Loading...
HomeMy WebLinkAbout182402-Louisbourg-Wastewater-Pre-Design-Summary-Report-Final 182402.00 / 187116.00 ● Final Report ● March 2020 Environmental Risk Assessments & Preliminary Design of Seven Future Wastewater Treatment Systems in CBRM Louisbourg Wastewater Interception & Treatment System Summary Report Prepared by: Prepared for:                                                                             Louisbourg WW Interception &  Treatment System Summary Report May 28, 2020 Darrin McLean James Sheppard Darrin McLean  Issue or Revision Date Issued By: Reviewed By: Prepared By:  This document was prepared for the party indicated herein. The material and information in the document reflects HE’s opinion and best judgment based on the information available at the time of preparation. Any use of this document or reliance on its content by third parties is the responsibility of the third party. HE accepts no responsibility for any damages suffered as a result of third party use of this document.                             March 27, 2020 164 Charlotte St. PO Box 567 Sydney, NS B1P 6H4 March 27, 2020 Matt Viva, P.Eng. Manager Wastewater Operations Cape Breton Regional Municipality (CBRM) 320 Esplanade, Sydney, NS B1P 7B9 Dear Mr. Viva: RE: Louisbourg Wastewater Interception & Treatment System - Summary Report Please find enclosed for your files the final draft version of the Summary Report for the Louisbourg Wastewater Interception & Treatment System. This report presents a description of proposed wastewater interception and treatment infrastructure upgrades for the Louisbourg Wastewater system, as well as an estimate of the capital, operating costs and replacement costs for the proposed infrastructure. In addition, estimated costs of upgrades and assessments related to the existing wastewater collection system are provided. A desktop geotechnical review of the wastewater treatment facility site is provided, along with an archaeological resources impact assessment review for all sites of proposed wastewater infrastructure. Finally, an Implementation Timeline is provided, which outlines a tentative schedule for implementation of the various proposed wastewater system upgrades. If you have any questions or require clarification on the content presented in the attached report, please do not hesitate to contact us. Yours very truly, Harbour Engineering Joint Venture Prepared by: Reviewed by: Darrin McLean, MBA, FEC, P.Eng. James Sheppard, P.Eng. Senior Municipal Engineer Civil Infrastructure Engineer Direct: 902-539-1330 (Ext. 3138) Direct: 902-562-9880 E-Mail: dmclean@cbcl.ca E-Mail: jsheppard@dillon.ca Project No: 182402.00 (CBCL) 187116.00 (Dillon)   HEJV Louisbourg Wastewater System Summary Report i  Contents    CHAPTER 1 Introduction & Background ......................................................................................... 1  1.1 Introduction ........................................................................................................................ 1  1.2 Background ......................................................................................................................... 1  1.3 Description of Existing Wastewater Collection System ...................................................... 1  1.4 Service Area Population ...................................................................................................... 2  CHAPTER 2 Wastewater Interceptor System .................................................................................. 3  2.1 Description of Proposed Wastewater Interceptor Infrastructure ...................................... 3  2.2 Interception Infrastructure Land/Easement Acquisition Requirements ............................ 3  2.2.1 Linear Infrastructure ............................................................................................... 3  CHAPTER 3 Existing Wastewater Collection System Upgrades / Assessments ................................ 5  3.1 Asset Condition Assessment Program ................................................................................ 5  3.2 Sewer Separation Measures ............................................................................................... 5  CHAPTER 4 Wastewater Treatment System ................................................................................... 6  4.1 Recommended Wastewater Treatment Facility ................................................................. 6  4.2 Wastewater Treatment Facility Land Acquisition Requirements ....................................... 7  4.3 Wastewater Treatment Facility Site Desktop Geotechnical Review .................................. 