data) and the average 2018 NW1  concentration data.  These values are shown in Table 2.12, below.    Table 2.12: Calculated and Theoretical Loading Rates  Sampling Date CBOD (kg/cap/d) TSS (kg/cap/d) TKN (kg/cap/d)  April 23, 2018 (NW2) 0.15 0.06 0.011  August 2, 2018 (NW1) 0.23 0.12 –  August 17, 2018 (NW1) 0.13 0.08 –  Average 2018 (NW1) 0.11 0.08 –  Theoretical Loading from Reference 0.08 0.09 0.013    For TSS and TKN, the theoretical loading rates appear to be reasonable for the current data.  The higher  TKN concentrations found in the historical data were all from 1992, and the more recent data, though  limited, does not appear to be similarly high.  For CBOD, however, the calculated loading rates are all  higher than theoretical.  This is also supported in the historical data, where the ratio of CBOD  concentrations to TSS concentrations averages 1.4, which is somewhat atypical. If theoretical loading rates  applied for both constituents, we would expect to see CBOD concentrations that were, on average, slightly  lower than TSS concentrations.  It appears that there may be a source of organic material and CBOD in the  community which could be resulting from food processing (for example, Horyl’s Superior Sausage) or  another source of relatively high‐organics wastewater.  Additional sampling and concurrent flow  monitoring must be undertaken prior to detailed design to confirm the actual loading rates at that time.      HEJV New Waterford WWTP Preliminary Design Brief 8 For design loading conditions, the theoretical values were used for TSS and TKN, and the average 2018  NW1 value was used for BOD, since the data for NW2 also indicate somewhat elevated CBOD  concentrations compared to TSS.  These are shown in Table 2.13, below.    Table 2.13: Design Loading Rates  Parameter Value  Population 7,420  CBOD (kg/cap/d) 0.11  TSS (kg/cap/d) 0.09  TKN (kg/cap/d) 0.013          HEJV New Waterford WWTP Preliminary Design Brief 9 CHAPTER 3  BASIS OF DESIGN    3.1 Service Area Population  The primary method used to estimate future wastewater flows and loads is to project current per capita  flows and loads based on estimates of future population. The population for the New Waterford service  area was obtained based on the 2016 Census data from CBRM’s GIS database using the following  procedure: Each residential unit within the service area boundary from CBRM’s structure database was  multiplied by the average household size for the census dissemination area that it falls within. For New  Waterford, the service area population was estimated to be 7,420 people in 3,735 residential units.     The population of the CBRM has been declining and this trend is expected to continue. The latest  population projection study, completed in 2018 by Turner Drake & Partners Ltd., predicted a  17.8% decrease in population in Cape Breton County between 2016 and 2036. For this reason, no  allocation has been made for any future population growth. For the purpose of this preliminary design  study, WWTP sizing will be based on the current population and measured flow data. While this may  seem overly conservative, due to significant amounts of inflow and infiltration (I&I) observed in sewer  systems in the CBRM, a given population decrease will not necessarily result in a proportional decrease  in wastewater flow. Therefore, basing the design on current conditions is considered the most  reasonable approach.    As the target date for this WWTP is 2040, consideration should be given to re‐evaluating the population  and wastewater flows if a significant amount of time has passed between completion of the pre‐design  study and the project moving to the detailed design stage.     3.2 Design Flows and Loads  As described in Section 2.2, the Average Dry Weather Flow was calculated from the metered data using  a projection to the full serviced population and adjustment for excessive extraneous flow.  The resulting  ADWF is 5,920 m³/d (68.5 L/s).      Due to the size, the WWTP will be a mechanical treatment plant which cannot be efficiently designed for  a very wide flow range. Typical design values for peaking factor range from 2 to 3.5 for mechanical  treatment plants. Therefore, a peaking factor of 3.5 was applied for interception based on  recommendations in the Industrial Cape Breton Wastewater Characterization Program – Phase II report  (UMA Engineering Limited, 1994) which recommended a rate of 3.5 times ADWF for this plant. This  interception ratio was also carried forward in the New Waterford Collection System Pre‐Design Brief    HEJV New Waterford WWTP Preliminary Design Brief 10 when considering the design of the pumping stations serving the plant, resulting in a maximum  intercepted flow of 210 L/s for the proposed NW1 Lift Station, and 32 L/s for the proposed NW2 Lift  Station. All flow is pumped to the plant, so these numbers set the peak hour flow (PHF) to the plant as  20,910 m³/d (242 L/s), which is also anticipated to be the peak day flow (PDF).    In order to calculate the average intercepted flow to the plant, and thus the design ADF to the plant,  several adjustments must be applied.  The first is applied to both sewersheds, and involves calculating the  average flow to the plant once the maximum flow from each sewershed is capped at the interception rate:  flow data higher than 210 L/s in NW1 and higher than 32 L/s in NW2 are truncated, so that only flow  accepted at the plant is included.  Due to the timing of the data collection, this only changes NW2 flows,  and not NW1 flows.  Next, a seasonal correction is applied to both sewersheds.  The average flow for NW1  is multiplied by a seasonal correction factor of 1.2, to correct for the fact that the data for this sewershed  were collected largely during very dry weather.  The data for NW2 were collected mostly in wet weather,  so the average for each season was calculated and weighted equally.  Finally, a base‐flow adjustment to  the NW1 sewershed is applied (362 L/cap/d reduction, just as to the ADWF for NW1).  All data for NW1  was collected during a dry time in the summer; the flows removed by this adjustment are considered to be  excessive flows, which are not reasonable to collect and treat, and the sources of which must be identified  and removed.  The results of these calculations are shown in Table 3.1.    Table 3.1: Estimated Intercepted Average Daily Flow  Sewershed ADF (m3/day)  NW1 7,045  NW2 928  Total Estimated Intercepted ADF 7,973    The resulting design flows, based on the flow meter data and adjustments, which were summarized in  Section 2.2 and in this section, are shown in Table 3.2, below. They are rounded for ease of use.    Table 3.2: WWTP Design Flows   Parameter Value  Average Dry Weather Flow (m³/day) 6,000  Peak Day Flow  (m³/day) 21,000  Average Daily Flow (m³/day) 8,000    Based on the metered flows from NW2 in 2018, there would have been 8 periods of overflow at Lift  Station NW2 during the metering period.  Spring flows typically represent the worst case condition for  overflows due to increased base flow associated with higher groundwater tables, combined with snow  melt. The metered NW2 data is plotted in Figure 3.1. The average NW2 flow and design NW2  intercepted flows are also plotted on this figure, for comparison.  This figure shows flow data from the  NW2 meter only (the NW1 meter was not installed in spring) and may not be representative of the flows  or the overflow frequency from the NW1 sewershed.       HEJV New Waterford WWTP Preliminary Design Brief 11   Figure 3.1: NW2 Flow Data Compared to Intercepted NW2 Flows    Additional metering must be completed upstream of NW1 and NW2 during spring conditions prior to  detailed design, and the resulting data used to locate and reduce sources of I&I.  The flow data from  both sewersheds currently indicate high levels of inflow and infiltration, and this must be reduced in  order to successfully collect and treat the wastewater without frequent overflows.      We believe that the design flows selected are a reasonable compromise between capturing the bulk of  the wastewater, and cost‐effectively treating it in a mechanical plant which has a specific flow range  capability.  Therefore, the average and peak day design flows chosen for the predesign of the New  Waterford WWTP are 8,000 m3/d and 21,000 m3/d, respectively. Efforts to reduce I&I are required  between now and 2040 in order to achieve these flows. It may be possible to do better than this and  have capital and operating cost savings if this this is done successfully.    3.3 Effluent Requirements  The effluent requirements will include the federal WSER limits, along with provincial effluent  requirements determined by NSE and presented in the NSE Approval to Operate for the WWTP.  An ERA  was completed in 2018 which determined effluent discharge objectives for parameters not included in  the WSER (See Appendix B).        HEJV New Waterford WWTP Preliminary Design Brief 12 The receiving water for the New Waterford WWTP will be the Atlantic Ocean, adjacent to the Barachois.   The ERA generally followed Technical Supplement 3 of the Canada‐wide Strategy for the Management of  Municipal Wastewater Effluent – Standard Method and Contracting Provisions for the Environmental Risk  Assessment.  Dilution modelling was conducted to determine the maximum 1 day average effluent  concentration with a mixing zone boundary of 100m for all parameters of concern with the exception of E.  coli for primary contact recreation. The E. coli concentration was analyzed at the edge of the 100m mixing  zone for secondary contact recreation, and at Brown’s Road Extension Beach for primary contact recreation.     Refer to Table 5.1 in the ERA attached in Appendix B for Effluent Discharge Objectives (EDOs) developed  during the ERA and for further information on the development of these values.      The effluent requirements resulting from the ERA are summarized in Table 3.1 along with the sources of  the criteria. As EDOs are calculated values, they are not round whole numbers that are typical of  effluent requirements; therefore, we have included both the EDOs and values that are more suited as  effluent requirements in the table.     Table 3.3:  Design Effluent Requirements  Parameter EDO Required By Effluent Limit  CBOD5 (mg/L) 25 WSER 25  TSS (mg/L) 25 WSER 25  Un‐ionized Ammonia (as NH3‐N) (mg/L) 1.25 WSER 1.25  Total Residual Chlorine (TRC) (mg/L) 0.02 WSER 0.02  E. coli (cfu/ 100mL) 57,186 NSE 200  TN (mg/L) 49.3 ERA 50  Phosphorus (mg/L) 4.0 ERA 4    3.4 Design Loads  The wastewater concentrations vary significantly as was shown in Sections 2.3 and 2.4. For design purposes,  we are going to use the calculated per person loads shown in Table 2.13. The peak loading rate per person  was approximately double the average rate.  The resulting loads are shown in Table 3.4, below.    Table 3.4:  Design Loading Summary  Parameter Average Day Peak Day  Design Population  7,420  Flow (m3/day) 8,000 21,000  CBOD Load (kg/day) 890 1,780  TSS Load (kg/day) 670 1,340  TKN Load (kg/day) 100 200      HEJV New Waterford WWTP Preliminary Design Brief 13 CHAPTER 4  TREATMENT PROCESS ALTERNATIVES    Achieving the effluent criteria described in the preceding chapter requires the selection of an overall  wastewater treatment process that includes a secondary treatment process.  Secondary treatment  processes are predominantly aerobic biological processes designed to convert the finely dispersed and  dissolved organic matter in the raw wastewater into flocculent settleable biological cell tissue (biomass)  which can be removed by sedimentation.  These biological processes are the most efficient in removing  organic substances that are either dissolved or in the colloidal size range (too small to settle out),  whereas primary treatment processes are the most efficient in removing larger particles of suspended  solids which can be removed by sedimentation, fine screening, or filtration.    4.1 Preliminary Treatment  A variety of secondary treatment process options will be evaluated.  However, each option will require  preliminary treatment of the wastewater. The purpose of preliminary treatment processes is to remove  objectionable materials and inorganic particles from the wastewater prior to treatment. These  processes may include screening or coarse solids reduction, and grit removal.    4.1.1 Screening  Screens used in preliminary treatment applications are classified based on the size of openings as either  coarse (6 to 150 mm openings) or fine (less than 6 mm openings).     Coarse screens are used to remove large objects that could damage or clog downstream equipment, so  they are typically the first unit operation in a wastewater treatment plant. Coarse screens may be either  hand cleaned or mechanically cleaned. There are a number of mechanical cleaning system options  available, including continuous chain driven rakes, reciprocating rake, and continuous belt.    Fine screens provide increased solids capture compared to coarse screens, and are typically required in  front of secondary processes.  There are several options available for fine screening, which are described  below.     Rotating perforated plate screens consist of a continuous screen made of panels with punched holes  that allow water to pass through and debris to be captured. The debris collected on the screen is  removed as the screen is raised out of the water as part of its normal rotation. Any debris remaining on  the screen will enter the water downstream of the screen as the screen passes through the water.      HEJV New Waterford WWTP Preliminary Design Brief 14 The step screen operation is considerably different from the perforated plate screen. It is a single piece  screen that does not rotate. The screen is configured in steps and the solids collected on the steps of the  screen are lifted to the next step by tines. The screen has continuous opening to allow for the tines to  lift the screenings from one step to the next and relies on the formation of a filtering mat to assist in the  screening process. This operation results in the screenings being handled on the screen several times  before it is removed which can cause the screenings to breakdown and pass through the screen and re‐ enter the water downstream of the screen.    Screw screens include a punched plate through which the wastewater flows, and a rotating shaftless  screw that moves material captured by the plate up to a compaction zone and out the top to a bin.   These are often used for smaller applications.      In general, for a given aperture size, perforated plate screens have much higher solids capture ratios  than step screens, and screw screen capture ratios are in between these two. For perforated plate and  step screens, the screenings should then be directed to a washer compactor to reduce the volume of  screenings and return organics to the process so they can be treated, while a screw screen has an  integrated compaction unit, with moderate washing capabilities.  A separate washer compactor  produces cleaner, lower odour screenings for disposal.      4.1.2 Grit Removal  Grit chambers are used to remove non‐biodegradable materials such as sand, gravel, cinders, or other  heavy solid material with specific gravities greater than those of organic solids in the wastewater. The  purpose of grit removal is to protect mechanical equipment from abrasion and wear, and to reduce the  formation of heavy deposits in pipelines, channels, and conduits.    Typical grit chamber configurations include horizontal flow‐through, aerated, and vortex. New  applications generally use aerated or vortex‐style grit chambers.    In aerated grit chambers, coarse bubble diffusers are installed along one side of each rectangular tank to  create a spiral flow pattern that is perpendicular to the flow through the chamber. This spiral pattern  causes the grit to settle in the tank and helps keep organic particles in suspension, so they can pass  through the tank and be treated in downstream processes. The performance of an aerated grit chamber  can be controlled by adjusting the quantity of air that is supplied. If the spiral velocities are too low then  organics may settle in the chamber, causing excessive quantities of organics in the dried grit. If the spiral  velocities are too high, then grit may not settle in the chamber. The grit that settles in an aerated grit  chamber settles in a trough that spans the length of the chamber.    There are a number of options available for removing grit from the trough, including:   Grab buckets mounted to monorails.   Chain and bucket systems.   Spiral conveyors and grit pumps.      HEJV New Waterford WWTP Preliminary Design Brief 15 Vortex‐style grit chambers are common in new applications. These systems function by inducing a  helical flow pattern in the tank, and the resulting centrifugal forces cause grit to settle in a hopper. Grit  is then removed from the hopper using a grit pump.    Once grit is removed from the main treatment process, the slurry is then pumped or conveyed to a  classifier for separation and washing. Classifiers may be equipped with a hydrocyclone at the inlet to  reduce slurry volumes through centrifugal separation prior to discharging to the classifier tank. Grit that  settles in the classifier is removed by an auger or rake and discharged to a disposal bin until there are  sufficient quantities for disposal to landfill.    4.2 Secondary Treatment  There are many types of secondary treatment processes available, most of which can be classified as  either suspended growth or attached growth systems.  Suspended growth systems use aeration and  mixing to keep microorganisms in suspension and achieve a relatively high concentration of these  microorganisms (biomass) through the recycle of biological solids.  Attached growth systems provide  surfaces (media) on which the microbial layer can grow, and expose this surface to wastewater for  adsorption of organic material and to the atmosphere and/or diffused aeration for oxygen.  A listing of  specific secondary treatment processes and the category to which they belong is presented in Table 4.1.    Table 4.1: Secondary Treatment Processes  Process Category Specific Process  Suspended Growth Conventional Activated Sludge (CAS)  Extended Aeration  Pure Oxygen Activated Sludge  Sequencing Batch Reactor (SBR)  Oxidation Ditch  Membrane Bioreactor (MBR)  Attached Growth Rotating Biological Contactor (RBC)  Trickling Filter  Biological Activated Filter (BAF)  Moving Bed Bio‐Reactor (MBBR)  Land‐Based Constructed Wetlands  Aerated Lagoon  Facultative Lagoon    HEJV has worked on projects using the majority of the technologies in Table 4.1 so we are able to use  our considerable practical experience to narrow down the list of available technologies to those best  satisfying the project constraints.    4.2.1 Site‐specific Suitability  The main constraints at this site that will influence which of the available options are best suited for the  New Waterford WWTP are: effluent requirements, site conditions, cost effectiveness, and ease of  operation.  Each of these is discussed below.    HEJV New Waterford WWTP Preliminary Design Brief 16 4.2.1.1 EFFLUENT REQUIREMENTS  The effluent requirements summarized in Section 3.3 can be met by all of the listed technologies in  Table 4.1 with the exception of the facultative lagoon, which has been eliminated from further  consideration.    4.2.1.2 SITE CONDITIONS  A location to the west of the Barrachois has been identified as the location of the New Waterford  WWTP, since both outfalls currently discharge in this area. The site selection is described in the New  Waterford Collection System Predesign Report.  In the general area identified as the site for the WWTP,  there is a large parcel to the east of Mahon Street (PID 15483100) that is owned by Public Works and  Government Services Canada. West of Mahon Street, there is another large parcel (PID 15492747)  owned by Margaret McLellan.  Construction of the WWTP will require acquisition of one or more of  these properties. However, with any of these properties, the Atlantic Canada Wastewater Guidelines  Manual (ACWGM) recommended separation distances will not be met.  The Atlantic Canada  Wastewater Guidelines Manual (ACWGM) recommends that mechanical plants be located a minimum of  150m from residences, 30m from commercial/industrial developments, and 30m from property lines.  However, a lesser separation distance may be adopted provided odour control is provided at the plant.  HEJV have eliminated wetlands and aerated lagoons from further consideration as they require  additional area that is not available at this site.      4.2.1.3 COST EFFECTIVENESS  There are a number of processes in Table 4.1 that can be eliminated based on their cost effectiveness  compared to other processes in the table. For example, pure‐oxygen activated sludge is more costly than  conventional activated sludge due to its requirement for specific equipment to reduce the footprint of the  activated sludge process. For larger flows, extended air and oxidation ditches are less cost effective than  SBR, due to the larger tanks required.  The footprint of these options would probably also exclude them  from use on the sites available. Two of the attached growth options require large areas for media (trickling  filter and RBC) and do not tend to perform well in our climate, while the BAF is not typically cost  competitive for low‐strength wastewater.  Membrane bioreactors (MBR) are also not typically a cost  effective treatment process when the effluent discharge criteria do not necessitate their use.     4.2.1.4 EASE OF OPERATION  The remaining technologies (Conventional Activated Sludge, MBBR, and SBR) typically require similar  levels of operational expertise, which we would classify as moderate.  However, there is an operational  benefit to using an SBR process as the CBRM WWTP operations staff have experience with this type of  process already.    