7  CHAPTER 5 Wastewater System Archaeological Resources Impact Assessment ............................. 8  5.1 Archaeological Resources Impact Assessment ................................................................... 8  CHAPTER 6 Wastewater Infrastructure Costs ............................................................................... 10  6.1 Wastewater Interception & Treatment Capital Costs ...................................................... 10  6.2 Wastewater Interception & Treatment Annual Operating Costs ..................................... 11  6.3 Annual Capital Replacement Fund Contribution Costs .................................................... 11  6.4 Existing Wastewater Collection System Upgrades / Assessment Costs ........................... 13  CHAPTER 7 Project Implementation Timeline .............................................................................. 14  7.1 Implementation Schedule ................................................................................................. 14  Appendices  A Louisbourg Collection System Pre‐Design Brief  B Louisbourg Wastewater Treatment System Pre‐Design Brief  C Louisbourg Environmental Risk Assessment Report  D Louisbourg Wastewater Treatment Facility Site Desktop Geotechnical Review  E Louisbourg Wastewater System Archaeological Resources Impact Assessment        HEJV Louisbourg Wastewater System Summary Report 1 CHAPTER 1  INTRODUCTION & BACKGROUND    1.1 Introduction  Harbour Engineering Joint Venture (HEJV) was retained by the Cape Breton Regional Municipality  (CBRM) to provide engineering services associated with the preliminary design of wastewater  interception and treatment infrastructure for the community of Louisbourg, Nova Scotia as part of  the greater Environmental Risk Assessment and Preliminary Design of 7 Future Wastewater Treatment  Systems in CBRM project. This report presents a description of that proposed infrastructure upgrades  for the Louisbourg Wastewater system, as well as an estimate of the capital, operating costs and  replacement costs for the proposed infrastructure. In addition, estimated costs of upgrades and  assessments related to the existing wastewater collection system are provided. A desktop  geotechnical review of the wastewater treatment facility site is provided, along with an archaeological  resources impact assessment review for all sites of proposed wastewater infrastructure. Finally, an  Implementation Timeline is provided, which outlines a tentative schedule for implementation of the  various proposed wastewater system upgrades.    1.2 Background  The wastewater collection system in the community of Louisbourg, as in many communities throughout  CBRM, currently discharges untreated wastewater to the Atlantic Ocean. The evolution of the existing  wastewater collection and disposal systems in CBRM included the creation of regions of a community  which were serviced by a common wastewater collection system tied to a local marine outfall. Such  design approaches have traditionally been the most cost‐effective manner of providing centralized  wastewater collection, and the marine environment has long been the preferred receiving water given  the available dilution. Due to a changing regulatory environment, CBRM is working toward intercepting  and treating the wastewater in these communities prior to discharge.    The Louisbourg system has been classified as low risk under the federal Wastewater System Effluent  Regulations under the Fisheries Act, requiring implementation of treatment systems by the year 2040.    1.3 Description of Existing Wastewater Collection System  The community of Louisbourg is serviced by a gravity sewer system, ranging in size from 200 to 750mm  in diameter. There are 5 wastewater sewersheds in the community of Louisbourg. Each sewershed  actively discharges raw sewage to Louisbourg Harbour. The outfalls for the sewersheds are located as  follows:      HEJV Louisbourg Wastewater System Summary Report 2  L#1 ‐ South of the Wolfe/Riverdale/Main Street intersection at the Barrachois;   L#2 ‐ South of the Centre and Commercial Street intersection;    L#3 ‐ Adjacent to the boardwalk, south of Harbourview Crescent;   L#4 ‐ Minto Street; and   L#5 – South of the Beatrice/Main Street intersection.    An additional unnamed outfall is located at the south end of Marvin Street, which has been denoted  as L#6 for the purposes of this preliminary design brief. This outfall receives discharge from one home.  This home would be best served in the future by a low pressure sewer system that would convey  discharge to the new interceptor sewer.    There are several commercial buildings on the Louisbourg Waterfront that appear to not be  connected to the existing sanitary sewer network. Each of these buildings may have their own outfalls  for sanitary and process sewer flows. These buildings would be best served in the future by a low  pressure sewer system that could convey sewer to the adjacent CBRM sewer network.    1.4 Service Area Population  For Louisbourg, the service area population was estimated to be 821 people in 391 residential units.  The population of the CBRM has been declining and this trend is expected to continue. Recent  population projection studies predict a 17.8% decrease in population in Cape Breton County between  2016 and 2036. For this reason, no allocation has been made for any future population growth.     For the purpose of preliminary design, wastewater infrastructure has been sized based on the current  population and measured flow data. While this may seem overly conservative, due to significant  amounts of inflow and infiltration (I&I) observed in sewer systems in the CBRM, a given population  decrease will not necessarily result in a proportional decrease in wastewater flow. Therefore, basing  the design on current conditions is considered the most reasonable approach.                                          HEJV Louisbourg Wastewater System Summary Report 3   CHAPTER 2  WASTEWATER INTERCEPTOR SYSTEM    2.1 Description of Proposed Wastewater Interceptor Infrastructure   The proposed wastewater interceptor system for the Louisbourg Wastewater System includes the  following major elements:     A 300mm diameter gravity sewer will intercept flow at L#1, with a connection at Riverdale  Street. The gravity interceptor will cross an existing box culvert at Main Street and convey  flow to Combined Sewer Overflow (CSO) #2.     CSO‐1 will be used to redirect flow and decrease pipe size from the existing 750mm diameter  L#5 outfall system to the new gravity interceptor.     A 250 mm diameter interceptor gravity sewer will convey the flow from CSO‐1 to the  Louisbourg Wastewater Treatment Plant (WWTP). The route will commence on Main Street  and flow to Commercial Street. L#3 will be intercepted on Harbourview Drive. L#4 will be  intercepted at Minto Street.     To intercept flow at Commercial Street, the interceptor sewer increases in size to 450mm  diameter at the intersection of Commercial and Aberdeen Street. The interceptor sewer will  connect to the existing sewer on Lower Warren, Alexandra and Strathcona Street.     The conveyed flow will then be intercepted by CSO‐2, to limit the flow into the proposed  WWTP.     In addition to the outlined pipe route, low pressure sewer systems would be provided for  buildings along the waterfront that are currently not connected to the CBRM sanitary sewer  system.    A detailed description of the proposed wastewater interceptor system, including preliminary layout  drawings is provided in Appendix A.    2.2 Interception Infrastructure Land/Easement Acquisition Requirements    2.2.1 Linear Infrastructure  Installation of linear infrastructure such as gravity sewer piping and manholes will require property  acquisitions or easements as shown in the table below.    HEJV Louisbourg Wastewater System Summary Report 4   Table 1 ‐ Linear Infrastructure Land Acquisition Requirements  PID# Property  Owner Assessed Value Description Size Required Purchase Entire  Lot (Y/N)  15458128  SNE Sea  Products  Incorporated  $34,500 Sewer  Easement 45mx10m N  15458243 3264937 Nova  Scotia Limited $307,900 Sewer  Easement 200mx10m N    HEJV Louisbourg Wastewater System Summary Report 5 CHAPTER 3  EXISTING WASTEWATER COLLECTION SYSTEM  UPGRADES / ASSESSMENTS    3.1 Asset Condition Assessment Program  To get a better sense of the condition of the existing Louisbourg sewage collection system, HEJV  recommends completing a sewage collection system asset condition assessment program in the  community. The program would carry out an investigation involving two components:    1. Visual inspection and assessment of all manholes in the collection system;  2. Video inspection of 20% of all sewers in the system    The program should be completed with the issuance of a Collection System Asset Condition  Assessment Report that would summarize the condition of the various assets inspected and include  opinions of probable costs for required upgrades.    3.2 Sewer Separation Measures  CBRM should consider completing further sewer separation investigation efforts in Louisbourg. The  program would review catch basins that are currently connected or possibly connected to existing  sanitary sewers. The program should also include the costing of the installation of new storm sewers  to disconnect catch basins from the existing sanitary sewer.    