4.2.2 Description of Candidate Processes for Secondary Treatment  Based on the preceding analysis, the following processes should be given further consideration:   Conventional Activated Sludge (CAS).   Sequencing Batch Reactor (SBR).   Moving Bed Bioreactor (MBBR).       HEJV New Waterford WWTP Preliminary Design Brief 17 Each of these processes is described below. Each of the secondary treatment processes will have similar  solids stream trains, so the sludge handling processes will not be evaluated at this stage. Similarly, the  costs associated with site access, outfall, electrical service etc. will not be evaluated as part of the  secondary treatment process comparison.    4.2.2.1 CONVENTIONAL ACTIVATED SLUDGE   The conventional activated sludge (CAS) process is a continuous‐flow, aerobic suspended‐growth  biological treatment process that has become the most common method of treatment for BOD and TSS  removal. In the activated sludge process, organic waste material is decomposed by microorganisms such  as bacteria, fungi, protozoa and rotifers, which use the waste, or “food”, as energy in the synthesis of  new cells. Aeration is required for the cellular respiration. Many variations of the process currently exist.     The conventional activated sludge process follows the primary treatment step. The effluent from the  primary clarifier serves as the influent for the AS process. The biological treatment is carried out in the  AS reactor, in which aeration is provided to keep the biomass and waste material in suspension, as well  as ensure completely mixed conditions in the reactor. This is required to promote contact between the  microorganisms, waste material and oxygen. The mixture is commonly referred to as the “mixed liquor”.  The hydraulic retention time – defined as the average amount of time a water molecule spends in a tank  – in conventional AS reactors is typically 6 to 10 hours under average flow conditions. Somewhat larger  reactors and additional aeration capacity are required if nitrification is to be achieved in addition to  carbonaceous BOD reduction.    The flocculent biomass from the AS reactor discharges to a secondary clarifier (typically circular) where  biological floc material is settled out in a similar manner to that of a primary clarifier. In order to  maintain a sufficient concentration of activated sludge in the aeration tank, a portion of the sludge that  is collected in the secondary clarifier is recycled to the aeration tank. This recycled portion is referred to  as return activated‐sludge (RAS). Excess sludge, the waste activated‐sludge (WAS), is removed from the  system on a regular basis in order to control the solids retention time (SRT), which is defined as the  average amount of time the sludge has remained in the system. WAS is typically discharged to a  thickening process. Typical SRTs for activated sludge processes range from 4 to 15 days.    A typical conventional activated sludge secondary process schematic is provided in Figure 4.1. The  influent to the process is effluent from a primary clarifier, which is not shown in the figure. The primary  clarifier is assumed to be a standard rectangular clarifier with mechanical scrapers for sludge removal.      HEJV New Waterford WWTP Preliminary Design Brief 18   Figure 4.1: Typical Conventional Activated Sludge Secondary Process Schematic    A conceptual level cost estimate has been developed for this option based on the projected design flow and  loads, as well as on the design parameters listed in Table 4.2.      Table 4.2: Conventional Activated Sludge Process Design Criteria  Parameter Proposed  Typical Design Standard  No. of Primary Clarifiers 2 –  Primary Clarifier Length (m) x Width (m) 22.0 x 5.5 –  Primary Clarifier Depth 3.5 3 – 4.9  Primary Clarifier Average/ Peak SOR (m3/m2/d) 33 / 87 40 / 100  Primary Clarifier Detention Time (hr) 2.5 1.5 – 2.5  Aeration Tank Reactor Volume (m3) 2,500 –  Aeration Tank Average HRT (hr) 7.5 6 – 10  Aeration Tank Peak Day HRT (hr) 3 3 – 4  Aeration Tank MLSS (mg/L) 1,600 1,500 – 4,000  Aeration Tank Average F/M Ratio 0.2 0.2 – 0.6  No. of Secondary Clarifiers 2 –  Secondary Clarifier Diameter (m) 15.5 –  Secondary Clarifier Depth (m) 3.5 3.5 – 6  Secondary Clarifier Average SLR (kg/m2hr) 2.6 4 – 6  Secondary Clarifier Peak SLR (kg/m2hr) 7.2 8  Secondary Clarifier Average SOR (m3/m2/d) 21 16 – 28  Secondary Clarifier Peak SOR (m3/m2/d) 56  40 – 64       Aeration  Tank Secondary  Clarifier RA S Secondary Effluent Blowers WA S  to   Dig e s t e r   HEJV New Waterford WWTP Preliminary Design Brief 19 4.2.2.2 SEQUENCING BATCH REACTOR  The Sequencing Batch Reactor (SBR) process is also an aerobic suspended‐growth biological treatment  process and is essentially a modified version of the completely mixed activated sludge process, with the  main difference being the mode of operation.  The SBR process is a batch process whereby secondary  treatment, including nitrification, is achieved in one reactor.  The SBR process is a “fill and draw” type  reactor where aeration and clarification occur in the same reactor.  Settling is initiated after the aeration  cycle and supernatant is withdrawn through a decanter mechanism.    An example of the cycles used in the SBR process is summarized below.  However, there are variations  between different manufacturers.  1. Fill – Preliminary treatment effluent enters the anoxic pre‐react zone in the SBR tank. The anoxic  conditions favor the procreation of microorganisms with good settling characteristics. The  wastewater then flows into the react zone of the SBR.  2. React – The microorganisms contact the substrate and a large amount of oxygen is provided to  facilitate the substrate consumption.  During this period aeration continues until complete  biodegradation of BOD and nitrogen is achieved.  During this stage some microorganisms will die  because of the lack of food and will help reduce the volume of the settling sludge.  The length of the  aeration period determines the degree of BOD consumption.  3. Settle – Aeration is discontinued at this stage and solids separation takes place leaving clear, treated  effluent above the sludge blanket.  During this clarifying period no liquids typically leave the tank to  avoid turbulence in the supernatant.  4. Decant – This period is characterized by the withdrawal of treated effluent from approximately two  feet below the surface of the mixed liquor by the floating solids excluding decanter.  This removal  must be done without disturbing the settled sludge.  5. Idle – An idle period can be provided between cycles. Sludge wasting can also occur during this time.     The process is generally implemented using a minimum of two (2) reactors in parallel. It can be  conducted as a batch process where one reactor is filling while the other is settling.  Continuous‐feed  SBRs are also available which receive influent during all phases of the treatment cycle and decant  intermittently.  No RAS is required as the mixed liquor remains in the reactor at all times, with WAS  being withdrawn as necessary.  The entire process is controlled using a programmable logic controller  (PLC).  A typical process schematic for the SBR system is provided in Figure 4.2.      HEJV New Waterford WWTP Preliminary Design Brief 20   Figure 4.2 Typical Sequencing Batch Reactor Secondary Process Schematic    SBRs are operated at long solids and hydraulic retention times, resulting in large reactor volumes;  however, the total number of tanks required is reduced, which can result in more compact site layouts.   Furthermore, since flow equalization is inherently provided in SBR systems, the process is much more  resistant to shock loadings, making it an attractive alternative for small to medium sized facilities.  Due  to the degree of control required and the large volume of tankage required in each reactor, the capital  costs are often higher than more conventional activated sludge processes for larger plants.  The  discharge for smaller systems is typically intermittent in nature, which can result in larger, more  expensive UV disinfection systems.    A conceptual level cost estimate has been developed for this option based on the projected design flow,  loads, and design parameters listed in Table 4.3.      Table 4.3: Sequencing Batch Reactor Process Design Criteria  Parameter Proposed  Typical Design Standard  No. of Reactors 2 3 – 4  Basin Length (m) 48.2 –  Basin Width (m) 15.1 –  Side Water Depth (m) 5.5 –  Total Reactor Volume (m³) 8,006 –  Design HRT (hr) 24 15 – 40  Cycles per Reactor per Day (average / peak) 6 / 8 4 – 6  React Time (min) (average/ peak) 120 / 90 60 – 120  Settling Time (min) (average/ peak) 60 / 30 30 – 60  Volumetric BOD5 Loading  (kg BOD /m³d) 0.1 0.1 – 0.3  MLSS (mg/L) 2,500 2000 – 5000  F/M Ratio 0.05 0.04 – 0.1    WAS to Digester Preliminary Effluent Blower Aeration Tank 2. React Secondary Effluent Blower Aeration Tank 1. Fill Secondary Effluent Blower Aeration Tank3. Settle Secondary Effluent Blower Aeration Tank4. Draw Secondary Effluent WAS Preliminary Effluent Preliminary Effluent Preliminary Effluent   HEJV New Waterford WWTP Preliminary Design Brief 21 4.2.2.3 MOVING BED BIO‐REACTOR  The patented Moving Bed Bio‐Reactor (MBBR) process was developed by the Norwegian company  Kaldnes Miløteknologi (KMT).  MBBRs are a system based on a biofilm reactor with no need for  backwashing or return sludge flow. The MBBR contains what is termed as a “carrier” which is a  manufactured (typically plastic) media with a high specific surface area for biofilm to grow.  The specific  gravity of the carrier is slightly less than that of water so that aeration will keep the contents in  suspension and completely mixed.  The movement is normally caused by coarse‐bubble aeration.  Abrasion of the media carriers sloughs off and maintains optimal biofilm thickness.    Effluent from preliminary treatment serves as the influent to the MBBR unit.  MBBR effluent containing  suspended solids then overflows to a secondary clarifier or DAF clarifier for solids removal; however, the  carrier material remains in the reactor.  A typical MBBR process schematic is provided in Figure 4.3.        Figure 4.3: Typical Moving Bed Bio‐Reactor Process Schematic    A conceptual level cost estimated has been developed for this option based on the projected design flow,  loads, and design parameters listed in Table 4.4.        HEJV New Waterford WWTP Preliminary Design Brief 22 Table 4.4: Moving Bed Bio‐Reactor Process Design Criteria  Parameter Proposed Typical Design Standard  No. of Trains 1 –  No. of Stages 1 –  Total Reactor Volume (m³) 800 –  Average / Peak HRT (hr) 2.4 /0.9 1 – 3  Side Water Depth (m) 5.5 5 – 7.5  Bioreactor BOD5 Loading (g/m2d)(1) 5.1 3.5 – 7.0  Bioreactor Media Specific Surface Area (m²/m³) 800 500 – 1200  Bioreactor Media Fill Ratio (%) 55 30 – 60  Secondary DAF Clarifier Average / Peak SOR (m/d)(2) 213 / 561 60 – 120  (1) Assumes 55% fill rate  (2) Includes baffles and polymer dosing which increase the feasible SOR above typical design values    4.3 Disinfection  Disinfection at WWTPs is typically provided using either chlorination or ultraviolet (UV) disinfection.   Due to the TRC limit in the WSER, use of chlorine disinfection requires a dechlorination system, which  introduces additional equipment and costs. In addition, a UV disinfection system has safety advantages,  and minimizes chemical handling.    UV Disinfection is a physical disinfection process that targets microorganisms such as viruses, bacteria,  and protozoa by destroying their ability to reproduce.  Pathogen inactivation is directly linked to UV  dose, which is the product of the average UV intensity and the duration of exposure, or retention time.   Any factor affecting light intensity or retention time will also affect disinfection effectiveness.  Some of  the key parameters that affect UV intensity include water quality issues such as:   UV transmittance (UVT).   Suspended solids.   Presence of dissolved organics, dyes, etc.   Hardness.   Particle size distribution.    Other factors affecting UV performance include sleeve cleanliness, age of lamps, upstream treatment  processes, flow rate and reactor design.    4.3.1 CAS/MBBR Effluent Disinfection   Flows from the CAS or MBBR system will flow continuously by gravity to the UV disinfection unit.   Disinfection will take place in a single concrete channel located in the new WWTP building.  The UV  system will consist of two banks of UV lamps.  The lamps are oriented horizontally and parallel to the  direction of flow and contain twenty‐four lamps per bank for a total of forty‐eight (48) lamps, each with  a rating of 250 W.  This is a small to medium‐size system of its type.  The disinfected effluent would flow  by gravity to the outfall.  The design parameters for the UV disinfection system are summarized in  Table 4.5 below.      HEJV New Waterford WWTP Preliminary Design Brief 23 Table 4.5: CAS/MBBR UV Disinfection Design Parameters  Parameter Design Value  Number of Design Channels 1  Number of Banks 2  Number of Lamps per Bank 24  Total Number of Lamps 48  Peak Flow Capacity (m3/d) 21,000  Effluent TSS (mg/L) <25  Minimum Transmittance (%T) 60  Effluent Fecal Coliforms (MPN/100 mL) 200    4.3.2 SBR Effluent Disinfection   Flows from the SBR system will flow intermittently by gravity to the ultraviolet (UV) disinfection unit  during the decant cycle.  This results in a larger UV system being required than for the CAS process as it  is sized for the peak decant rate from the SBR.  This larger flow rate makes an inclined array UV system  feasible, because it the flow rate is large enough to warrant the smallest model of this type of system.   Disinfection will take place in a single concrete channel located in the new WWTP building.  The UV  system will consist of two banks of UV lamps.  The lamps are oriented in a staggered inclined array and  contain twelve lamps per bank for a total of twenty‐four (24) lamps, each with a rating of 1000 W.  Each  of the lamps are longer and have a higher output than the lamps in the CAS/MBBR system, and so fewer  lamps are needed to produce the same dose. The disinfected effluent would flow by gravity to the  outfall. The design parameters for the UV disinfection system are summarized in Table 4.6 below.    Table 4.6: SBR UV Disinfection Design Parameters  Parameter Design Value  Number of Design Channels 1  Number of Banks 2  Number of Lamps per Bank  12  Total Number of Lamps 24  Peak Flow Capacity (m3/d) 38,700  Effluent TSS (mg/L) <25  Minimum Transmittance (%T) 60  Effluent Fecal Coliforms (MPN/100 mL) 200    4.4 Sludge Management  Each of the secondary treatment options evaluated will produce sludge which must be removed from  the treatment process on a regular basis and disposed of at an approved facility. Regardless of which  secondary treatment option is selected, sludge management at this facility will likely involve an aerated  sludge holding tank followed by dewatering. After the recommended secondary treatment process has  been selected, a preliminary design of the solids management train will be provided in Chapter 5.       HEJV New Waterford WWTP Preliminary Design Brief 24 4.5 Secondary Treatment Option Evaluation  Capital and operating costs have been developed for each of the secondary treatment options  presented in this section for the purposes of evaluating the technology options. At this stage, only the  liquid treatment stream has been evaluated. As each option will involve a similar solids treatment train,  it has not been included as part of the comparison. Similarly, items such as site access, outfall, electrical  service etc. that are common to each option have not been included at this stage in the evaluation. A  discussion has also been provided on qualitative factors associated with each of the secondary  treatment options.     4.5.1 Capital Cost Estimate  Capital cost estimates are provided in Table 4.7.  These are comparative cost estimates for secondary  process alternatives only and exclude sludge management, outfall upgrades, main lift station, and site  works that would be common to all options. Of the three options evaluated, the CAS process has the  lowest capital cost, with SBR a close second (approximately 3% higher). This difference is within the  accuracy of a Class D cost estimate, so no conclusions can be drawn from capital cost alone.     Table 4.7: Secondary Process Capital Cost Comparison  Cost CAS SBR MBBR  Estimated Capital Cost  $  17,421,000    $  17,896,000    $  20,255,000     4.5.2 Operating Cost Estimate  The operating cost comparison is provided in Table 4.8.  Of the three options, the SBR process has the  lowest operating cost.    Table 4.8: Secondary Process Annual Operating Cost Comparison  Operation Annual Operating Cost (Secondary Process Only)  CAS SBR MBBR  Power(1) $50,000 $50,000 $60,000  Chemicals(2) $ ‐ $ ‐ $14,000  Maintenance Allowance(3) $23,000 $21,000 $37,000  Total $73,000 $71,000 $111,000  Notes:  (1) Power estimated based on secondary treatment equipment only.  (2) Allowance for polymer dosing for the MBBR DAFs.  (3) Maintenance allowance of 1% of equipment cost.    4.5.3 Life Cycle Cost Estimate  Discounted present value calculations were carried out to estimate the Net Present Value of the  treatment plant options.  This is the standard method for calculating the relative costs of different  options.  Net Present Value (NPV) is calculated using Equation 4.1, where “Cost in period n” is the net  cost in a given year, “n” is the year from 1 to 30, and “rate” is the real discount rate.  This cost is  calculated for each year in question and the yearly costs are summed.        HEJV New Waterford WWTP Preliminary Design Brief 25 Equation 4.1 Net Present Value  NPV=∑࡯࢕࢙࢚ ܑܖ ܘ܍ܚܑܗ܌ ܖ ሺ૚ା࢘ࢇ࢚ࢋሻ࢔     The effect of this calculation is that costs which occur soon are weighted more heavily than costs which  occur farther down the road, based on the idea that a dollar today is worth more than a (more  uncertain) dollar next year.  The calculations in the report were carried out without applying an assumed  inflation rate.  This is called a real NPV.  If inflation is used (called nominal NPV), it is applied to both the  costs (which are higher by inflation) and the discount rate (nominal discount rate equals real discount  rate plus inflation, therefore higher) so that the higher costs are discounted faster, and the two effects  cancel each other out, giving the same result whether the real or nominal NPV is calculated.  The real  discount rate used in these calculations is 8%, and the time period over which it is calculated is 30 years,  starting in 2019.  The net present value is carried out on the capital costs before taxes. These  calculations do not account for the revenue from users.    The life‐cycle comparison is presented in Table 4.9, based on total capital costs, and then based on the  Investing in Canada Plan in Table 4.10.  Of the options, the SBR and CAS processes have the lowest  operating cost while the CAS process has a slightly lower life cycle cost. If the life cycle cost was adjusted  to account for CBRM paying 27% of the capital cost the CAS process would still have the lowest life cycle  cost, but they are very similar, and within the accuracy of the estimates.    Table 4.9: Secondary Process Life Cycle Cost Comparison  Cost CAS SBR MBBR  Estimated Capital Cost  $  17,421,000    $  17,896,000    $  20,255,000   Estimated Annual Operating Cost, $/yr  $          73,000    $          71,000    $        111,000   NPV Equipment Replacement (after 20  years, 8% real discount rate)  $    1,206,000    $    1,156,000    $    1,495,000   NPV Operating Cost (30 years, 8%  discount rate)  $        822,000    $        799,000  $    1,250,000   Life Cycle Cost  $  19,449,000   $  19,851,000    $  23,000,000     Table 4.10: Secondary Process Life Cycle Cost Comparison – 73% Capital Funding  Cost CAS SBR MBBR  Estimated Capital Cost  $    4,704,000    $    4,832,000    $    5,469,000   Estimated Annual Operating Cost, $/yr  $          73,000    $          71,000  $        111,000   NPV Equipment Replacement (after 20  years, 8% real discount rate)  $    1,206,000    $    1,156,000    $    1,495,000   NPV Operating Cost (30 years, 8%  discount rate)  $        822,000    $        799,000  $    1,250,000   Life Cycle Cost  $    6,732,000   $    6,787,000    $    8,214,000         HEJV New Waterford WWTP Preliminary Design Brief 26 4.5.4  Qualitative Evaluation Factors   In addition to life‐cycle cost, there are a number of other factors to consider when evaluating the  technology options that are less easily quantified.  These factors are summarized in Table 4.11, and  additional discussion is provided below the table. Qualitative factors have been rated 1 to 3 for each  technology with 1 being the best and 3 being the worst.    Table 4.11: Secondary Process Qualitative Evaluation Factors  Factor CAS SBR MBBR  Local Experience with Process 2 1 3  Operational Simplicity 2 1 3  Sludge Production 3 2 1  Site Aesthetics 3 2 1    In terms of local experience with the treatment process, CBRM have experience with the SBR process at  the Dominion WWTP. CBRM also have experience with the primary clarification step in the CAS process  at Battery Point.     When considering operational simplicity, all processes are fairly straightforward although each has their  own benefits. The SBR process is more automated while the CAS process allows for more operator  control.  The MBBR process is the most complicated because it requires polymer dosing for optimal  performance, while the other two do not.       Each of the secondary treatment processes evaluated will produce sludge that will have to be removed  from the process. The longer HRT provided in the SBR process will result in a slightly lower sludge  production than the CAS process, while the MBBR produces thicker sludge and therefore a smaller  volume to handle before dewatering.     