A sewer separation investigation could negate the requirement for CSO #1, should the existing system  allow for the reconfiguration to a smaller gravity sewer and a separate, larger storm sewer. The storm  sewer would still direct flow to L#5, whereas the reconfigured gravity sewer would convey directly to  the proposed interceptor sewer.                  HEJV Louisbourg Wastewater System Summary Report 6 CHAPTER 4  WASTEWATER TREATMENT SYSTEM    4.1 Recommended Wastewater Treatment Facility  The recommended wastewater treatment facility for Louisbourg is the Sequencing Batch Reactor  (SBR) process, which is an aerobic suspended‐growth biological treatment process. The SBR process  is a batch process whereby secondary treatment, including nitrification, is achieved in one reactor. It  involves a “fill and draw” type reactor where aeration and clarification occur in the same reactor.  Settling is initiated after the aeration cycle and supernatant is withdrawn through a decanter  mechanism. The WWTP would provide the following general features:    1. A triplex sewage pumping station to lift sewage from the proposed interceptor sewer into the  WWTP;  2. Preliminary treatment involving raw wastewater screening and grit removal;  3. Secondary treatment involving two continuous‐flow SBR tanks;  4. Disinfection of the treated wastewater with the use of an ultraviolet (UV) disinfection unit;  5. Sludge management by means of an aerated sludge holding tank, sludge dewatering centrifuge  and associated bin room;  6. Odour control equipment;  7. Staff work spaces, including office space, laboratory space, control room, locker room, lunch  room, and washrooms.  8. Site access and parking, along with site fencing;  9. A new treated wastewater outfall.    The proposed site of the Louisbourg WWTP is located at the end of Strathcona Street. The design  loads for the proposed WWTP are as shown in the table below.    Table 2 ‐ WWTP Design Loading Summary  Parameter Average Day Peak Day  Design Population  821  Flow (m3/day) 590 2,360  CBOD Load (kg/day) 65.7 131  TSS Load (kg/day) 73.9 148  TKN Load (kg/day) 10.9 21.8      HEJV Louisbourg Wastewater System Summary Report 7 A detailed description of the proposed wastewater treatment system, including preliminary layout  drawings is provided in Appendix B.    The associated Environmental Risk Assessment Report, which outlines effluent criteria for the  proposed wastewater treatment facility for Louisbourg is provided in Appendix C.    4.2 Wastewater Treatment Facility Land Acquisition Requirements  Construction of the proposed wastewater treatment facility will require property acquisitions as  shown in the table below.    Table 3 ‐ WWTP Land Acquisition Requirements  PID# Property  Owner Assessed Value Description Size Required Purchase Entire  Lot (Y/N)  15458243  3264937 Nova  Scotia Limited $307,900 WWTP Site 100m x 100m N    4.3 Wastewater Treatment Facility Site Desktop Geotechnical Review  A review of the subsurface soil conditions at the proposed site for the Louisbourg Wastewater  Treatment Facility was carried out. In general, the review involved a field visit to the site to observe  the general conditions and a desktop review of available documents with the intent of commenting  on the following issues:     site topography;   geology (surficial ground cover, probable overburden soil and bedrock type);   geotechnical problems and parameters;   previous land use (review of aerial photographs);   underground/surface mining activities; and   proposed supplemental ground investigation methods (test pits and/or boreholes)    The following geotechnical issues were noted at the site:    1. The presence of old concrete foundation and uncontrolled and/or loose fills are suspected on  the site due to historical activities.  2. There is potential that a substantial volume of bedrock excavation may be required on the  site. Extraction and bedrock excavation will require drill and blast techniques to facilitate  removal of the bedrock.  3. There is a potential to find impacted soils (historical photographs depict above ground fuel  tanks, coal and fuel storage tanks) on the site. Soil samples should be analyzed to confirm the  presence or absence of contamination.    The review recommends an intrusive borehole program on the site to further define the subsurface  conditions.    A copy of the Louisbourg WWTP site geotechnical review report is provided in Appendix D.    