When considering site aesthetics, the MBBR is the most compact, and the SBR is likely to be more  compact than the CAS process. The MBBR process is largely indoors, and the SBR process is conducted in  one tank (although in multiple cells) whereas the CAS process uses different tanks that are connected  via yard piping.  The headworks and sludge handling associated with each process has the potential for  odours, but these operations will be enclosed in a building for all technology options. The primary  clarifiers associated with the CAS process would be located outdoors and may have more potential for  odour generation than the SBR or MBBR tanks.    4.5.5 Recommended Secondary Treatment Process  Both the life‐cycle cost evaluation which results in the CAS and SBR processes being very comparable,  and consideration of other qualitative evaluation factors result in the SBR process being the  recommended secondary treatment process for this facility.  The SBR process gives the best balance  between cost, operator familiarity, and suitability for a site with neighbours in close proximity.    HEJV New Waterford WWTP Preliminary Design Brief 27 CHAPTER 5  PRELIMINARY DESIGN    5.1 Process Description  Preliminary layouts for the proposed treatment system and locations of individual unit processes are  shown in the “Preliminary Design” drawings, found in Appendix C. The processes depicted in these  drawings are consistent with those recommended in the previous chapter of this report. The drawings  contained in the appendix are presented in Table 5.1, below.    Table 5.1: Preliminary Design Drawings  Drawing Number Description  C01 Location Plan  C02 Process and Admin Building Layout  C03 Site Works Plan  P01 Process Flow Diagram    5.2 Unit Process Descriptions  Drawing C01 in Appendix C includes a site plan showing the location of the proposed new structures.  Further description of the proposed treatment units follows.    5.2.1 Preliminary Treatment  All wastewater will be pumped to the headworks from two lift stations, LS#1 and LS#2.  LS1 will pump  wastewater from the NW1 sewershed, with an overflow to the existing NW1 outfall. LS1 will pump  wastewater from the NW2 sewershed, with an overflow to the enlarged and extended NW2 outfall.    Screening  In the WWTP headworks, influent will flow through a perforated plate fine screen with 6mm  perforations. It is expected that screenings will be conveyed to a Screw Washer Compactor to be  washed and dewatered. Dewatered screenings will be discharged into a bin. Wash water will flow by  gravity to the influent channel. The fine screening system will be installed directly into concrete channel,  one per screen, each with a width of approximately 1 m and a depth of approximately 1.5 m. The design  parameters for fine screening are summarized in the Table 5.2.          HEJV New Waterford WWTP Preliminary Design Brief 28 Table 5.2: Fine Screening Design Summary  Parameter Design Value  No. of Screening Units 2  Peak Flow (m3/d) 21,000  Channel Width (mm) 1,000  Channel Depth (mm) 1,500  Screen media  6mm perforated plate  Capture Ratio 75%  No. of Washer Compactor Units 1  Dewatered Screenings (m3/d) 0.2  Solids Content of Screenings (%) 60    Grit Removal  After screening, influent will pass through a vortex grit chamber (either concrete or stainless steel,  assumed to be in a concrete chamber).  The purpose of the grit chamber is to capture solids such as  sand particles with diameters larger than 0.2 mm.  The grit chamber will be a circular horizontal flow  through chamber with a diameter of approximately 3 m and a depth of approximately 2.5 m.  The grit  well has a depth of 1.8 m giving a total depth of approximately 4.3 m.  Grit will be pumped from the grit  chamber for grit dewatering. Excess water from dewatering will flow back to the grit chamber inlet  channel by gravity. Dewatered grit will be discharged into a bin. After grit removal, influent will flow to  the SBR tanks by gravity.  The design parameters for grit removal are summarized in the Table 5.3.    Table 5.3: Grit Removal Design Summary  Parameter Design Value  No. of Units 2  Peak Flow (m3/d) 21,000  Diameter (m) 3.0  Depth (m) 4.3  No. of Grit Classifier Units 1  Classified Grit Production (m3/d) 0.4  Classified Grit Solids (%) 80    5.2.2 Secondary Treatment  The secondary treatment process will consist of two continuous‐flow SBR tanks. Pre‐treated wastewater  will flow from the vortex grit chamber to the SBR tanks. Influent weirs distribute the flow evenly  between the two tanks. Influent enters an anoxic pre‐react zone before flowing into the react zone  where aeration takes place. Air is supplied to the SBR tanks by blowers via fine bubble diffusers on the  bottom of the tanks. After the blowers are turned off, settling occurs. After the settling period is  complete, decant begins. Decanted effluent flows by gravity to a UV disinfection unit. An air flow meter  and a dissolved oxygen (DO) probe will be provided for each SBR tank. A pressure transducer and a level  float will also be provided for each tank. The design parameters for secondary treatment are  summarized in the Table 5.4.    HEJV New Waterford WWTP Preliminary Design Brief 29 Table 5.4:  Secondary Treatment Design Summary  Parameter Design Value  Average Flow (m3/d) 8,000  Peak Flow (m3/d) 21,000  No. of Tanks 2  Tank Dimensions (m) 15.1 W x 48.2 L x 5.5 (plus 1m freeboard)  Total Surface Area (m2) 1,456  Total Volume (m3) 8,006  Ave / Peak HRT (hr) 24 / 8  Cycles per Reactor per Day (average/ peak) 6 / 8  React Time (min) (average/ peak) 120 / 90  Settling Time (min) (average/ peak) 60 / 30  SOR at ADF (kg/d) 3,760  Design Air Flow at ADF (m3/min) 33  Air Flow per Blower at ADF (m3/hr) 1,813  Volumetric BOD5 Loading  (kg BOD /m³d) 0.1  MLSS (mg/L) 2,500  F/M Ratio 0.05    5.2.3 Disinfection  Flows from the SBR system will flow intermittently by gravity to the ultraviolet (UV) disinfection unit during  the decant cycle.  The UV system must be able to accommodate the peak decant flows.  The UV disinfection  unit will be installed in a single concrete channel located in the new process building.  The channel will be  approximately 6.1 m long, 1.0 m wide, and 2.4 m deep. The UV system will consist of two banks of hybrid  MP/LPHO UV lamps.  The lamps are oriented in a staggered inclined array and contain 12 lamps per bank  for a total of 24 lamps.  The UV system includes an automated mechanical/chemical cleaning system, and  banks can be turned off automatically when not needed, if the UVT% and flow is monitored. In order for the  decant flow from the SBRs to flow by gravity through the UV system, the UV unit will be installed in the  basement of the process building. The maximum duty power draw for the system is 25.3 kW. The UV weir  height will set the hydraulic grade line for the rest of the treatment process.     Tidal height values are taken from the measurement station at nearby Glace Bay, since there is none in  New Waterford. The higher high water elevation at large tide for Glace Bay was 1.5m Chart Datum (CD)  which is equivalent to 1.0 m CGVD28 (geodetic datum) for 2018. The estimated extreme water level  values for 100 year and 50 year return periods were 2.5m CD (2.0 m CGVD28) and 2.4 m CD (1.9 m  CGVD28), respectively. In addition, a sea level rise of at least 1.0 m is likely to occur within the coming  century, even if the timeline remains uncertain (CBCL Limited, 2018).  Therefore, the UV weir height  must be set at a minimum elevation above the extreme tide/surge level (100‐year return selected) with  an allowance for head losses over the weir and in the outfall of approximately 1.2 m, for a minimum UV  weir height of 4.2 m. The actual weir height can be higher than this to accommodate the site grade. The  design parameters for the UV disinfection system are summarized in the Table 5.5.    HEJV New Waterford WWTP Preliminary Design Brief 30 Table 5.5:  UV Disinfection Design Summary  Parameter Design Value  Peak Flow Capacity (m3/d) 38,700  Number of Reactors (channels) 1  Number of Banks per Reactor 2   Number of Lamp per Bank 12  Total Number of Lamps 24  Effluent TSS (mg/L) <25  Minimum UV Transmission (%UVT) 60  Effluent Fecal Coliforms (MPN / 100 mL) 200    5.2.4 Sludge Management  Sludge must be removed from the treatment system and disposed of at an approved facility. Waste  activated sludge (WAS) from the SBR process will have a low solids concentration (less than 1% solids).  The WAS from the SBR will be pumped to an aerated sludge holding tank. The aeration will provide  mixing of the sludge as well as further Volatile Suspended Solids (VSS) reduction. The sludge holding  tank will be sized such that it will provide approximately 8.5 days of solids retention time (SRT). The  sludge holding tank volume will be provided in two cells. Supernatant from the aerated sludge tank will  be decanted back to the SBRs. However, minimal thickening of sludge is expected to occur in the sludge  tanks. Dewatering of sludge will be provided with a centrifuge. Design parameters for a centrifuge are  provided in Table 5.6.     Table 5.6:  Aerated Sludge Holding Tank Design Summary  Parameter Design Value  No. of WAS pumps 2  Daily Sludge Production (kg/d) 710  Solids Content (%) 0.85  Daily Sludge Production (m3/d) 84  Total Storage Volume (m3) 840  No. of Cells 2  Tank Dimensions (per cell) (m) 7.2 x 10.6 x 5.5 (plus 1 m freeboard)    Dewatering   Sludge from the aerated sludge holding tank will be dewatered using a centrifuge.  Centrifuges deliver  effective dewatering of WAS sludge from SBRs while reducing run hours and polymer use when compared  to other available technologies.   Design parameters for the centrifuge are provided in Table 5.7.          HEJV New Waterford WWTP Preliminary Design Brief 31 Table 5.7: Sludge Dewatering Design Summary  Parameter Design Value  Sludge Flow (m3/hr) 16  Solids Loading Rate (kg/hr) 160  Polymer Consumption (kg/dry tonne) 12–15  Solids Capture (%) >95  Cake Solids (%) 18–22    5.3 Facilities Description  The WWTP project will include the following tanks and facilities:   Site access and parking.   Site fencing.   Lift station with overflow structure to outfall.   SBR tanks (2).   Aerated sludge holding tanks (2).   Process building.   Admin Building.   Yard piping.   Extension of outfall NW2, which will include replacement of existing outfall.     The process building will include the following:   Preliminary treatment area with:  - Two perforated plate fine screens with 6mm perforations and one screw  washer/compactor.  - Two vortex grit chambers with one grit classifier.   UV disinfection area.   Blower Room.   Mechanical and Electrical rooms.   Generator.   Sludge dewatering room with centrifuge, polymer area, and bin.     The Admin building will include the following:   Office space.   Lab.   Control room.   Locker room.   Lunch room.   Washrooms.         HEJV New Waterford WWTP Preliminary Design Brief 32 5.3.1 Civil and Site Work  Civil and site work will include grading, drainage and site improvements. An access road will be  constructed around the perimeter of the WWTP to provide vehicle access. The more frequently used  portions will be paved, and the less‐used portions will be gravelled.  Security fencing will surround the  tanks and process building.     Retaining walls will be provided where required to allow the site to be developed within the area  between the restrictions posed by the cliff face (with a 42 m setback to allow for probable erosion with a  factor of safety, the wetland area, the mine workings and the nearby properties.  We recommend that  the wetland area is delineated by a qualified wetland delineator to establish its precise area and  boundaries before detailed design commences.  This area provides important ecological functions and  would require provincial permitting to build on; therefore, it is beneficial to avoid it if possible.      The Environmental Risk Assessment that was carried out for this system was completed on the basis of a  discharge through an outfall into the receiving environment about 150 m further out than the existing  450 mm diameter NW#2 outfall which ends at the shoreline; therefore, we have included for outfall  extension work. The new outfall would likely include a new HDPE outfall pipe, manholes as required,  stone mattress, concrete pipe anchors and armour stone protection. The existing overflow is sized for  the catchment it serves, and would need to be enlarged in order to accommodate the increased flow  from the community as a whole, including the peak flows from an SBR process, and overflows from Lift  Station 2.   The approximate routing of the proposed treated wastewater outfall is shown on Drawing  C03 – Site Works Plan in Appendix C. We propose to work with NSE during the next stage of the project  to determine the requirements of the outfall before refining the outfall location and configuration.    5.3.2 Odour Control  Odours in the plant will be controlled by extracting the odorous air from the grit and screening area, and  the centrifuge and bin room, and then humidifying it and passing it through an odour control filter in the  yard.  The odour control filter will consist of a bed of specially selected organic mulch that provides a  home for types of microorganisms that remove objectionable odour from the air.      5.3.3 Architectural  The exterior wall system of buildings will be erected of masonry cavity wall construction with polystyrene  cavity insulation.  The inner walls will be reinforced concrete bearing block.  The exterior veneer will be  face brick similar to the brick of CBRM’s other WWTPs.  Interior doors and frames will be stainless, exterior  doors, windows and louvers shall be aluminium, colour anodized to match existing features.  All new  buildings will have a hollow core or double tee concrete roofing system.    All required site railings for tanks, walkways, and stairs will be two rail all welded aluminium with a clear  anodized finish.    Interior concrete walls and concrete block walls of the buildings will be painted with an industrial epoxy  coating. Interior metal surfaces will be painted with epoxy coatings and exterior metal will be coated  with an ultraviolet resistant urethane finish.  Process area ceilings will be painted. Process area floors  will be concrete, coated with a durable industrial floor coating.    HEJV New Waterford WWTP Preliminary Design Brief 33 5.3.4 Mechanical  Mechanical systems will be designed in accordance with NFPA 820, 2016 edition, which describes the  hazard classification of specific areas and processes and prescribes ventilation criteria for those areas.   Table 5.8 summarizes the proposed classification for new facilities. These are indicative only and may  change during detailed design.    Table 5.8:  Classification of Building Areas  Location Classification  Preliminary Treatment Room Class 1 Zone 1  Mechanical and Electrical Rooms Unclassified  UV Room Unclassified  Blower Room Unclassified  Solids Handling Room Class 1 Zone 2  Odour Control Room Class 1 Zone 1  Admin Building Unclassified    Heating will be provided by electric unit heaters and electric duct heaters in central air handling units.    5.3.5 Electrical  3‐phase electrical service is available on Curran Street and will be extended to the site. An emergency  generator will be located in the Process Building.     5.3.6 Lighting  Exterior lighting will consist of building mounted luminaires illuminating areas immediately adjacent the  buildings, as well as pole mounted area lighting for access roadways and parking areas.  Exterior lights  will be LED where available or to suit application.  Exterior lighting fixtures shall be vandal resistant and  outdoor rated.      New pole mounted flood lights will be installed at the process tanks for maintenance purposes.    The interior lighting system will be designed for lighting performance and illuminance levels in  accordance with the Illuminating Engineering Society (IESNA) Lighting Handbook, 10th Edition.  Interior  lights will be fluorescent, LED or metal halide to suit the application.      Emergency and exit lights will be installed along egress routing and around exit doors to meet the  requirements of the National and Provincial Building Codes.    5.3.7 Instrumentation  This section summarizes the functional requirements for the process control and instrumentation  system.  It includes a narrative description of the instrumentation and control requirements.           HEJV New Waterford WWTP Preliminary Design Brief 34 Most unit processes in the treatment plant will be automated.  There will be a main plant PLC that will  be used to control many of the unit processes.  In addition to the main PLC, a local hand‐off‐auto  (H‐O‐A) switch will be required for most of the equipment.  Some of the more complex unit processes  will be provided with their own individual PLCs including:   UV disinfection system.   SBRs.   Blowers.   Generator.   Centrifuge.    Each piece of equipment that is to be provided with a dedicated controller will be capable of operating  in either a manual or automatic mode (SCADA controlled) via a H‐O‐A switch.    Overview  Unit operations at the treatment plant will be monitored and controlled using a system of instruments,  equipment motors, PLCs, human machine interfaces (HMI), communications cable and hardware that is  integrated into a SCADA software program.  The selection of Supervisory and Control Software as well as  the level one type of plant instrumentation will be made following the selection of a system integrator  and a review of options by plant operating personnel and the engineers.    The system will also be configured to allow an authorized operator to dial in and log on from a remote  location via laptop from their home.  This will permit the Supervisor or duty operator to check plant  status, respond to after‐hours alarms, and to change equipment operation where appropriate.      In addition to the aforementioned monitoring and control terminals, there will be local control panels at  key locations using “soft panel” type HMIs (human/machine interface), which will permit the operator to  view process information and to take local control action.   In some locations, where the only  requirement is to be able to stop a motor and to lock it out for maintenance, that capability will be  provided by hard‐wired controls at the motor starter.    The alarms integrated into the system will have audible and/or flashing light annunciation in the plant  during regular hours, and call‐out by telephone and/or email after hours with a user‐configurable  sequential call priority list.      Headworks  The Headworks consist of fine screening and a vortex grit chamber.  All the equipment will be controlled  by the main PLC.  Each piece of equipment will be monitored for status and faults in addition to the  alarms for high and low levels in the influent channels which will be registered on the central control  computers and monitors.                HEJV New Waterford WWTP Preliminary Design Brief 35 SBR System  Effluent from preliminary treatment will be split between the SBR tanks via weirs.     The SBR and sludge blowers will be installed in the Process Building.  The SBR blowers will discharge to a  common air header which will have a dedicated take off for each SBR. Blower operation will be  controlled by the SBR control system. The digester blower will discharge to a common air header which  will have a dedicated take off for the sludge holding tank cell.    The air headers will feed the fine bubble diffusers arranged along the bottom of the SBRs. A separate  header will feed the fine bubble diffusers arranged along the bottom of the aerated sludge holding  tanks.  Dissolved oxygen will be monitored in the SBR tanks.     An air flow meter in the supply header will indicate, totalize, and record the air flow to the plant.  The  dissolved oxygen levels for each reactor will be indicated and recorded on the central SCADA system.   Blower operating status, header pressure and inlet valve positions as well as supply line pressure will be  indicated on the central computer system.  The blowers will also be equipped with sensors and alarms  for surge, vibration, temperature and general faults, which will register at the central control.    Effluent will be removed from the SBR tanks via a solids excluding decanter. Flow through the decanter  will be automatically controlled via a valve by the SBR control system.    Waste Activated Sludge   The WAS will be pumped from the SBRs to the aerated sludge holding tanks automatically using WAS  pumps which will be controlled by the SBR control system.  The WAS flow will be measured by magnetic  flow meters installed on the suction side of the pumps.    Effluent Disinfection  Ultraviolet Disinfection will be used to achieve disinfection limits for fecal coliform prior to discharge.    The UV manufacturer will provide a PLC to control the UV system. The UV PLC will be compatible with  the central station.  UV dose will be controlled by plant flow and percent UVT.  Monitoring and  recording of UV intensity, general alarms and low level, high levels alarms will be provided.  Automatic  wiping will be controlled on timer or by monitoring UV intensity.     Centrifuge   The sludge feed rate to the centrifuge equipment will be set to maintain the sludge inventory in the  holding tanks within a set band. The centrifuge PLC communicates with the sludge feed pumps and  polymer make‐down system and adjusts sludge feed and polymer dosing pump rates to suit the  centrifuge throughput.              HEJV New Waterford WWTP Preliminary Design Brief 36 5.4 Staffing Requirements  Staffing at wastewater treatment plants will vary depending on a number of factors including the  following:   Plant classification (I, II, III or IV).   Plant size and treatment capacity.   Laboratory requirements.   Complexity of the unit processes.   Level of automation.   Maintenance of peripheral facilities such pumping stations, collection systems, septage  receiving, etc.   Sensitivity of the receiving waters.   Variation in flows and loads to the plant i.e. industrial, municipal, storm water component.     Based on the Points Classification System in the Atlantic Canadian Guidelines (Appendix A), the  proposed WWTP has been determined to be in the range of 49 to 58 points depending upon  interpretation.  A fair interpretation may lean towards the high end of the range since odour control will  be part of the final plant solution.  Odour control adds a certain level of complexity to the operations;  however, the guidelines do not make provisions for this.   Since Class II plants are defined as having 31– 56 points, the WWTP will be ranked as at least a Class II level treatment plant by the regulators, and  possibly a Class III level treatment plant.        According to the guidelines, a Class II or Class III plant designed for an average daily flow of 8,000 m3/day  will require approximately 9,000–11,000 man‐hours per year to operate, or about 6 fulltime employees.       It is also important to consider staffing levels at other plants operating in the region.  Secondary  treatment plants at Millidgeville in Saint John (10,000 m³/day) and Fredericton WWTP (18,000 m³/day)  each have seven fulltime staff, consisting of operators, laboratory technician(s) and maintenance  personnel.  The Colchester County WWTP near Truro and the East River Pollution Abatement System in  New Glasgow treat between 16,000 and 18,000 m³/day on average.  Each of these plants has five  fulltime staff.    At start‐up, it is suggested that CBRM be prepared to staff the New Waterford WWTP with a minimum  of 4 fulltime staff.   It is likely that staff at the proposed facility will be responsible for operating and  maintaining raw sewage lift stations.            HEJV New Waterford WWTP Preliminary Design Brief 37 CHAPTER 6  PROJECT COSTS    6.1 Opinion of Probable Capital Costs  An opinion of probable capital cost for the recommended treatment process option is presented in  Table 6.1, detailed on the next page.  Please note that the costs of interception and pumping are extra  and are detailed in New Waterford Collection System Pre‐Design Brief (Dillon Consulting Limited, 2019).  Please note that the capital costs given are in 2019 dollars, and would typically be inflated at a rate of  approximately 3% per year going forward to the intended construction year (or indexed using the actual  construction cost index ratio if calculating the probable construction cost at a specific point after 2019).    Table 6.1  6.2 Opinion of Annual Operating Costs  An annual operating cost estimate for the recommended treatment process option is presented in  Table 6.2.    Table 6.2: Operating Cost Estimate  Category Annual Operation Cost  Staffing  $400,000  Power  $111,000  Chemicals $20,000  Sludge Disposal $130,000  Maintenance Allowance $21,000  Total  $682,000         Project Manager:D. McLean Est. by: S.E./H.S.Checked by: A Thibault PROJECT No.:187116 (Dillon) 182402.00 (CBCL) UPDATED:May 7, 2019 1.0 2,095,000$                                             allow 1 500,000$                                   500,000$                                                allow 10% 1,594,900$                                            2.0 2,501,000$                                            m2 8,317 5$                                                41,585$                                                   m3  excavated 27,144 20$                                             542,878$                                                m3 1,928 40$                                             77,122$                                                  tonne 352 115$                                           40,432$                                                  tonne 907 25$                                             22,683$                                                  tonne 1,512 22$                                             33,268$                                                  m 91 100$                                           9,073$                                                    Retaining Walls (MSE)m²165 625$                                           103,125$                                                m 76 350$                                           26,463$                                                  m 87 725$                                           63,035$                                                  m98 60$                                             5,898$                                                    ea.4 8,000$                                        30,244$                                                  m 265 100$                                           26,463$                                                  allow 1 8,990$                                        8,990$                                                    allow 1 50,000$                                     50,000$                                                  allow 1 20,000$                                     20,000$                                                  allow 1 1,400,000$                                1,400,000$                                            3.0 4,563,000$                                            m3 of baseslab 185 700$                                           129,640$                                                m3 of baseslab 1,564 900$                                           1,407,420$                                            m3 of concrete 95 700$                                           66,528$                                                  m3 of concrete 1,562 1,600$                                        2,499,552$                                            m3 of concrete 50 1,000$                                         50,000$                                                   allow 10% 410,314$                                                4.0 342,000$                                                 m2 wall area 650 170$                                            110,568$                                                 m2 wall area 578 400$                                            231,120$                                                 5.0 448,000$                                                m2 building area 620 100$                                           62,000$                                                  m2 building area 620 430$                                           266,848$                                                m2 building area 620 160$                                           99,200$                                                  allow 20,000$                                                  6.0 264,000$                                                m2 building area 620 40$                                             24,800$                                                  m2 building area 740 65$                                             48,100$                                                  m2 building area 740 50$                                             37,000$                                                  m2 building area 740 54$                                             39,812$                                                  m2 building area 170 15$                                             2,550$                                                    each 6 2,650$                                        15,900$                                                  each 15 1,100$                                        16,634$                                                  each 2 6,000$                                        12,000$                                                  each 6 3,500$                                        21,000$                                                  m2 building area 620 75$                                             46,500$                                                  7.0 2,859,000$                                            each 1.5 230,000$                                   345,000$                                                each 1.5 247,000$                                   370,500$                                                each 1 933,333$                                   933,333$                                                each 1 380,115$                                   380,115$                                                allow 1 580,081$                                   580,081$                                                allow 1 250,000$                                   250,000$                                                8.0 2,031,000$                                            m2 building area 740 700$                                           518,000$                                                allow 30% of equipment 648,505$                                                allow 40% of equipment 864,673$                                                9.0 2,941,000$                                            allow 15% of project cost 1,951,200$                                            allow 3% of project cost 390,240$                                                allow 600,000$                                                18,044,000$                                     A 25% 4,511,000$                                            B 12% 2,165,000$                                            C 300,000$                                                25,020,000$                                     15%3,753,000$                                            28,773,000$                                          Note 1 A Design Development Contingency is to allow for necessary increases of qty's; construction costs; as the work is better defined  Note 2 A Construction Contingency is to allow for cost of additional work over and above the contract Awarded price.  Note 3 The Escalation/Inflation allowance is for increases in construction costs from time the budget to Tender Call Note 4 The Location Factor is for variances between constr. costs at the location of the project & historical costs data  Form CBCL 034.Rev 0 EST. QUANTITY Wastewater Treatment System Costs Only Table 6.1 PREPARED FOR:OPINION OF PROBABLE COST, CLASS 'C' Preliminary Cape Breton Regional MunicipalityNew Waterford, NS Overhead rolling door (3m wide) Foundation and Exterior Building Walls Outfall Upgrade ITEM / No.DESCRIPTION UNIT Reinstatement Gravel (beneath slabs) Ditching 600 mm dia Concrete Cl 65 Storm sewer Asphalt Type 1 Type 2 Curb 150 mm dia D.I. Piping Dewatering Sediment Control Manholes UNIT COST Total Site Works Carpentry, Assessories and Fixtures Louvers Painting Epoxy Coating Floor Finishes (Lab, Office, Admin Area) Windows (exterior ‐ single) Doors (single swing steel) Baseslabs (tanks) Slab on Grade (building) Miscellaneous Concrete Items  Exterior Masonry Metals & Roofing Metal Railings, Stairs, Grating, Hatches Beams and Columns Odour Control UV Disinfection System Double swing FRP doors Other Interior Finishes, Misc Process Equipment Supply SBR Equipment Mobilization, Bonds, Insurance, P.C. Mngmt Contractor Overhead & Fees Foundations and Tank Walls Lean Concrete Site Preparation Excavation  Grit Removal Finishes/Doors/Windows Masonry Interior Masonry Chainlink Fence and Gates Fine Screening Concrete Roof Miscellaneous Metals Items  Mechanical HVAC and Plumbing  Electrical Power Supply & Distribution Process Mechanical Instrumentation & Control Process Installation THIS OPINION OF PROBABLE COSTS IS PRESENTED ON THE BASIS OF EXPERIENCE, QUALIFICATIONS, AND BEST JUDGEMENT. IT HAS BEEN PREPARED IN ACCORDANCE WITH ACCEPTABLE  PRINCIPLES AND PRACTICES. MARKET TRENDS, NON‐COMPETITIVE BIDDING SITUATIONS, UNFORSEEN LABOUR AND MATERIAL ADJUSTMENTS AND THE LIKE ARE BEYOND THE CONTROL OF  HEJV. AS SUCH WE CANNOT WARRANT OR GUARANTEE THAT ACTUAL COSTS WILL NOT VARY FROM THE OPINION PROVIDED. Taxes (HST) TOTAL DIRECT & INDIRECT CONSTRUCTION COST (Exluding Contingencies and Allowances) TOTAL CONSTRUCTION & DESIGN COST without HST  TOTAL CONSTRUCTION & DESIGN COST with HST  Land Purchase Generator CONTINGENCIES and ALLOWANCES Construction Contingency General Conditions Engineering Sludge Dewatering   HEJV New Waterford WWTP Preliminary Design Brief 39 6.3 Opinion of Annual Capital Replacement Fund Contributions  The CBRM wishes to create a Capital Replacement Fund to which annual contributions would be made  to prepare for replacement of the wastewater assets at the end of their useful life. The calculation of  annual contributions to this fund involves consideration of such factors as the type of asset, the asset  value, the expected useful life of the asset, and the corresponding annual depreciation rate for the  asset, as per the accounting practices for asset depreciation and Depreciation Funds recommended in  the Water Utility Accounting and Reporting Handbook (Nova Scotia Utility and Review Board, 2013). In  consideration of these factors, Table 6.3 provides an estimation of the annual contributions to a capital  replacement fund for the proposed new wastewater treatment system infrastructure. This calculation  also adds the same contingency factors used in the calculation of the Opinion of Probable Capital Cost,  to provide an allowance for changes during the design and construction period of the WWTP.  The actual  Annual Capital Replacement Fund Contributions will be calculated based on the final constructed asset  value, the type of asset, the expected useful life of the asset, and the corresponding annual depreciation  rate for the asset type.      Table 6.3: Annual Capital Replacement Fund Contributions  Description of Asset Asset Value  Asset  Useful Life  Expectancy  (Years)  Annual  Depreciation  Rate (%)  Annual Capital  Replacement  Fund  Contribution  Treatment Linear Assets (Outfall  and Yard Piping, Manholes and  Other)  $2,000,000 75 1.3% $27,000  Treatment Structures (Concrete  Chambers, etc.) $7,500,000 50 2.0% $150,000  Treatment Equipment  (Mechanical / Electrical, etc.) $8,600,000 20 3.3% $430,000  Subtotal $18,100,000 ‐  ‐ $607,000  Construction Contingency (Subtotal x 25%): $152,000  Engineering (Subtotal x 12%): $73,000  Opinion of Probable Annual Capital Replacement Fund Contribution: $832,000  Table Notes  1. Annual contributions do not account for annual inflation.  2. Costs do not include applicable taxes.        HEJV New Waterford WWTP Preliminary Design Brief 40 CHAPTER 7  REFERENCES    ABL Environmental Consultants Limited. (2006). Atlantic Canada Wastewater Guidelines Manual for  Collection, Treatment and Disposal. Environment Canada.    CBCL Limited. (2018). Glace Bay Harbour Coastal Study – Final Report. Halifax: CBCL Limited.    Harbour Engineering Joint Venture. (2019). New Waterford Collection System Pre‐Design Brief.   Metcalf & Eddy, Inc. (2003). Wastewater Engineering: Treatment and Reuse. New Delhi: Tata  McGraw‐Hill.    Nova Scotia Utility and Review Board. (2013). Water Utility Accounting and Reporting Handbook.     UMA Engineering Limited. (1994). Industrial Cape Breton Wastewater Characterization Programme  – Phase II.           HEJV Appendices APPENDIX A  Flow Meter Data  0 10 20 30 40 50 60 70 800 5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000 45,000 Fe b - 2 7 Ma r - 0 3 Ma r - 0 7 Ma r - 1 1 Ma r - 1 5 Ma r - 1 9 Ma r - 2 3 Ma r - 2 7 Ma r - 3 1 Ap r - 0 4 Ap r - 0 8 Ap r - 1 2 Ap r - 1 6 Ap r - 2 0 Ap r - 2 4 Ap r - 2 8 Ma y - 0 2 Ma y - 0 6 Ma y - 1 0 Ma y - 1 4 Pr e c i p i t a t i o n Fl o w ( m 3/d ) NW2 -Spring 2018 Snow on Ground (cm)Rain (mm)Metered Flow 0 10 20 30 40 50 60 70 800 5,000 10,000 15,000 20,000 25,000 Aug-01 Aug-03 Aug-05 Aug-07 Aug-09 Aug-11 Aug-13 Aug-15 Aug-17 Aug-19 Aug-21 Aug-23 Ra i n ( m m ) Me t e r e d F l o w ( m 3/d ) NW2 - Summer 2018 0 10 20 30 40 50 60 70 800 5,000 10,000 15,000 20,000 25,000 30,000 Aug-01 Aug-03 Aug-05 Aug-07 Aug-09 Aug-11 Aug-13 Aug-15 Aug-17 Aug-19 Pr e c i p i t a t i o n ( m m ) Me t e r e d F l o w ( m 3/d ) NW1 - Summer 2018   HEJV Appendices APPENDIX B  Environmental Risk Assessment     HEJV Appendices APPENDIX C  Preliminary Design Drawings      j o i n t v e n t u r e C01 CONCEPT DRAWING j o i n t v e n t u r e C02 CONCEPT DRAWING j o i n t v e n t u r e C03 CONCEPT DRAWING j o i n t v e n t u r e P01 CONCEPT DRAWING HEJV New Waterford Wastewater System Pre‐Design Summary Report Appendices APPENDIX C  New Waterford Environmental Risk  Assessment         182402.00 ● Report ● April 2020 New Waterford Wastewater Treatment Plant Environmental Risk Assessment Final Report Prepared by: Prepared for: March 2020 Final April 22, 2020 Darrin McLean Karen March Holly Sampson Revised Draft – Revision 1 January 7, 2019 Darrin McLean Karen March Holly Sampson Draft for Review October 10, 2018 Darrin McLean Karen March Holly Sampson Issue or Revision Date Issued By: Reviewed By: Prepared By: This document was prepared for the party indicated herein. The material and information in the document reflects HE’s opinion and best judgment based on the information available at the time of preparation. Any use of this document or reliance on its content by third parties is the responsibility of the third party. HE accepts no responsibility for any damages suffered as a result of third party use of this document. 182402.00 March 27, 2020 182402.00 RE 001 FINAL WWTP ERA NEW WATERFORD.DOCX 2020-04-22/mk ED: 22/04/2020 13:18:00/PD: 22/04/2020 13:18:00 April 22, 2020 Matt Viva, P.Eng. Manager Wastewater Operations Cape Breton Regional Municipality (CBRM) 320 Esplanade, Sydney, NS B1P 7B9 Dear Mr. Viva: RE: New Waterford Wastewater Treatment Plant ERA – Final Report Enclosed, please find a copy of the Environmental Risk Assessment (ERA) Report for the New Waterford Wastewater Treatment Plant (WWTP). The report outlines Environmental Quality Objectives (EQOs) for all parameters of potential concern listed in the Standard Method for a “medium” facility that were detected in the wastewater. Environmental Discharge Objectives (EDOs) were also calculated for all parameters of potential concern that were detected in the wastewater and for which an Environmental Quality Objective (EQO) was identified. If you have any questions or require clarification on the content presented in the attached report, please do not hesitate to contact us. Yours very truly, Harbour Engineering Prepared by: Reviewed by: Holly Sampson, M.A.Sc., P.Eng. Karen March, M.Sc. Intermediate Chemical Engineer Environmental Scientist Direct: 902-539-1330 Phone: 902-450-4000 E-Mail: hsampson@cbcl.ca E-Mail: kmarch@dillon.ca Project No: 182402.00 (CBCL) 187116.00 (Dillon) March 27, 2020 Harbour Engineering Joint Venture New Waterford WWTP ERA i Contents CHAPTER 1 Background and Objectives ................................................................................... 1 1.1 Introduction .................................................................................................................. 1 1.2 Background ................................................................................................................... 1 1.3 Facility Description ........................................................................................................ 2 CHAPTER 2 Initial Wastewater Characterization ...................................................................... 5 2.1 Substances of Potential Concern .................................................................................. 5 2.1.1 Whole Effluent Toxicity ..................................................................................... 7 2.2 Wastewater Characterization Results .......................................................................... 7 CHAPTER 3 Environmental Quality Objectives ....................................................................... 12 3.1 Water Uses .................................................................................................................. 12 3.2 Ambient Water Quality ............................................................................................... 13 3.3 Physical/ Chemical/ Pathogenic Approach ................................................................. 19 3.3.1 General Chemistry/ Nutrients ........................................................................ 19 3.3.2 Metals ............................................................................................................. 24 3.3.3 E. coli ............................................................................................................... 26 3.3.4 Summary ......................................................................................................... 27 CHAPTER 4 Mixing Zone Analysis ........................................................................................... 30 4.1 Methodology ............................................................................................................... 30 4.1.1 Definition of Mixing Zone ............................................................................... 30 4.1.2 Site Summary .................................................................................................. 32 4.1.3 Far-Field Modeling Approach and Inputs ....................................................... 32 4.1.4 Modeled Effluent Dilution .............................................................................. 35 CHAPTER 5 Effluent Discharge Objectives .............................................................................. 38 5.1 The Need for EDOs ...................................................................................................... 38 5.2 Physical/ Chemical/ Pathogenic EDOs ........................................................................ 38 5.3 Effluent Discharge Objectives ..................................................................................... 38 CHAPTER 6 Compliance Monitoring ....................................................................................... 42 CHAPTER 7 References .......................................................................................................... 43 Appendices A Laboratory Certificates Harbour Engineering Joint Venture New Waterford WWTP ERA 1 CHAPTER 1 BACKGROUND AND OBJECTIVES 1.1 Introduction Harbour Engineering (HE) was engaged by the Cape Breton Regional Municipality (CBRM) to complete an Environmental Risk Assessment (ERA) for the proposed New Waterford Wastewater Treatment Plant (WWTP). As this is a proposed WWTP that has not yet been designed, this ERA was completed with the objective that it serve as a tool to establish effluent criteria for the design of a new WWTP. For this reason, the ERA was completed without the frequency of testing required by the Standard Method outlined in Technical Supplement 3 of the Canada-wide Strategy for the Management of Municipal Wastewater Effluent (Standard Method) for initial effluent characterization. With the exception of the initial effluent characterization sampling frequency, the ERA was otherwise completed in accordance with the Standard Method. 1.2 Background The Canada-wide Strategy (CWS) for the Management of Municipal Wastewater Effluent was adopted by the Canadian Council of Ministers of the Environment (CCME) in 2009. The Strategy is focused on two (2) main outcomes: Improved human health and environmental protection; and improved clarity about the way municipal wastewater effluent is managed and regulated. The Strategy requires that all wastewater facilities discharging effluent to surface water meet the following National Performance Standards (NPS) as a minimum: • Carbonaceous Biochemical Oxygen Demand for five days (CBOD5) – 25 mg/L; • Total Suspended Solids (TSS) – 25 mg/L; and • Total Residual Chlorine (TRC) – 0.02 mg/L. The Wastewater Systems Effluent Regulations (WSER) came into effect in 2012 under the Fisheries Act. The WSER include the above NPS as well as the following criteria: • Un-ionized ammonia - 1.25 mg/L, expressed as nitrogen (N), at 15°C ± 1°C. The CWS requires that facilities develop site-specific EDOs to address substances not included in the NPS that are present in the effluent. EDOs are the substance concentrations that can be discharged in the effluent and still provide adequate protection of human health and the environment. They are established by conducting a site-specific ERA. The ERA includes characterization of the effluent to determine potential substances of concern, and characterization of the receiving water to determine Harbour Engineering Joint Venture New Waterford WWTP ERA 2 beneficial water uses, ambient water quality, assimilative capacity, and available dilution. A compliance monitoring program is then developed and implemented to ensure adherence to the established EDOs for the facility. 1.3 Facility Description The proposed New Waterford Wastewater Treatment Plant (WWTP) will be constructed at the end of Mahon Street, near the Barachois. Treated effluent will be discharged to the Atlantic Ocean (Figure 1.2) at the location of the existing NW2 outfall. The service population of New Waterford is 7,420 people in 3,735 residential units. Figure 1.1 Site Location Harbour Engineering Joint Venture New Waterford WWTP ERA 3 Figure 1.2 WWTP Location The theoretical domestic wastewater flow is an average of 2,523 m3/day with a peak of 7,821 m3/day based on a per capita flow of 340 L/person/day and a peaking factor of 3.1 calculated using the Harmon formula. Flowmeters were installed in summer of 2018 at the following location: • Upstream of NW2 outfall (located in field area behind Civic #180 Mahon St); and • Upstream of NW1 outfall (Southeast corner of Mahon St and Bay Avenue intersection). Flowmeters were previously installed in spring of 2018 at the following locations: • Upstream of NW2 outfall (located in field area behind Civic #180 Mahon St). Wastewater flows were also previously metered by UMA Engineering in 1992 at three locations in the collection system. The summer average dry weather flows (ADWF) upstream of NW2 and NW1 were 321 L/p/d for 1,046 people and 1154 L/p/d for 3017 people, respectively. The combined per capita ADWF for summer 2018 was 1050 L/p/d. With a total service population of 7,420 people, this gives an ADWF (summer) of approximately 7,800 m3/day. For comparison, the 1992 ADWF values for NW2 and NW1 were 280 L/p/d and 912 L/p/d, respectively. There was a significant amount of dry weather infiltration upstream of NW1 during the summer. As summer months typically have seasonally lower levels of dry weather infiltration due to a lower groundwater table, it is possible that there may be even higher levels of dry weather infiltration in the spring. The spring ADWF upstream of NW2 had a much larger ADWF of 1054 L/p/day (compared to 321 L/p/day in the summer). NW1 was not metered in the spring. This indicates that there are seasonally high dry weather flows in the spring for NW2, and year-round high dry weather flows for NW1 (although they may be even higher in spring). For the purpose of the draft ERA, the average daily flow will be assumed to be 7,800 m3/day (1050 L/p/day), based on the per capita dry weather flows metered during the summer. However, it is expected that inflow and infiltration (I&I) reduction will be required as part of the project to reduce Harbour Engineering Joint Venture New Waterford WWTP ERA 4 the flows to the WWTP. The preliminary design study was completed assuming an average daily flow of 8,000 m3/day. If the future design flow is significantly different than the ERA assumed flow, ERA conclusions will be re-assessed at that time. The design flows do not account for growth. CBRM has a declining population so increased flows due to population growth are not expected. CBRM’s wastewater collection systems have significant inflow and infiltration (I&I), and CBRM plans to implement an I&I reduction program. Harbour Engineering Joint Venture New Waterford WWTP ERA 5 CHAPTER 2 INITIAL WASTEWATER CHARACTERIZATION 2.1 Substances of Potential Concern An initial characterization program covering a one-year period is typically required by the Standard Method to describe the effluent and identify substances of concern. As there is no existing WWTP for this system, and the ERA is being conducted for the purpose of determining effluent objectives for the design of a new WWTP, one sample event was completed for each of the two outfalls. Sample results for some of the parameters of potential concern were also available from three-years of sampling conducted by CBRM from 2015 through 2017 at the NW1 outfall, one sample event conducted by Dillon Consulting in 2014 at each of the two outfalls, and samples collected by UMA Engineering in 1992 at the NW2 outfall and two locations upstream of the NW1 outfall. Substances of potential concern are listed in the Standard Method based on the size category of the facility. The proposed design capacity of the new WWTP will be finalized during the pre-design study, but for the purposes of the draft ERA, an average annual flow of 7,800 m3/day will be assumed based on a per capita flow of 1050 L/p/day. Therefore, the WWTP is classified as a “medium” facility based on an average daily flow rate that is between 2,500 and 17,500 m3/day. The substances of potential concern for a “medium” facility, as per the Standard Method, are detailed in Table 2.1. There were no additional substances of concern identified to be monitored as industrial input does not exceed 5% of total dry weather flow in the sewer shed, on an annual average basis. There is one hospital, but the flows are expected to be much less than 5% of the wastewater flow for the system. Harbour Engineering Joint Venture New Waterford WWTP ERA 6 Table 2.1 – Substances of Potential Concern for a Medium Facility Test Group Substances General Chemistry / Nutrients Fluoride Nitrate Nitrate + Nitrite Total Ammonia Nitrogen Total Kjeldahl Nitrogen (TKN) Total Phosphorus (TP) Total Suspended Solids (TSS) Carbonaceous Biochemical Oxygen Demand (CBOD5) Total Residual Chlorine (TRC) Chemical Oxygen Demand (COD) Cyanide (total) pH Temperature Metals Aluminum, barium, beryllium, boron, cadmium, chromium, cobalt, copper, iron, lead, manganese, molybdenum, nickel, silver, strontium, thallium, tin, titanium, uranium, vanadium, zinc as well as arsenic, antimony, selenium and mercury Pathogens E. coli (or other pathogen, as directed by the jurisdiction) Organochlorine Pesticides Alpha-BHC, endosulfin (I and II), endrin, heptachlor epoxide, lindane (gamma- BHC), mirex, DDT, methoxychlor, aldrin, dieldrin, heptachlor, a-chlordane and g- chlordane, toxaphene Polychlorinated Biphenyls (PCBs) Total PCBs Polycyclic Aromatic Hydrocarbons (PAHs) Acenaphthene, acenapthylene, anthracene, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(k)fluoranthene, chrysene, dibenz(a,h)anthracene, fluoranthene, fluorene, indeno(1,2,3-cd)pyrene, methylnaphthalene, naphthalene, phenanthrene, pyrene Volatile Organic Compounds (VOCs) Benzene, bromodichloromethane, bromoform, carbon tetrachloride, chlorobenzene, chlorodibromomethane, chloroform, 1,2-dichlorobenzene, 1,4- dichlorobenzene, 1,2-dichloroethane, 1,1-dichloroethene, dichloromethane, ethylbenzene, 1,1,1,2-tetrachloroethane, 1,1,2,2-tetrachloroethane, tetrachloroethene, toluene, trichloroethene, vinyl chloride, m/p-xylene, o-xylene Phenolic Compounds 2,3,4,6-tetrachlorophenol, 2,4,6-trichlorophenol, 2,4-dichlorophenol, pentachlorophenol Surfactants Non-ionic surfactants and anionic surfactants (others may be added by the jurisdiction) Harbour Engineering Joint Venture New Waterford WWTP ERA 7 2.1.1 Whole Effluent Toxicity Wastewater effluent potentially contains a variety of unknown or unidentified substances for which guidelines do not exist. In order to adequately protect against these unknown substances, Whole Effluent Toxicity (WET) tests are typically conducted to evaluate acute (short-term) and chronic (long- term) effects. The Standard Method requires the following toxicity tests be conducted quarterly: • Acute toxicity – Rainbow Trout and Daphnia magna; and • Chronic Toxicity – Ceriodaphnia dubia and Fathead Minnow. A draft for discussion Mixing Zone Assessment and Report Template, dated July 6, 2016 that was prepared by a committee of representatives of the environment departments in Atlantic Canada noted that only Ceriodaphnia dubia testing is required for chronic toxicity. If the test does not pass, a fathead minnow test is required. As the wastewater in this system is currently untreated, and the purpose of the ERA is to determine effluent discharge objectives for the design of a new WWTP, no WET tests were conducted at this time. 2.2 Wastewater Characterization Results The results of the initial wastewater characterization program completed by HE are summarized in Tables 2.2 through 2.6. One sample was collected for each of the two outfalls in the system as part of the initial wastewater characterization study. Table 2.2 – Initial Wastewater Characterization Results – General Chemistry Parameter Outfall NW1 NW2 CBOD5 (mg/L) 93 140 COD (mg/L) 170 260 Total NH3-N (mg/L) 2.3 3.1 TSS (mg/L) 110 60 TP (mg/L) 1.4 1.6 TKN (mg/L) 9.9 10 pH 6.59 6.58 Un-ionized NH3 (mg/L)(1) 0.0025 0.0032 E. coli (MPN/100mL) 1000000 >240000 Fluoride (mg/L) 0.16 0.17 Nitrate (mg/L) 0.32 <0.050 Nitrite (mg/L) 0.13 0.3 Nitrate + Nitrite (mg/L) 0.45 0.3 Total Cyanide (mg/L) 0.0035 0.0035 Note: (1) The value of unionized ammonia was determined in accordance with the formula in the WSER, the concentration of total ammonia in the sample, and the pH of the sample. Harbour Engineering Joint Venture New Waterford WWTP ERA 8 Table 2.3 – Initial Wastewater Characterization Results – Metals (mg/L) Parameter Outfall NW1 NW2 Aluminum 0.43 0.6 Antimony <0.0010 <0.0010 Arsenic <0.0010 <0.0010 Barium 0.039 0.039 Beryllium <0.0010 <0.0010 Boron <0.050 0.12 Cadmium 0.00032 0.0003 Chromium <0.0010 <0.0010 Cobalt 0.0008 0.0032 Copper 0.014 0.012 Iron 0.73 0.66 Lead 0.0012 0.0012 Manganese 0.4 1.1 Molybdenum <0.0020 <0.0020 Nickel 0.0038 0.011 Selenium <0.0010 <0.0010 Silver <0.00010 <0.00010 Strontium 0.09 0.14 Thallium <0.00010 <0.00010 Tin <0.0020 <0.0020 Titanium 0.013 <0.020 Uranium 0.00014 0.00013 Vanadium <0.0020 <0.0020 Zinc 0.077 0.079 Mercury <0.013 <0.013 Harbour Engineering Joint Venture New Waterford WWTP ERA 9 Table 2.4 – Initial Wastewater Characterization Results – VOCs (µg/L) Parameter Outfall NW1 NW2 1,2-dichlorobenzene <0.50 <0.50 1,4-dichlorobenzene <1.0 <1.0 Chlorobenzene <1.0 <1.0 1,1,2,2-tetrachloroethane <0.50 <0.50 1,1-Dichloroethylene <0.50 <0.50 1,2-dichloroethane <1.0 <1.0 1,2-Dichloropropane <0.50 <0.50 Benzene <1.0 <1.0 Bromodichloromethane 1.1 1.4 Bromoform <1.0 <1.0 Carbon Tetrachloride <0.50 <0.50 Chloroform 2.1 2.3 Dibromochloromethane <1.0 <1.0 Ethylbenzene <1.0 <1.0 Methylene Chloride (Dichloromethane) <3.0 <3.0 o-xylene <1.0 <1.0 m/p-xylene <2.0 <2.0 Tetrachloroethene (Tetrachloroethylene) <1.0 <1.0 Toluene <1.0 <1.0 Trichloroethene (Trichloroethylene) <1.0 <1.0 Vinyl Chloride <0.50 <0.50 Harbour Engineering Joint Venture New Waterford WWTP ERA 10 Table 2.5 – Initial Wastewater Characterization Results – PCBs, Phenols, PAHs Parameter Outfall NW1 NW2 Total PCBs (µg/L) <0.05 <0.3 Phenols (mg/L) 0.0084 0.0094 1-Methylnaphthalene (µg/L) <0.050 <0.050 2-Methylnaphthalene (µg/L) <0.050 <0.050 Acenaphthene (µg/L) <0.030 <0.010 Acenaphthylene (µg/L) <0.010 <0.010 Anthracene (µg/L) <0.010 <0.010 Benzo(a)anthracene (µg/L) 0.01 <0.010 Benzo(a)pyrene (µg/L) <0.010 <0.010 Benzo(b)fluoranthene (µg/L) 0.011 <0.010 Benzo(g,h,i)perylene (µg/L) <0.010 <0.010 Benzo(k)fluoranthene (µg/L) <0.010 <0.010 Chrysene (µg/L) 0.01 <0.010 Dibenz(a,h)anthracene (µg/L) <0.010 <0.010 Fluoranthene (µg/L) 0.028 <0.010 Fluorene (µg/L) 0.011 <0.010 Indeno(1,2,3-cd)pyrene (µg/L) <0.010 <0.010 Naphthalene (µg/L) <0.20 <0.20 Phenanthrene (µg/L) 0.026 0.022 Pyrene (µg/L) 0.021 <0.010 Table 2.6 – Initial Wastewater Characterization Results – Organochlorine Pesticides (µg/L) Parameter Outfall NW1 NW2 Aldrin <0.005 <0.03 Dieldrin <0.005 <0.03 a-Chlordane <0.005 <0.03 g-Chlordane <0.005 <0.03 o,p-DDT <0.005 <0.03 p,p-DDT <0.005 <0.03 Lindane <0.003 <0.02 Endosulfan I (alpha) <0.005 <0.03 Endosulfan II (beta) <0.005 <0.03 Endrin <0.005 <0.03 Heptachlor <0.005 <0.03 Heptachlor epoxide <0.005 <0.03 Methoxychlor <0.01 <0.07 alpha-BHC <0.005 <0.03 Mirex <0.005 <0.03 Toxaphene <0.2 <1 DDT+ Metabolites <0.005 <0.03 Harbour Engineering Joint Venture New Waterford WWTP ERA 11 Table 2.7 – Historical Wastewater Characterization Samples Location Parameter Average Number of Samples NW1 TSS (mg/L) 74.2 106 CBOD5 (mg/L) 104.7 106 Total Ammonia (mg/L) 6.6 26 pH (mg/L) 7.0 56 Un-ionized Ammonia (mg/L) 0.019 27 Alkalinity (mg/L) 93.50 5 TKN (mg/L) 41.99 5 Total Phosphorus (mg/L) 2.93 5 NW2 TSS (mg/L) 68.5 26 CBOD5 (mg/L) 103.9 26 pH (mg/L) 7.3 25 Un-ionized Ammonia (mg/L) 0.009 1 Alkalinity (mg/L) 110.45 4 TKN (mg/L) 45.59 4 Total Phosphorus (mg/L) 3.58 4 Harbour Engineering Joint Venture New Waterford WWTP ERA 12 CHAPTER 3 ENVIRONMENTAL QUALITY OBJECTIVES Generic Environmental Quality Objectives (EQOs) are generated from established guidelines, typically the Wastewater Systems Effluent Regulations (WSER), the Canadian Environmental Quality Guidelines (CEQGs) and other guidelines specified by jurisdiction. Site-specific EQOs are established by adjusting the generic EQOs based on site-specific factors, particularly ambient water quality. For example, if the background concentration of a substance is greater than the guideline value (generic EQO), the background concentration is used as the site-specific EQO. However, substances where the EQO is based on the WSER are not adjusted based on ambient water quality. Furthermore, there are some guidelines that are dependent on characteristics of the receiving water like pH or temperature. EQOs can be determined by three different approaches: • Physical/ chemical/ pathogenic – describes the substance levels that will protect water quality; • Whole Effluent Toxicity (WET) – describes the proportion of effluent that can enter the receiving water without causing toxicological effects (both acute and chronic); and • Biological criteria (bio-assessment) – describes the level of ecological integrity that must be maintained. This assessment follows the physical/ chemical/ pathogenic approach from the Standard Method outlined in the CCME guidelines. The bio-assessment is not included in the Standard Method as it is still being developed (CCME, 2008). 3.1 Water Uses EQOs are numerical values and narrative statements established to protect the receiving water – in this case the Atlantic Ocean near the Barachois in New Waterford. The first step in determining EQOs is to define the potential beneficial uses of the receiving water. The following beneficial water uses have been identified for the Atlantic Ocean in the vicinity of New Waterford: • Direct contact recreational activities like swimming and wading at a beach at the end of Browns Road Extension; • Secondary contact recreational activities like boating and fishing; and Harbour Engineering Joint Venture New Waterford WWTP ERA 13 • Ecosystem health for marine aquatic life. There is no molluscan shellfish harvesting zone in the vicinity of the outfall. The outfall is situated in a closure zone boundary extending from Point Aconi to Schooner Pond, situated 1125m offshore in the vicinity of the outfall (shown on Figure 3.1). Figure 3.1 Location of Existing Outfalls 3.2 Ambient Water Quality Generic EQOs are first developed based on existing guidelines and then adjusted based on site- specific factors, particularly background water quality. Water quality data was obtained for two locations in the Atlantic Ocean along the coast of Cape Breton. The locations were chosen in an attempt to be representative of ambient water quality outside the influence of the existing untreated wastewater discharges in CBRM. Samples were collected by HE on May 11, 2018, and the sample locations are summarized as follows and presented on Figure 3.2. A second set of samples was collected by HE on November 18, 2018 and analyzed for metals using a different laboratory method due to elevated detection limits in the first set of samples. Harbour Engineering Joint Venture New Waterford WWTP ERA 14 BG-1: Near Mira Gut Beach BG-2: Wadden’s Cove Figure 3.2 Ambient Water Quality Sample Locations A third sample was collected north of Port Morien but the results were not considered representative of background conditions as sample results indicated the sample was impacted by wastewater. A summary of the ambient water quality data is shown in Tables 3.1 through 3.5. Harbour Engineering Joint Venture New Waterford WWTP ERA 15 Table 3.1 – Ambient Water Quality Data – General Chemistry Parameter Units BG1 BG2 AVG Carbonaceous BOD (CBOD) mg/L <5.0 <5.0 <5.0 COD mg/L 1100 1000 1050 Hardness mg/L 4900 5200 5050 Nitrogen (Ammonia Nitrogen) mg/L <0.050 <0.050 <0.05 TSS mg/L 58 5.0 32 Total Phosphorus (TP) mg/L 0.037 0.032 0.035 Total Kjeldahl Nitrogen (TKN) mg/L 0.19 0.20 0.20 pH pH 7.73 7.68 7.71 unionized ammonia mg/L <0.0007 <0.0007 <0.0007 E. coli MPN/100mL 52 86 69 TRC mg/L NM NM NM Fluoride mg/L 0.67 0.67 0.67 Nitrate (N) mg/L 0.051 <0.050 0.038 Nitrite (N) mg/L <0.010 <0.010 <0.010 Nitrate + Nitrite mg/L 0.051 <0.050 0.038 Total Cyanide mg/L <0.0010 <0.0010 <0.0010 Note: NM = Parameter not measured. Parameters reported as < detection limit have been included in average calculation as half the detection limit. Harbour Engineering Joint Venture New Waterford WWTP ERA 16 Table 3.2 – Ambient Water Quality Data – Metals Parameter Units BG1 BG2 AVG May-11 Nov-18 May-11 Nov-18 Aluminum mg/L 0.17 0.089 0.083 0.754 0.274 Antimony mg/L <0.010(2) <0.0005 <0.010(2) <0.0005 <0.0005 Arsenic mg/L <0.010 0.00163 <0.010 0.00177 0.0017 Barium mg/L <0.010 0.0074 <0.010 0.0083 0.00785 Beryllium mg/L <0.010(2) <0.001 <0.010(2) <0.001 <0.001 Boron mg/L 3.5 3.42 3.7 3.43 3.51 Cadmium mg/L <0.00010(2)<0.00005 <0.00010(2)<0.00005 <0.00005 Chromium mg/L <0.010(2) <0.0005(1)<0.010(2) 0.00056 0.00041 Cobalt mg/L <0.0040(2) <0.0001(1)<0.0040(2) 0.00031 0.00018 Copper mg/L <0.020(2) <0.0005(1)<0.020(2) 0.00068 0.00047 Iron mg/L <0.50(2) 0.159 <0.50(2) 0.626 0.393 Lead mg/L <0.0050(2) 0.00015 <0.0050(2) 0.0003 0.000225 Manganese mg/L 0.021 0.00747 <0.020(2) 0.0165 0.01499 Molybdenum mg/L <0.020(2) 0.0095 <0.020(2) 0.0086 0.0091 Nickel mg/L <0.020(2) <0.00020 <0.020(2) <0.00020 <0.00020 Selenium mg/L <0.010(2) <0.0005 <0.010(2) <0.0005 <0.0005 Silver mg/L <0.0010(2) <0.00005 <0.0010(2) <0.00005 <0.00005 Strontium mg/L 5.9 7.27 6.3 7.32 6.70 Thallium mg/L <0.0010(2) <0.00010 <0.0010(2) <0.00010 <0.00010 Tin mg/L <0.020(2) <0.001 <0.020(2) <0.001 <0.001 Titanium mg/L <0.020(2) <0.010 <0.020(2) 0.046 0.026 Uranium mg/L 0.0026 0.00248 0.0026 0.00242 0.00253 Vanadium mg/L <0.020(2) <0.01 <0.020(2) <0.01 <0.01 Zinc mg/L <0.050(2) <0.001 <0.050(2) 0.0014 0.00095 Mercury mg/L 0.000013 - 0.000013 - 0.000013 Note: (1) Value included in average calculation as half the detection limit. (2) Value omitted from average calculation due to elevated detection limit. Harbour Engineering Joint Venture New Waterford WWTP ERA 17 Table 3.3 – Ambient Water Quality Data – VOCs Parameter Units BG1 BG2 AVG 1,2-dichlorobenzene µg/L <0.50 <0.50 <0.50 1,4-dichlorobenzene µg/L <1.0 <1.0 <1.0 Chlorobenzene µg/L <1.0 <1.0 <1.0 1,1,2,2-tetrachloroethane µg/L <0.50 <0.50 <0.50 1,1-Dichloroethylene µg/L <0.50 <0.50 <0.50 1,2-dichloroethane µg/L <1.0 <1.0 <1.0 Benzene µg/L <1.0 <1.0 <1.0 Bromodichloromethane µg/L <1.0 <1.0 <1.0 Bromoform µg/L <1.0 <1.0 <1.0 Carbon Tetrachloride µg/L <0.50 <0.50 <0.50 Chloroform µg/L <1.0 <1.0 <1.0 Dibromochloromethane µg/L <1.0 <1.0 <1.0 Ethylbenzene µg/L <1.0 <1.0 <1.0 Methylene Chloride (Dichloromethane) µg/L <3.0 <3.0 <3.0 o-xylene µg/L <1.0 <1.0 <1.0 m/p-xylene µg/L <2.0 <2.0 <2.0 Tetrachloroethene (Tetrachloroethylene) µg/L <1.0 <1.0 <1.0 Toluene µg/L <1.0 <1.0 <1.0 Trichloroethene (Trichloroethylene) µg/L <1.0 <1.0 <1.0 Vinyl Chloride µg/L <0.50 <0.50 <0.50 Harbour Engineering Joint Venture New Waterford WWTP ERA 18 Table 3.4 – Ambient Water Quality Data – PCBs, Phenols, PAHs Parameter Units BG1 BG2 AVG Total PCBs µg/L <0.05 <0.05 <0.05 Phenols mg/L 0.011 <0.010 0.0305 1-Methylnaphthalene µg/L <0.050 <0.050 <0.050 2-Methylnaphthalene µg/L <0.050 <0.050 <0.050 Acenaphthene µg/L <0.010 <0.010 <0.010 Acenaphthylene µg/L <0.010 <0.010 <0.010 Anthracene µg/L <0.010 <0.010 <0.010 Benzo(a)anthracene µg/L <0.010 <0.010 <0.010 Benzo(a)pyrene µg/L <0.010 <0.010 <0.010 Benzo(b)fluoranthene µg/L <0.010 <0.010 <0.010 Benzo(g,h,i)perylene µg/L <0.010 <0.010 <0.010 Benzo(k)fluoranthene µg/L <0.010 <0.010 <0.010 Chrysene µg/L <0.010 <0.010 <0.010 Dibenz(a,h)anthracene µg/L <0.010 <0.010 <0.010 Fluoranthene µg/L <0.010 <0.010 <0.010 Fluorene µg/L <0.010 <0.010 <0.010 Indeno(1,2,3-cd)pyrene µg/L <0.010 <0.010 <0.010 Naphthalene µg/L <0.20 <0.20 <0.20 Phenanthrene µg/L <0.010 <0.010 <0.010 Pyrene µg/L <0.010 <0.010 <0.010 Table 3.5 – Ambient Water Quality Data – Organochlorine Pesticides Parameter Units BG1 BG2 AVG Aldrin µg/L <0.005 <0.005 <0.005 Dieldrin µg/L <0.005 <0.005 <0.005 a-Chlordane µg/L <0.005 <0.005 <0.005 g-Chlordane µg/L <0.005 <0.005 <0.005 o,p-DDT µg/L <0.005 <0.005 <0.005 p,p-DDT µg/L <0.005 <0.005 <0.005 Lindane µg/L <0.003 <0.003 <0.003 Endosulfan I (alpha) µg/L <0.005 <0.005 <0.005 Endosulfan II (beta) µg/L <0.005 <0.005 <0.005 Endrin µg/L <0.005 <0.005 <0.005 Heptachlor µg/L <0.005 <0.005 <0.005 Heptachlor epoxide µg/L <0.005 <0.005 <0.005 Methoxychlor µg/L <0.01 <0.01 <0.01 alpha-BHC µg/L <0.005 <0.005 <0.005 Mirex µg/L <0.005 <0.005 <0.005 Toxaphene µg/L <0.2 <0.2 <0.2 DDT+ Metabolites µg/L <0.005 <0.005 <0.005 Harbour Engineering Joint Venture New Waterford WWTP ERA 19 3.3 Physical/ Chemical/ Pathogenic Approach The physical/ chemical/ pathogenic approach is intended to protect the receiving water by ensuring that water quality guidelines for particular substances are being met. EQOs are established by specifying the level of a particular substance that will protect water quality. Substance levels that will protect water quality are taken from the CEQGs associated with the identified beneficial water uses. If more than one guideline applies, the most stringent is used. Typically the Canadian Water Quality Guidelines (CWQGs) for the Protection of Aquatic Life are the most stringent and have been used for this assessment. The Health Canada Guidelines for Canadian Recreational Water have also been used to provide limits for pathogens (E. coli). The guidelines for the Protection of Aquatic Life provide recommendations for both freshwater and marine (including estuarine) environments. Since the receiving water for the proposed New Waterford WWTP is a marine environment, the marine guidelines were used where available. The US EPA National Recommended Water Quality Criteria (saltwater) were used when there were no CCME marine criteria provided. For substances where a marine criterion was not specified by either CCME or US EPA, the CCME freshwater guidelines were used. There were some parameters that were detected in the wastewater but for which a criterion did not exist from either CCME or the US EPA. In those instances, an effort was made to identify an applicable criterion from another jurisdiction. Technical Supplement 3 of the Canada-wide Strategy for the Management of Municipal Wastewater Effluent indicates that for any one substance, if the natural concentration in the upstream location is higher than the generic EQO equivalent, that concentration will apply as a site-specific EQO, and the generic EQO must be set aside. Otherwise, site-specific EQOs are not needed. Background water quality samples were collected from the Atlantic Ocean by HE on May 11, 2018 and the results were previously summarized in Section 3.2. Site-specific EQOs were developed for each substance that was detected in the wastewater, for which there was a generic EQO, and for which the background concentration exceeded the generic EQO. Site-specific EQOs are discussed in the following sections and included in Table 3.9. EQOs are derived in the following sections for each substance of potential concern for a medium facility that was detected in the wastewater. 3.3.1 General Chemistry/ Nutrients The following general chemistry and nutrients parameters were identified as substances of potential concern for a medium facility: CBOD, chemical oxygen demand (COD), un-ionized ammonia, total ammonia, total kjeldahl nitrogen (TKN), total suspended solids (TSS), total phosphorus, pH, total residual chlorine (TRC), fluoride, nitrate, nitrite, temperature, and total cyanide. EQOs for these substances are established in the following sections. Oxygen Demand Biochemical Oxygen Demand (BOD5) is a measure of the oxygen required to oxidize organic material and certain inorganic materials over a given period of time (five days). It has two components: carbonaceous oxygen demand and nitrogenous oxygen demand. Harbour Engineering Joint Venture New Waterford WWTP ERA 20 Chemical Oxygen Demand (COD) is another measure of oxygen depleting substances present in the effluent. It is a measure of the oxygen required to chemically oxidize reduced minerals and organic matter. Carbonaceous Biochemical Oxygen Demand (CBOD5) measures the amount of biodegradable carbonaceous material in the effluent that will require oxygen to break down over a given period of time (five days). Traditionally performance standards have been set for BOD5; however, the WSER dictate a limit for CBOD5. This is due to the variable effects of nitrogenous oxygen demand on the BOD5 test. There are no CWQGs for the protection of aquatic life for CBOD5 in freshwater or in marine waters. However, because CBOD5 affects the concentration of dissolved oxygen, the CWQG for dissolved oxygen should be considered. The CWQG for freshwater aquatic life dictates that the dissolved oxygen concentrations be greater than 9.5 mg/L for early life stages in cold water ecosystems. The CWQG for marine aquatic life is a minimum of 8 mg/L. The background dissolved oxygen concentrations were not measured in the receiving water. However, the concentration of CBOD5 discharged in accordance with the WSER criteria should not cause the dissolved oxygen (DO) concentration to vary outside of the normal range. Based on an average annual temperature of 6.9 °C (from Bedford Institute of Oceanography Area 4VN), the solubility of oxygen in seawater is approximately 9.5 mg/L. Assuming the background concentration of DO is saturated, there can be a drop of 1.5 mg/L for the DO to be a minimum concentration of 8 mg/L. The average annual temperature was used in this calculation as if the maximum annual temperature was used, this results in the solubility of oxygen being less than the CWQG for marine aquatic life. For an ocean discharge, the maximum DO deficit should occur at or near the point source. Assuming a deoxygenation rate of 0.33/day based on a depth of approximately 2m at the discharge location, and assuming a reaeration coefficient of 0.61/day based on a depth of approximately 2m and an average tidal velocity of 0.16 m/s, the maximum concentration of CBOD that would result in a drop in DO of 1.5 mg/L can be calculated. The tidal dispersion coefficient has been assumed to be 150 m2/s. The concentration of CBOD potentially affecting DO was calculated to be 40 mg/L. Therefore, the WSER criteria of 25 mg/L CBOD at discharge should not cause the dissolved oxygen (DO) concentration to vary outside of the normal range. Total Ammonia and Un-ionized Ammonia The CWQG for the protection of aquatic life for total ammonia in freshwater is presented as a table based on pH and temperature. There is no CWQG for ammonia in marine water. Total ammonia is comprised of un-ionized ammonia (NH3) and ionized ammonia (NH4+, ammonium). Un-ionized ammonia is more toxic than ionized ammonia and the toxicity of total ammonia is related to the concentration of un-ionized ammonia present. The amount of un-ionized ammonia is variable depending on pH and temperature. The USEPA saltwater guideline for total ammonia is 2.7 mg/L based on a temperature of 17.7 °C, a pH of 7.7 and a salinity of 30 g/kg. The USEPA guideline of 2.7 Harbour Engineering Joint Venture New Waterford WWTP ERA 21 mg/L will be used as the EQO for total ammonia. As ammonia is a component of total nitrogen (TN), the actual effluent concentration may be limited by the TN EDO rather than the total ammonia EDO. However, as the TN EQO is based on concern of eutrophication and not a continuous acceptable concentration for the protection of aquatic life, both EDOs will be presented separately in the ERA. The WSER requires that un-ionized ammonia concentrations be less than 1.25 mg/L (as N at 15oC) at the discharge point. For the purposes of this study, the EQO for un-ionized ammonia was chosen based on the WSER (1.25 mg/L at discharge). Total Suspended Solids (TSS) The WSER specifies a limit of 25 mg/L for TSS at the end of the pipe. The CWQG for the protection of aquatic life in marine water for total suspended solids (TSS) is as follows: • During periods of clear flow, a maximum increase of 25 mg/L from background levels for any short-term exposure (e.g., 24-h period). Maximum average increase of 5 mg/L from background levels for longer term exposures (e.g., inputs lasting between 24 h and 30 d); and • During periods of high flow, a maximum increase of 25 mg/L from background levels at any time when background levels are between 25 and 250 mg/L. Should not increase more than 10% of background levels when background is ≥ 250 mg/L. The background concentration of TSS was an average of 32 mg/L. A maximum average increase of 5 mg/L from background levels would result in an EQO of 37 mg/L. As this is greater than the WSER criteria, the WSER criteria of 25 mg/L at discharge will apply as the EDO. The background TSS measurement is higher than would typically be expected in a marine environment, which may be due to the near shore location of the samples. However, in a worst case scenario where the background TSS concentration was 0 mg/L, application of the WSER criteria at the end of pipe would always be the more stringent criteria provided there is greater than five times dilution. Total Phosphorus and TKN/TN There are no CWQGs for the protection of aquatic life for phosphorus or nitrogen. However, in both freshwater and marine environments, adverse secondary effects like eutrophication and oxygen depletion can occur. Guidance frameworks have been established for freshwater systems and for marine systems to provide an approach for developing site-specific water quality guidelines. These approaches are based on determining a baseline condition and evaluating various effects according to indicator variables. The approach is generally very time and resource intensive, but can be completed on a more limited scale to establish interim guidelines. The Canadian Guidance Framework for the Management of Nutrients in Nearshore Marine Systems Scientific Supporting Document (CCME, 2007) provides a framework as well as case studies for establishing nutrient criteria for nearshore marine systems. This document provides a Trophic Index for Marine Systems (TRIX), below in Table 3.6. Harbour Engineering Joint Venture New Waterford WWTP ERA 22 Table 3.6 - Criteria for evaluating trophic status of marine systems (CCME, 2007) Trophic Status TN (mg/m3) TP (mg/m3) Chlorophyll a (μg/L) Secchi Depth (m) Oligotrophic <260 <10 <1 >6 Mesotrophic ≥260-350 ≥10-30 ≥1-3 3-≤6 Eutrophic ≥350-400 ≥30-40 ≥3-5 1.5-≤3 Hypereutrophic >400 >40 >5 <1.5 The background concentrations of TKN and TP were measured as 0.2 mg/L and 0.035 mg/L, respectively, which corresponds to a eutrophic status based on the phosphorus concentration. The uppermost limit for this trophic status is a TN concentration of 0.4 mg/L and a TP concentration of 0.04 mg/L. This document provides another index (NOAA) to determine the degree of eutrophication of the marine system, below in Table 3.7. Table 3.7 - Trophic status classification based on nutrient and chlorophyll (CCME, 2007) Degree of Eutrophication Total Dissolved N (mg/L) Total Dissolved P (mg/L) Chl a (μg/L) Low 0 - ≤0.1 0 - ≤0.01 0 - ≤5 Medium >0.1 - ≤1 >0.01 - ≤0.1 >5 - ≤20 High >1 >0.1 >20 - ≤60 Hypereutrophic - - >60 However, the concentrations in Table 3.7 are based on dissolved nitrogen and phosphorus and the background concentrations are for TKN and total phosphorus. For nitrogen, with a background concentration of 0.2 mg/L for TKN, an assumption that the dissolved nitrogen background concentration is anywhere between 50 and 100% of the TKN background concentration would result in classification as “medium” based on Table 3.7. For phosphorus, with a background concentration of 0.035 mg/L, an assumption that the dissolved background concentration is anywhere between 29 and 100% of the total background concentration would result in classification as “medium” based on Table 3.7. To maintain the same degree of eutrophication, the total dissolved nitrogen and total dissolved phosphorus in the receiving water should not exceed the upper limit of the “medium” classification which is 1 mg/L for Total Dissolved Nitrogen and 0.1 mg/L for Total Dissolved Phosphorus. In order to determine the upper limit of the “medium” eutrophication range based on total phosphorus and TN concentrations, an assumption must be made as to the percentage of the TN and phosphorus that exists in the dissolved phase, both in the receiving water and in the effluent. As a measure of conservatism, an assumption was made that 100% of the TN and phosphorus exist in a dissolved phase. This allows for the upper limits of the “medium” classification to be used directly as the EQO which results in an EQO of 1 mg/L for TN and 0.1 mg/L for total phosphorus. Harbour Engineering Joint Venture New Waterford WWTP ERA 23 The Canadian Guidance Framework for the Management of Nutrients in Nearshore Marine Systems Scientific Supporting Document (CCME, 2007) presents both of the above criteria for assessing trophic status and does not provide a recommendation for use of one rather than the other. However, the framework presents a case study to establish nutrient criteria for the Atlantic Shoreline of Nova Scotia, and the NOAA index is used. Therefore, that index will be used for the purpose of this study. pH The CWQG for the protection for aquatic life for marine waters is 7.0 to 8.7. This pH range will be applied as the EQO. Fluoride The CCME CWQG for the protection of aquatic life for fluoride is 0.12 mg/L for freshwater. There is no recommended marine guideline from either CCME or US EPA. The background concentration for fluoride is 0.67 mg/L. There is a maximum acceptable concentration of 1.5 mg/L specified by the British Columbia Ministry of Environment (BCMOE). However, as this is a maximum acceptable concentration and not a long term or continuous concentration, it will not be used. Therefore, the background concentration of 0.67 mg/L will be applied as the site-specific EQO. Nitrate The CCME CWQG for the protection of aquatic life for nitrate is 200 mg/L for marine waters, 45 mg/L as N. Nitrate is substantially less toxic than nitrite and ammonia, but can still yield toxic effects. Background pH and temperature can influence the conversion of nitrate to nitrite and other forms of nitrogen. The CCME marine water quality guideline of 45 mg/L will be used as the EQO. Nitrite The CCME CWQG for the protection of aquatic life for nitrite is 0.06 mg/L as nitrogen for freshwater, and there is no recommended marine guideline. Nitrite has been found to be more toxic to some groups of fish, particularly salmonids. The freshwater guideline of 0.06 mg/L will be applied as the EQO for this assessment. Cyanide The CCME CWQG for the protection of aquatic life for cyanide is 0.005 mg/L (free CN) for freshwater. There is no CWQG for marine waters. The US EPA water quality criterion for saltwater is 0.001 mg/L (free CN). Both the CCME and US EPA criteria are for free cyanide, whereas the Standard Method specifies to sample for total cyanide. Cyanide was not detected in the background samples (at a detection limit of 0.001 mg/L). The USEPA criteria of 0.001 mg/L will be applied as the EQO for cyanide. However, comparing sample results from the wastewater characterization samples to this value will be overly conservative as the analytical results are for total cyanide rather than free cyanide. Harbour Engineering Joint Venture New Waterford WWTP ERA 24 Total Residual Chlorine The WSER requires that TRC concentrations be less than 0.02 mg/L. For the purposes of this study, the EQO of 0.02 mg/L for TRC was chosen based on this regulation. As this is based on the WSER, 0.02 mg/L will apply as the EDO at discharge. 3.3.2 Metals Of the 25 metals measured during the wastewater characterization study, 13 were detected in the wastewater of at least one sample. The EQOs for the detected metals are described below. Aluminum The CCME CWQG for the protection of aquatic life for aluminum in freshwater is dependent on pH; the guideline is 5 µg/L if the pH is less than 6.5 and 100 µg/L if the pH is 6.5 or greater. There are no CWQG or US EPA guidelines for marine waters. The average background concentration of aluminum was 274 µg/L. The background concentration of 274 µg/L will be used as the site-specific EQO. Barium There are no CCME CWQGs for the protection of aquatic life for barium in freshwater or marine waters. There is also no water quality guideline from the US EPA or British Columbia Ministry of Environment (BCMOE) for salt water. As no relevant published water quality guidelines were found for barium, an EQO will not be developed. Cadmium The CCME CWQG for the protection of aquatic life for cadmium in marine waters is 0.12 µg/L. Cadmium was not detected in the background sample (at a detection limit of 0.05 µg/L). Therefore the EQO will remain the same as the CCME marine WQG of 0.12 µg/L. Cobalt There are no CCME CWQGs for the protection of aquatic life for cobalt in freshwater or marine waters. There is also no US EPA water quality guideline. There are no working guidelines from the BCMOE for marine waters. As no relevant published water quality guidelines were found for cobalt, an EQO will not be developed. Copper The CCME CWQG for the protection of aquatic life for copper in freshwater is given as an equation based on water hardness and there is no guideline specified for marine waters. The freshwater guideline was calculated to be 4 µg/L based on the average background water hardness of 5050 mg/L. The US EPA salt water quality criterion is 3.7 µg/L. The average background concentration of copper was 0.47 µg/L. Therefore the USEPA salt water quality criterion of 3.7 µg/L will be used as the EQO. Harbour Engineering Joint Venture New Waterford WWTP ERA 25 Iron The CCME CWQG for the protection of aquatic life for iron in freshwater is 300 µg/L. There is no guideline specified for marine waters. There is no US EPA or BC MOE salt water quality criterion for iron. The average background concentration for iron was 393 µg/L. The EQO will be based on the background concentration of 393 µg/L. Lead The CCME CWQG for the protection of aquatic life for lead in freshwater is given as an equation based on water hardness and there is no guideline specified for marine waters. The freshwater guideline was calculated to be 6 µg/L based on the average background water hardness of 5050 mg/L. The US EPA salt water quality criterion is 8.5 µg/L. The average background concentration of lead was 0.225 µg/L. Therefore the USEPA salt water quality criterion of 8.5 µg/L will be used as the EQO. Manganese There are no CCME CWQGs for the protection of aquatic life for manganese in freshwater or marine waters. There is also no criterion provided by US EPA. However, there is a recommended marine guideline for manganese provided by the British Columbia Ministry of Environment of 100 µg/L. The background concentration of manganese was 15 µg/L. The guideline of 100 µg/L will be used as the EQO for manganese. Nickel The CCME CWQG for the protection of aquatic life for nickel is 150 µg/L for freshwater based on an average background hardness of 5050 mg/L. There is no CWQG for marine waters. The US EPA salt water quality criterion is 8.3 µg/L. Nickel was not detected in the background samples (at a detection limit of 0.2 µg/L). Therefore the USEPA salt water quality criterion of 8.3 µg/L will be used as the EQO. Strontium There is no CCME CWQG for strontium for the protection of aquatic life. There is no water quality guideline provided by US EPA or BCMOE. As no relevant published water quality guidelines were found for strontium, an EQO will not be developed. Titanium There is no CCME CWQG for titanium for the protection of aquatic life. There is no water quality guideline provided by US EPA or BCMOE. As no relevant published water quality guidelines were found for titanium, an EQO will not be developed. Uranium The CCME CWQG for the protection of aquatic life for uranium is 15 µg/L for freshwater and there is no guideline for marine waters. There is no US EPA water quality guideline for salt water. There is no BCMOE criteria for marine water. The background concentration for uranium was 2.53 µg/L. The CCME WQG for freshwater of 15 µg/L will be applied as the EQO. Harbour Engineering Joint Venture New Waterford WWTP ERA 26 Zinc The CCME CWQG for the protection of aquatic life for zinc is 30 µg/L for freshwater and there is no guideline for marine waters. The US EPA water quality guideline for salt water is 86 µg/L. The average background concentration of zinc was 0.95 µg/L. The US EPA criterion of 86 µg/L will be applied as the EQO for zinc. 3.3.3 E. coli Pathogens are not included in the CCME WQGs for the protection of aquatic life. The Health Canada Guidelines for Canadian Recreational Water Quality specify a maximum E. coli concentration of 200 E. coli/100 mL for freshwater for primary contact recreation and 1000 E. coli/100 mL for secondary contact recreation. The Health Canada guideline for Canadian Recreational Water Quality for primary and secondary contact recreation in marine water is based on enterococci rather than E. coli. However, historically Nova Scotia Environment has set discharge limits for E. coli rather than enterococci for marine discharges. The background concentration of E. coli was 69 E. coli/100 mL. An EQO of 200 E. coli/ 100mL will apply for primary contact recreation at the beach at the end of Browns Road Extension. An EQO of 1000 E. coli/ 100mL based on the Canadian Recreational Water Quality guideline for secondary contact for freshwater will apply elsewhere in the receiving water. There is currently a molluscan shellfish closure zone in the immediate vicinity of the outfall (SSN- 2006-007 on Figure 3.1). However, consideration will have to be given to E. coli concentrations outside of the closure zone. It is also possible that the closure zone will be changed once the proposed WWTPs in CBRM are operational. The Canadian Shellfish Sanitation Program (CSSP) requires that the median of the samples collected in an area in one survey not exceed 14 E. coli/100 mL, and no more than 10% of the samples can exceed 43 E. coli/100 mL. However, the average measured background concentration for E. coli was 69 E. coli/100 mL. These background samples were collected from shore and may not be representative of the actual ambient concentration of E. coli in the wider area. 3.3.3.1 ORGANOCHLORINE PESTICIDES Of the list of organochlorine pesticides included in the Standard Method for substances of potential concern for a medium facility, there were no detections. There was one detection in one sample for one organochlorine pesticide (endrin aldehyde). As this parameter is not included in the standard method, an EDO was not developed. This parameter could be considered in the future development of the compliance monitoring program. 3.3.3.2 POLYCHLORINATED BIPHENYLS (PCBS) Total polychlorinated biphenyls (PCBs) were not detected in the wastewater and therefore an EQO was not established. 3.3.3.3 POLYCYCLIC AROMATIC HYDROCARBONS (PAHS) Polycyclic aromatic hydrocarbons (PAHs) were measured as part of initial wastewater characterization. Of the 18 substances measured, 7 substances were detected during the wastewater characterization study: benzo(a)anthracene, benzo(b)fluoranthene, chrysene, fluoranthene, fluorene, pyrene, and phenanthrene. Harbour Engineering Joint Venture New Waterford WWTP ERA 27 There are CCME CWQGs for the protection of aquatic life for freshwater for 5 of the 7 substances that were detected. There were no CCME marine water quality guidelines. There are BC MOE approved marine water quality guidelines for 2 of the 7 substances. The guidelines are as follows: • Benzo(a)anthracene – 0.018 µg/L (freshwater); • Chrysene – 0.1 µg/L (BCMOE marine); • Fluoranthene – 0.04 µg/L (freshwater); • Fluorene – 3 µg/L (freshwater); 12 µg/L (BCMOE marine); • Phenanthrene – 0.4 µg/L (freshwater); and • Pyrene – 0.025 µg/L (freshwater). None of the five (6) substances listed above were detected in the background sample (at a detection limit of 0.01 µg/L). Therefore, the above guidelines will be applied as the EQOs. 3.3.3.4 VOLATILE ORGANIC COMPOUNDS (VOCS) Of the 21 Volatile organic compounds (VOCs) measured, 2 were detected in the wastewater. There is a CCME WQG for the protection of aquatic life for freshwater for 1 of the 2 substances that were detected. There is no marine guideline for either of the substances that were detected. There are no applicable guidelines for bromodichloromethane. The guideline is as follows: • Chloroform – 1.8 µg/L (freshwater). The above guideline will be applied as the EQO. 3.3.3.5 PHENOLIC COMPOUNDS The CCME WQG for the protection of aquatic life for phenols in freshwater is 4 µg/L. There is no guideline specified for marine waters. There is no USEPA or BCMOE salt water quality criterion for phenols. The average background concentration was 30.5 µg/L. The site-specific EQO will be based on the average background concentration of 30.5 µg/L. 3.3.3.6 SURFACTANTS Surfactants were not analyzed in the wastewater samples. This analysis was not available locally, and there are no CWQG available from either CCME or US EPA for non-ionic or anionic surfactants to compare the results to if the analysis was completed. 3.3.4 Summary Table 3.8 below gives a summary of the generic and site-specific EQOs determined for parameters of concern. The source of the EQO has been included in the table as follows: • WSER – wastewater systems effluent regulations • Background – Site-specific EQO based on background concentration in receiving water • CWQG Marine – CCME Canadian Water Quality Guidelines for the Protection of Aquatic Life Marine • USEPA Saltwater – United States Environmental Protection Agency National Recommended Water Quality Criteria – Aquatic Life Criteria – Saltwater Criterion Continuous Concentration • CGF, Marine – Canadian Guidance Framework for the Management of Nutrients in Nearshore Marine Systems Scientific Supporting Document Harbour Engineering Joint Venture New Waterford WWTP ERA 28 • BCMOE AWQG – BCMOE Approved Water Quality Guideline • BCMOE WWQG – BCMOE Working Water Quality Guideline • CWQG Freshwater – CCME Canadian Water Quality Guidelines for the Protection of Aquatic Life Freshwater • HC Primary Contact – Health Canada Guidelines for Canadian Recreational Water Quality – Primary Contact Recreation • HC Secondary Contact – Health Canada Guidelines for Canadian Recreational Water Quality – Primary Contact Recreation • CSSP - Canadian Shellfish Sanitation Program Harbour Engineering Joint Venture New Waterford WWTP ERA 29 Table 3.8 – EQO Summary Parameter Generic EQO Background Selected EQO Source CBOD5 (mg/L) 25 <5.0 25 WSER Total NH3-N (mg/L) 2.7 <0.05 2.7(1) USEPA Saltwater TSS (mg/L) 25 32 25 WSER TP (mg/L) 0.1 0.035 0.1 CGF, Marine TN (mg/L) 1 0.2 1(1) CGF, Marine pH 7 - 8.7 7.71 7 - 8.7 CWQG Marine Un-ionized NH3 (mg/L) as N 1.25 <0.0007 1.25 WSER E. coli – Primary Contact (MPN/100mL) 200 69 200(2) HC Primary Contact E. coli – Secondary Contact (MPN/100mL) 1000 69 1000(2) HC Secondary Contact E. coli – Molluscan Shellfish (MPN/100mL) 14 69 14(2) CSSP Fluoride (mg/L) 0.67 0.67 0.67 Background Nitrate (mg/L) 45 0.038 45(1) CWQG Marine Nitrite (mg/L) 0.06 <0.010 0.06 CWQG Freshwater Total Cyanide (mg/L) 0.001 <0.0010 0.001 USEPA Saltwater Aluminum (mg/L) 0.100 0.274 0.274 Background Cadmium (mg/L) 0.00012 <0.00005 0.00012 CWQG Marine Copper (mg/L) 0.0037 0.00047 0.0037 USEPA Saltwater Iron (mg/L) 0.3 0.393 0.393 Background Lead (mg/L) 0.0085 0.000225 0.0085 USEPA Saltwater Manganese (mg/L) 0.1 0.015 0.1 BCMOE WWQG Nickel (mg/L) 0.0083 <0.0002 0.0083 USEPA Saltwater Uranium (mg/L) 0.015 0.00253 0.015 CWQG Freshwater Zinc (mg/L) 0.086 0.00095 0.086 USEPA Saltwater Benzo(a)anthracene (µg/L) 0.018 <0.010 0.018 CWQG Freshwater Chrysene 0.1 <0.010 0.1 BCMOE AWQG Fluoranthene (µg/L) 0.04 <0.010 0.04 CWQG Freshwater Fluorene (µg/L) 12 <0.010 12 BCMOE AWQG Phenanthrene (µg/L) 0.4 <0.010 0.4 CWQG Freshwater Pyrene (µg/L) 0.025 <0.010 0.025 CWQG Freshwater Chloroform (µg/L) 1.8 <1.0 1.8 CWQG Freshwater Phenols (mg/L) 0.004 0.0305 0.0305 Background Notes: Bold indicates EQO is a WSER requirement. (1) Although the EQOs for ammonia and nitrate have been calculated to be 2.7 mg/L and 45 mg/L, respectively, the EQO of 1 mg/L for total nitrogen would govern. However, as the EQO for TN is based on eutrophication, EDOs will be developed for all parameters separately. (2) EQO is use dependent. Harbour Engineering Joint Venture New Waterford WWTP ERA 30 CHAPTER 4 MIXING ZONE ANALYSIS 4.1 Methodology 4.1.1 Definition of Mixing Zone A mixing zone is the portion of the receiving water where effluent dilution occurs. In general, the receiving water as a whole will not be exposed to the immediate effluent concentration at the end- of-pipe but to the effluent mixed and diluted with the receiving water. Effluent does not instantaneously mix with the receiving water at the point of discharge. Depending on conditions like ambient currents, wind speeds, tidal stage, and wave action, mixing can take place over a large area – up to the point where there is no measureable difference between the receiving water and the effluent mixed with receiving water. The mixing process can be characterized into two distinct phases: near-field and far-field. Near- field mixing occurs at the outfall and is influenced by the configuration of the outfall (e.g. pipe size, diffusers, etc.). Far-field mixing is influenced by receiving water characteristics like turbulence, wave action, and stratification of the water column. Within the mixing zone, EQOs may be exceeded but acutely toxic conditions are not permitted unless it is determined that un-ionized ammonia is the cause of toxicity. If the un-ionized ammonia concentration is the cause of toxicity, there may be an exception (under the WSER) if the concentration of un-ionized ammonia is less than or equal to 0.016 mg/L, expressed as N, at any point that is 100 m from the discharge point. Outside of the mixing zone, EQOs must be achieved. The effluent is also required to be non-chronically toxic outside of the mixing zone. The allocation of a mixing zone varies from one substance to another – degradable substances are allowed to mix in a portion of the receiving water whereas toxic, persistent, and bio-accumulative substances (such as chlorinated dioxins and furans, PCBs, mercury, and toxaphene) are not allowed a mixing zone. A number of general criteria for allocating a mixing zone are recommended in the Strategy, including the following: • The dimensions of a mixing zone should be restricted to avoid adverse effects on the designated uses of the receiving water system (i.e., the mixing zone should be as small as possible); • Conditions outside of the mixing zone should be sufficient to support all of the designated uses of the receiving water system; • A zone of passage for mobile aquatic organisms must be maintained; Harbour Engineering Joint Venture New Waterford WWTP ERA 31 • Placement of mixing zones must not block migration into tributaries; • Changes to the nutrient status of the water body as a result of an effluent discharge should be avoided; eutrophication or toxic blooms of algae are unacceptable impacts; • Mixing zones for adjacent wastewater discharges should not overlap; and • Adverse effects on the aesthetic qualities of the receiving water system (e.g. odour, colour, scum, oil, floating debris) should be avoided (CCME, 2008). The limits of the mixing zone may be defined for the following three categories of aquatic environments based on their physical characteristics: • streams and rivers; • lakes, reservoirs and enclosed bays; and • estuarine and marine waters. Where several limits are in place, the first one to be reached sets the maximum extent of the mixing zone allowed for the dilution assessment. Nutrients and fecal coliforms are not allocated any maximum dilution. For fecal coliforms, the location of the water use must be considered and protected by the limits of the mixing zone. Based on these general guidelines, mixing zone extents must be defined on a case-by-case basis that account for local conditions. It may also be based on arbitrary mixing zone limits for open water discharges, e.g. a 100 m (Environment Canada, 2006) or 250 m (NB Department of Environment, 2012) radius from the outfall and/or a dilution limit. A Draft for Discussion document “Mixing Zone Assessment and Report Templates” dated July 7, 2016, prepared by a committee of representatives of the environment departments in Atlantic Canada, provides guidance regarding mixing zones for ERAs in the Atlantic Provinces. This document recommends that for ocean and estuary receiving waters a maximum dilution limit of 1:1000 be applied for far-field mixing. Finally, the assessment shall be based on ‘critical conditions’. For example, in the case of a river discharge (not applicable here), ‘critical conditions’ can be defined as the seven-day average low river flow for a given return period. For ocean discharges, we propose to use a maximum one-day average effluent concentration at the edge of the mixing zone. The Standard Method provides the following guidance on EDO development: “…reasonable and realistic but yet protective scenarios should be used. The objective is to simulate the critical conditions of the receiving water, where critical conditions are where the risk that the effluent will have an effect on the receiving environment is the highest – it does not mean using the highest effluent flow, the lowest river flow, and the highest background concentration simultaneously.” As a plausible worst case condition is used for the receiving water, the WWTP effluent will be modelled based on an annual average flow, rather than a maximum daily or hourly flow, as applying a critical high flow condition for the effluent simultaneously with a worst case condition in the receiving water would result in overly conservative EDOs as this scenario doesn’t provide a reasonable or realistic representation of actual conditions. Harbour Engineering Joint Venture New Waterford WWTP ERA 32 4.1.2 Site Summary The WWTF is assumed to discharge through an outfall pipe perpendicular to the shoreline in shallow water, extended to a depth estimated at -1.0 m below low tide, at the location of the existing NW2 outfall. The low tide and -1.0 m depth contours were estimated based on navigation charts. The total average effluent discharge is modeled as a continuous point source of 7,800 m3/day. The major coastal hydrodynamic features of the area are as follows: • Along-shore currents along the open coastline are in phase with the tide, i.e. the current speed peaks at high and low tide; • At the outfall site, breaking waves and associated longshore currents will contribute to effluent dispersion during storms. For this assessment, we have assumed calm summer conditions (i.e. no waves), when effluent dilution would be at a minimum. 4.1.3 Far-Field Modeling Approach and Inputs The local mixing zone is limited by the water depth at the outfall of approximately -1.0 m Chart Datum and by the presence of the shoreline. Since the outfall is in very shallow water, the buoyant plume will always reach the surface upon release from the outfall (Fisher et al., 1979). Far-field mixing will then be determined by ambient currents, which is best simulated with a hydrodynamic and effluent dispersion model. We implemented a full hydrodynamic model of the receiving coastal waters using the Danish Hydraulic Institute’s MIKE21 model. MIKE21 is ideally suited to the study of outfall discharges in shallow coastal areas where complex tidal and wind-driven currents drive the dispersion process. The model was developed using navigation charts, tidal elevations, and wind observations for the area. A similar model had been used by CBCL for CBRM in the past: • In 2005 for the assessment of the past wastewater contamination problem at Dominion Beach, which led to the design of the WWTP at Dominion (CBCL, 2005). • In 2014 for ERAs at the Dominion and Battery Point WWTPs. The hydrodynamic model was calibrated to the following bottom current meter data: • 1992 current meters (4 locations) located in 10 m-depth for the study by ASA (ASA, 1994) on local oceanography and effluent dispersion; • 2006 current meters (2 locations) off the Donkin peninsula for the CBCL study of mine effluent dispersion. Calibration consisted of adjusting the following parameters: • Bottom friction; • Model spatial resolution in the area of the current meters. Harbour Engineering Joint Venture New Waterford WWTP ERA 33 Numerical Model Domain with Locations of Current Meter Observations and Modeled Outfall Location are shown in Figure 4.1. Inputs and calibrated outputs are shown in Figure 4.2. The modelled current magnitudes at New Waterford, Glace Bay, and Donkin are in relatively good agreement with observations, which is satisfactory to assess the overall dilution patterns of effluent from the outfall. The effect of waves was not included in the model, and therefore the modeled effluent concentration near the outfall is expected to be conservatively high. Figure 4.1 Numerical Model Domain with Locations of Current Meter Observations and Modeled Outfall Location Harbour Engineering Joint Venture New Waterford WWTP ERA 34 Figure 4.2 Time-series of Hydrodynamic Model Inputs and Calibration Outputs Harbour Engineering Joint Venture New Waterford WWTP ERA 35 4.1.4 Modeled Effluent Dilution Snapshots of typical modeled effluent dispersion patterns are shown on Figure 4.3. Statistics on effluent concentrations were performed over the 1-month model run, and over a running 7-day and 1-day averaging period. Composite images of maximum and average effluent concentrations are shown on Figure 4.4. Effluent concentration peaks at any given location are short-lived because the plume is changing direction every few hours depending on tides and winds. Therefore, a representative dilution criteria at the mixing zone limit is best calculated using an average value. We propose to use the one-day average effluent concentration criteria over the one-month modeling simulation that includes a representative combination of site-specific tides and winds. The diluted effluent plume reaches the shoreline to the west and the east of the outfall. It was found that the plume tended to be streamlined, with turbulence only occurring when the currents changed direction. Maximum concentrations 100 m away from the outfall are observed both North- West and South-East of the outfall. The 100 m distance from the outfall to the shoreline is within the brackets of mixing zone radiuses defined by various guidelines. We propose that this distance be used as mixing zone limit. The maximum 1-day average effluent concentration 100 m away from the outfall over the simulation period is 1.63%. Therefore we propose that a dilution factor of 61.35:1 be used for calculating EDOs. Table 4.1 Modelled Dilution Values 100 and 200 m away from the Outfall Distance away from the outfall Hourly maximum effluent concentration Maximum 1-day average effluent concentration Maximum 7-day average effluent concentration 1-Month average effluent concentration 100 m 16.43 % (6.09:1 Dilution) 1.63 % (61.35:1 Dilution) 1.14 % (87.72:1 Dilution) 0.85 % (117.65:1 Dilution) 200 m 9.40 % (10.64:1 Dilution) 1.08 % (92.52:1 Dilution) 0.89 % (112.36:1 Dilution) 0.63 % (158.73:1 Dilution) Harbour Engineering Joint Venture New Waterford WWTP ERA 36 Figure 4.3 Snapshots of Typical Modeled Effluent Dispersion Patterns Harbour Engineering Joint Venture New Waterford WWTP ERA 37 Figure 4.4 Composite Images of Modeled Maximum 1-Day Average (top) and Maximum 7- Day Average Effluent Concentrations (middle) with Concentration Time-Series (bottom) Note: 100-m radius (black) and 200-m radius (grey) circle shown around outfall Harbour Engineering Joint Venture New Waterford WWTP ERA 38 CHAPTER 5 EFFLUENT DISCHARGE OBJECTIVES 5.1 The Need for EDOs Effluent Discharge Objectives (EDOs) represent the effluent substance concentrations that will protect the receiving environment and its designated water uses. They describe the effluent quality necessary to allow the EQOs to be met at the edge of the mixing zone. The EQOs are established in Chapter 3; see Table 3.8 for summary of results. EDOs should be calculated where reasonable potential of exceeding the EQOs at the edge of the mixing zone has been determined. Typically, substances with reasonable potential of exceeding the EQOs have been selected according to the simplified approach: If a sample result measured in the effluent exceeds the EQO, an EDO is determined. As only one sample event was collected from each outfall, rather than a full year of effluent characterization, EDOs will be developed for all substances of potential concern that were detected in at least one sample, and for which an EQO was identified. 5.2 Physical/ Chemical/ Pathogenic EDOs For this assessment, EDOs were calculated using the dilution values obtained at the proposed average design flow of 7,800 m3/day. This resulted in a dilution of 61.35:1 at the edge of a 100 m mixing zone. The model shows a dilution of 2000:1 at the beach at the end of Brown’s Road Extension. Parameters for which there is a WSER criteria were not allowed any dilution and therefore the EDO equals the WSER Criteria. The Standard Method does not allocate any maximum dilution for nutrients and fecal coliforms. For nutrients, it recommends a case-by-case analysis. For fecal coliforms, the location of the water use must be protected by the limits of the mixing zone. The dilution values were used to obtain an EDO by back-calculating from the EQOs. When the background concentration of a substance was less than the detection limit, the background concentration was not included in the calculation of the EDO. 5.3 Effluent Discharge Objectives Substances of concern for which an EDO was developed are listed in Table 5.1 below with the associated EQO, maximum measured wastewater concentration, and the associated EDO. Harbour Engineering Joint Venture New Waterford WWTP ERA 39 Table 5.1 – Effluent Discharge Objectives at Current Average Daily Flow Parameter Maximum Conc. (4) Background Selected EQO Source Dilution Factor EDO(1) CBOD5 (mg/L) 140 <5.0 25 WSER - 25 Total NH3-N (mg/L) 3.1 <0.05 2.7 USEPA Saltwater 61.35 166 TSS (mg/L) 110 32 25 WSER - 25 TP (mg/L) 1.6 0.035 0.1 CGF, Marine 61.35 4.0 TN (mg/L) 10 0.2 1 CGF, Marine 61.35 49.3 Un-ionized NH3 (mg/L) 0.0032 <0.0007 1.25 WSER - 1.25 E. coli - Primary(MPN/100mL)(2) 1000000 69 200 HC Primary Contact 2000 262,069 E. coli - Secondary(MPN/100mL) 1000000 69 1000 HC Secondary Contact 61.35 57,186 E. coli - Moll. Shellfish(MPN/100mL) 1000000 69 14 CSSP Note (3) See Discussion Fluoride (mg/L) 0.17 0.67 0.67 Background 61.35 0.67 Nitrate (mg/L) 0.32 0.038 45 CWQG Marine 61.35 2758 Nitrite (mg/L) 0.3 <0.010 0.06 CWQG Freshwater 61.35 3.7 Total Cyanide (mg/L) 0.0035 <0.0010 0.001 USEPA Saltwater 61.35 0.0614 Aluminum (mg/L) 0.6 0.274 0.274 Background 61.35 0.274 Cadmium (mg/L) 0.00032 <0.00005 0.00012 CWQG Marine 61.35 0.00736 Copper (mg/L) 0.014 0.00047 0.0037 USEPA Saltwater 61.35 0.1986 Iron (mg/L) 0.73 0.393 0.393 Background 61.35 0.393 Lead (mg/L) 0.0012 0.000225 0.0085 USEPA Saltwater 61.35 0.508 Manganese (mg/L) 1.1 0.015 0.1 BCMOE WWQG 61.35 5.23 Nickel (mg/L) 0.011 <0.0002 0.0083 USEPA Saltwater 61.35 0.509 Uranium (mg/L) 0.00014 0.00253 0.015 CWQG Freshwater 61.35 0.768 Zinc (mg/L) 0.079 0.00095 0.086 USEPA Saltwater 61.35 5.22 Benzo(a)anthracene (µg/L) 0.01 <0.010 0.018 CWQG Freshwater 61.35 1.10 Chrysene (µg/L) 0.01 <0.010 0.1 BCMOE AWQG 61.35 6.14 Fluoranthene (µg/L) 0.028 <0.010 0.04 CWQG Freshwater 61.35 2.45 Fluorene (µg/L) 0.011 <0.010 3 BCMOE AWQG 61.35 184 Phenanthrene (µg/L) 0.026 <0.010 0.4 CWQG Freshwater 61.35 25 Pyrene (µg/L) 0.021 <0.010 0.025 CWQG Freshwater 61.35 1.53 Chloroform (µg/L) 2.3 <1.0 1.8 CWQG Freshwater 61.35 110 Phenols (mg/L) 0.0094 0.0305 0.0305 Background 61.35 1.87 Harbour Engineering Joint Venture New Waterford WWTP ERA 40 Notes: (1) For parameters where the EQO is based on the WSER, and for bio accumulative substances no dilution is permitted. If toxicity was identified, additional work would be required to define EDOs. (2) Dilution at Browns Road Extension Beach of 0.05%. (3) Existing closure zone boundary is outside the limits of the plume. (4) Maximum concentration of existing wastewater samples Yellow highlight indicates the maximum measured concentration exceeds the EQO; orange highlight indicates the maximum measured concentration exceeds the EDO Based on the EDOs calculated above, sample results for the following parameters exceeded the EDO in at least one wastewater characterization sample: • CBOD; • TSS; • E. coli; • Aluminum; and • Iron. Some of these parameters will be reduced through treatment. In addition, the above list is based on a single sample exceedance at any one of the outfall locations, which may not reflect the results obtained when both of the individual outfalls are intercepted and combined. Further, some of the EQOs were based on published water quality guidelines that may be overly stringent for a marine receiving environment, due to a lack of a more appropriate guideline. Comments on each parameter in the list above is provided below: CBOD and TSS These parameters will meet the EDOs at the discharge of the new WWTP through treatment. E. Coli This parameter will meet the EDO for primary and secondary contact recreation through treatment. In terms of an EDO for E. coli for the protection of molluscan shellfish, an EDO could not be calculated because the measured background concentration was greater than the EQO. The average measured background concentration for E. coli was 69 E. coli/100mL compared to an EQO of 14 E. coli/100mL. These background samples were collected from shore and may not be representative of the actual ambient concentration of E. coli in the area. Aluminum The EDO for aluminum was equal to the background concentration of 0.274 mg/L as the background concentration was greater than the generic EQO of 0.1 mg/L. However, this EQO is likely overly conservative as it is based on the CCME CWQG for the protection of aquatic life for freshwater. There is no CCME CWQG for marine waters. There is no US EPA or BC MOE salt water quality criterion for aluminum. Therefore, the CCME freshwater guideline was utilized in the absence of a more appropriate guideline. However, use of the background value for the EDO results in no dilution being available. In addition, some aluminum removal will likely occur during treatment. Harbour Engineering Joint Venture New Waterford WWTP ERA 41 Iron The EDO for iron was equal to the background concentration of 0.393 mg/L as the background value was greater than the generic EQO of 0.3 mg/L. However, this EQO is likely overly conservative as it is based on the CCME CWQG for the protection of aquatic life for freshwater. There is no CCME CWQG for marine waters. There is no US EPA or BC MOE salt water quality criterion for iron. Therefore, the CCME freshwater guideline was utilized in the absence of a more appropriate guideline. However, use of the background value for the EDO results in no dilution being available. In addition, some iron removal will likely occur during treatment. Harbour Engineering Joint Venture New Waterford WWTP ERA 42 CHAPTER 6 COMPLIANCE MONITORING The Standard Method utilizes the results of the ERA to recommend parameters for compliance monitoring according to the following protocol: • The WSER requirements for TSS, CBOD and unionized ammonia must be monitored to ensure they are continuously being achieved. Minimum monitoring frequencies are specified in the guidelines based on the size of the facility. Monitoring of these substances cannot be reduced or eliminated; • Nutrients, such as phosphorus and ammonia, and pathogens for which an EDO was developed should be included in the monitoring program with the same sampling frequency as TSS and CBOD5; • For additional substances, the guidelines require that all substances with average effluent values over 80% of the EDO be monitored; • If monitoring results for the additional substances are consistently below 80% of the EDO, the monitoring frequency can be reduced; • If average monitoring results subsequently exceed 80% of the EDO, monitoring frequency must return to the initial monitoring frequency; and • If monitoring results are below 80% of the EDO for at least 20 consecutive samples spread over a period of at least one-year, monitoring for that substance can be eliminated. Although the Standard Method results in recommending parameters for compliance monitoring, the provincial regulator ultimately stipulates the compliance monitoring requirements as part of the Approvals to Operate. In New Brunswick, the New Brunswick Department of Environment and Local Government has been using the results of the ERA to update the compliance monitoring program listed in the Approval to operate when the existing Approvals expire. At this time, it is premature to use the results of this ERA to provide recommendations on parameters to monitor for compliance, as the purpose of this ERA was to provide design criteria for design of a new WWTP. Harbour Engineering Joint Venture New Waterford WWTP ERA 43 CHAPTER 7 REFERENCES ASA Consulting Limited (1994). “Industrial Cape Breton Receiving Water Study, Phase II”. Prepared for The Town of Glace Bay. BC Ministry of Environment (2006). A Compendium of Working Water Quality Guidelines for British Columbia. Retrieved from: http://www.env.gov.bc.ca/wat/wq/BCguidelines/working.html CBCL Limited (2005). Dominion Beach Sewer Study. Prepared for CBRM. CCME (2008). Technical Supplement 3. Canada-wide Strategy for the Management of Municipal Wastewater Effluent. Standard Method and Contracting Provisions for the Environmental Risk Assessment. CCME (2007). Canadian Guidance Framework for the Management of Nutrients in Nearshore Marine Systems Scientific Supporting Document. CCME Canadian Environmental Quality Guidelines Summary Table. Water Quality Guidelines for the Protection of Aquatic Life. Environment Canada (Environment Canada). 1999. Canadian Environmental Protection Act Priority Substances List II – Supporting document for Ammonia in the Aquatic Environment. DRAFT –August 31, 1999. Environment Canada, 2006 - Atlantic Canada Wastewater Guidelines Manual for Collection, Treatment, and Disposal Fisheries Act. Wastewater Systems Effluent Regulations. SOR/2012-139. Fisher et al. (1979). Mixing in Inland and Coastal Waters. Academic Press, London. Health Canada (2012). Guidelines for Canadian Recreational Water Quality. Retrieved from: http://www.hc-sc.gc.ca/ewh-semt/pubs/water-eau/guide_water-2012-guide_eau/index-eng.php NB Department of Environment & Local Government, 2012 Memo. Thomann, Robert V. and Mueller, John A. 1987. Principles of Surface Water Quality Modeling and Control. Harbour Engineering Joint Venture New Waterford WWTP ERA 44 USEPA. National Recommended Water Quality Criteria for Saltwater. Retrieved from: http://water.epa.gov/scitech/swguidance/standards/criteria/current/index.cfm Prepared by: Reviewed by: Holly Sampson, M.A.Sc., P.Eng. Karen March, M.Sc. Intermediate Chemical Engineer Environmental Scientist Harbour Engineering Joint Venture Appendices APPENDIX A Laboratory Certificates   HEJV New Waterford Wastewater System Pre‐Design Summary Report Appendices APPENDIX D  New Waterford Wastewater Treatment  Facility Site Desktop Geotechnical Review     301 Alexandra Street, Sydney, NS B1S 2E8 t: 902.562.2394 f: 902.564.5660 www.exp.com 301 Alexandra Street, Sydney, NS B1S 2E8 t: 902.562.2394 f: 902.564.5660 www.exp.com October 26, 2018 SYD-00245234-A0/60.2 Mr. Terry Boutilier Dillon Consulting Limited 275 Charlotte Street Sydney, NS B1P 1C6 Re: Wastewater Treatment Plant Geotechnical Desktop Study New Waterford Sit Dear Mr. Boutilier: It is the pleasure of EXP Services Inc. (EXP) to provide Dillon Consulting Limited (Dillon) with this letter report summarizing the preliminary review completed by EXP on the potential site for the construction of a wastewater treatment facility in New Waterford, Nova Scotia. Background A geotechnical desktop study is an essential tool used by engineers to identify and gather as much information as possible pertaining to the probable ground conditions at a proposed construction site without commissioning an intrusive ground investigation. The information obtained from the desktop study will identify potential problems, hazards and/or constraints associated with the probable ground conditions in the proposed area of construction, as well as provide geotechnical recommendations for new construction activities. When a walkover survey is completed in conjunction with the desktop study it will allow engineers to refine and enhance their understanding of each of the sites in relation to the topography, earth exposures, drainage conditions, etc. When completed together (the desktop study and the walkover survey), the findings will provide invaluable information in the early stages of the design at a negligible cost. It is the intent of the desktop study and walkover survey not only to look at the site, but also at its surroundings. Noted below are the key findings to be reported in any desktop study and walkover assessment: • site topography; • geology (surficial ground cover, probable overburden soil and bedrock type); • geotechnical problems and parameters; • previous land use (aerial photographs); Dillon Consulting Limited Wastewater Treatment Plant Geotechnical Desktop Study – New Waterford Site SYD-00245234-A0 October 26, 2018 2 \\trow.com\PROJECTS\SYD\SYD-00245234-A0\60 Project Execution\60.2 Reports\New Waterford\New_Waterford_Site.docx • underground/surface mining activities; and • proposed supplemental ground investigation methods (test pits and/or boreholes). Subject Site Description and Topography The proposed site for the new wastewater treatment plant (WWTP) is located on a vacant lot on the northern coastline of the Barrachois, off of Mohan Street in New Waterford, Nova Scotia, and is identified by Property Identification Number (PID) 15483100. The site has an undulating topography associated with Irish Brook, which bisects the property. Along the Atlantic coastline the property drops off rapidly (at the cliff face). The proposed construction property is bound by the Atlantic coastline along the northern perimeter of the site, Irish Brook to the south and southeastern perimeters and Mohan Street to the western perimeter. Figure 1 depicted below outlines the proposed location of the site. Figure 1: Proposed location of the new WWTP in New Waterford. Published Geological Mapping (Surficial and Bedrock) Review of the surficial geological mapping of the study area indicated that the subsurface geology consists of a Stony Till Plain. This type of till is generally comprised of a stony, sandy matrix material with varying amounts of cobbles and boulders and can vary in thickness from 2 to 20 metres thick. Typically, these materials were released from the base of ice sheets during the melting process of the ice sheet. Dillon Consulting Limited Wastewater Treatment Plant Geotechnical Desktop Study – New Waterford Site SYD-00245234-A0 October 26, 2018 3 \\trow.com\PROJECTS\SYD\SYD-00245234-A0\60 Project Execution\60.2 Reports\New Waterford\New_Waterford_Site.docx A review of the existing bedrock mapping for the area indicates that the site is underlain by materials from the late carboniferous period, which are identified in this area as material from the Sydney Mines Formations of the Morien Group. These formations are comprised of fluvial and lacustrine mudstone, shale, siltstone, limestone and coal. A review of historical mapping and online reference documents indicated that mining activities have been carried out extensively in an area west and southwest of the proposed construction site (but not directly under the site). The workings were the standard room and pillar coal extraction process. It should be noted that pillars may have been mined at some point. Mapping indicated that the Hub (Barrasois) Seam outcroppings traverse the proposed property. However, it is approximately 100 to 150 metres south of the footprint of the proposed construction site. Two abandoned mine openings (AMOs) were found on the site. The AMOs have identification numbers MWA-1-159 and MWA-1-449. Review of the report suggests that both openings were backfilled to grade as a protective measure. Existing Ground Conditions At the time of the investigation, the site was primarily covered with low lying vegetation. All-terrain vehicle (ATV) trails were observed crisscrossing over the site, exposing the underlying glacial till soils. The overburden soil (glacial till) exposure was observed along the cliffside. The thickness of the overburden appears to be in the range of 1.2 to 2.0 metres thick (thicker accumulations are expected deeper inland). The glacial till was visually described as being a poorly graded silty SAND with gravel and varying amounts of cobbles (flat and subangular in shape). The till mixture is in a compact state of relative density. The till should provide satisfactory bearing stratum for the support of shallow foundations with bearing capacities between 150 and 200 kPa. The underlying bedrock would provide a higher capacity for allowable bearing. The bedrock underlying the till was also observed along the cliffside. The exposed bedrock consisted of alternating layers of shale, mudstone, sandstone and/or siltstone. The formations are consistent with the material identified in the regional mapping. The exposed bedrock along the Atlantic coastline is showing evidence of erosion. Geotechnical Problems and Parameters Summarized below are the key geotechnical problems of the site. • There is evidence of the erodibility of subsurface soils and bedrock exposure along the Atlantic coastline. A Coastal Protection Plan will be required for this site. • The area west and southwest of the proposed construction site was undermined due to historical coal mining activities and there is a potential for undocumented bootleg pits/mines in the area. • There is the potential for a layer of limestone to be present underlying the surficial ground and alternating layers of bedrock below the site. Limestone is water soluble and has the potential to develop karsts voids (sinkholes). Dillon Consulting Limited Wastewater Treatment Plant Geotechnical Desktop Study – New Waterford Site SYD-00245234-A0 October 26, 2018 4 \\trow.com\PROJECTS\SYD\SYD-00245234-A0\60 Project Execution\60.2 Reports\New Waterford\New_Waterford_Site.docx Previous Land Use Aerial photographs from 1931 to 2018 have been reviewed and are summarized below. • An aerial photograph taken in 1931 depicts the site void of any structures. It was primarily covered with low lying vegetation. A footpath traverses the site along the northern side of Irish Brook. Residential dwellings were observed to the east, west and south of the site. • An aerial photograph taken in 1947 depicts a new structure near the southwest corner of the site. Some costal erosion along the Atlantic coast line was observed. Continued development of residential housing surrounding the site. • An aerial photograph taken in 1954 depicts little to no discernable change to the site since the 1947 photograph was taken. • An aerial photograph taken in 1963 depicts little to no discernable change to the site since the 1954 photograph was taken. • An aerial photograph taken in 1973 depicts a new wharf has been constructed on the southern side of Irish Brook. Additional coastal erosion was visible. • An aerial photograph taken in 1987 depicts little change to the site since the 1973 photograph was taken. • An aerial photograph taken in 1993 depicts little to no discernable change to the site since the 1987 photograph was taken. Additional coastal erosion was visible. • An aerial photograph taken in 2010 depicts an area of vegetation stripped from the southwestern corner of the site. • An aerial photograph taken in 2018 shows an increase in vegetation on the site. Proposed Supplemental Ground Investigation Methods It is also recommended that a preliminary geotechnical investigation (land based drilling) be completed at the site to verify the presence or absence of authorized and/or bootleg mining activities undertaken in the area, as well as the potential of future subsidence that could impact structures constructed on the site. Ultimately, the goal of the supplemental geotechnical ground investigation is to collect pertinent information pertaining to the subsurface conditions within the footprint of the proposed new facility. This information will then be used to develop geotechnical recommendations for use in the design and construction of the new facility. Borehole locations should be selected based upon the location of buried infrastructure (sewer, water, electrical and fiber optic lines) and to provide adequate coverage of the site. It is proposed that representative soil samples be collected continually throughout the overburden material of each of the four boreholes advanced at the site. Additionally, it is recommended that during the investigation samples of the bedrock should be collected continuously to a depth of at least 30 metres or more, in two of the four boreholes. The intent of the bedrock coring is to: Dillon Consulting Limited Wastewater Treatment Plant Geotechnical Desktop Study – New Waterford Site SYD-00245234-A0 October 26, 2018 5 \\trow.com\PROJECTS\SYD\SYD-00245234-A0\60 Project Execution\60.2 Reports\New Waterford\New_Waterford_Site.docx • verify the presence or absence of underground mine workings (both authorized commercial activities and/or bootleg pits). • increase the odds of advancing the borehole through the roof of any mine working (to determine the potential void space) and not into a supporting pillar (if applicable). • accurately characterize the bedrock for design of either driven or drilled piles, if needed. It is recommended that the remaining two boreholes be terminated either at 12 metres depth below ground surface or once refusal on assumed bedrock is encountered (whichever comes first). It should be noted that if pillar extraction took place, fractures will likely extend 20 metres above mine workings. If this is the case, drill return water may be lost and rock wedges may be encountered. This will inhibit coring and an alternative method of drilling through fractured rock may have to be pursed. A Geotechnical Engineer should oversee the advancement of each of the boreholes. A CME 55 track mounted geotechnical drill rig (or equivalent), equipped with bedrock coring equipment and a two- man crew (driller and helper), should be used to advance each of the boreholes. Representative soil samples should be attained from a 50 mm diameter standard split spoon sampler during Standard Penetrating Tests (SPT) conducted ahead of the casing and/or auger equipment. A preliminary assessment of each recovered sample should be completed for particle size, density, moisture content and color. The SPT should continue until refusal or contact with assumed bedrock. Bedrock should be confirmed through coring of the material using coring equipment and drill casing. Each core sample should be removed from the core barrel and placed into core boxes for identification. Upon completion of the intrusive portion of the program, all boreholes are to be plugged (at various depths within the borehole) using a bentonite plug and backfilled to grade using silica sand. It should be noted that continuous grouting (with neat cement and/or bentonite) may be required to backfill the boreholes to grade. The continuous grouting will protect water supplies from contamination sources; it can prevent the movement of water between aquifers; and prevent and stabilize the water soluble bedrock that may be present on the site. Following the installation and backfilling activities, the location and elevations are to be determined using Real Time Kinematic (RTK) survey equipment in the AST 77 coordinate system. This letter report is prepared for the New Waterford site. Should you have any questions or concerns, please contact John Buffett or Gary Landry at 902.562.2394. Sincerely, Sincerely, John Buffett, P.Eng., B.Sc., RSO Gary Landry, P.Eng., B.Sc. Project Engineer Project Manager EXP Services Inc.   HEJV New Waterford Wastewater System Pre‐Design Summary Report Appendices APPENDIX E  New Waterford Wastewater System  Archaeological Resources Impact  Assessment