HEJV Louisbourg Wastewater System Summary Report 8   CHAPTER 5  WASTEWATER SYSTEM ARCHAEOLOGICAL  RESOURCES IMPACT ASSESSMENT     5.1 Archaeological Resources Impact Assessment  In October 2018, Davis MacIntyre & Associates Limited conducted a phase I archaeological resource  impact assessment at sites of proposed new wastewater infrastructure for the Louisbourg  Wastewater System. The assessment included a historic background study and reconnaissance in  order to determine the potential for archaeological resources in the impact area and to provide  recommendations for further mitigation, if necessary.    The historic background study indicated that significant historic settlement occurred in the study area  in the 18th century, related to French fishing activity and occupation. After the second siege of  Louisbourg, there appears to have been little settlement in the study area itself until the mid‐19th  century. This occupation intensified in the late 19th and early 20th centuries with the construction of  railways. While there is little direct evidence of occupation by the Mi'kmaq and their ancestors, the  landscape features of the study area would have been conducive to First Nations and Mi'kmaq  occupation of the beach and adjacent areas.    Historic mapping and archival evidence also points to the potential for a chapel and possible human  burials in the area between Jerrett's Brook and Lorway Street, as well as under the lawn of the fish  plant. Human remains were found during the installation of a water line in 1902 and may have been  from an isolated burial or are evidence of burials associated with the chapel. Unfortunately, there is  little information available on the French chapel and there is confusion about whether the house in  the 1902 newspaper article was located on the south or north side of Main Street. An elevated  potential area buffer of 30 meters around the two possible houses, and extending a further 40 meters  west along the road, has been established.    Despite the presence of modern roads, buildings and utilities, which have created impact, the study  area has been assessed generally as moderate to high potential for archaeological resources related  to the 18th century French occupation and moderate potential for First Nations archaeological  resources. One area has also been identified as elevated potential for encountering burials or human  remains. A portion of the footprint for the WWTP has been evaluated as low to moderate potential  due to the presence of existing disturbance from the fish plant, as well as the area at Jerrett's Brook    HEJV Louisbourg Wastewater System Summary Report 9 and across Riverdale Street where previous disturbance related to road alignments and culverts is  located.    Due to existing roads, buildings, asphalt and packed gravel parking lots, and infilling, archaeological  testing is not easily conducted in most of the study area. However, a portion of the area designated  as elevated potential for human remains is currently a grass lawn. It is recommended that some level  of additional archaeological investigation be conducted in this area prior to construction. This  additional investigation may include a geophysical survey to search for burial anomalies, or stripping  of the sod within the impact area and an archaeological cleaning pass to attempt to identify potential  grave shafts. Some types of geophysical survey, such as ground penetrating radar, can be used over  paved or concrete surfaces and would allow the sidewalk and road to be investigated. However, the  results of geophysical surveys would still need to be confirmed with archaeological testing or  monitoring. The appropriate level of additional investigation should be determined in consultation  with the Department of Communities, Culture & Heritage.    In the remainder of the study area that was evaluated as moderate to high potential for archaeological  resources, it is recommended that archaeological monitoring be conducted, until the archaeologist  can make a determination that the area has been disturbed to the extent that intact archaeological  resources will not be expected to be encountered. Areas of low to moderate potential may require  only periodic check‐ins or for the archaeologist to be "on‐call" for construction crews to notify if they  encounter archaeological resources. Should intact archaeological resources be encountered during  monitoring, it is required that they are properly mitigated by a professional archaeologist.    It is also recommended that a contingency plan be developed to guide any discovery of human  remains in the west end of the study area. This plan should include a methodology for encountering  disturbed versus intact burials and should specify what level of recording of the skeletal material  would be required. The plan must also specify where any human remains will be kept during all phases  of the project (initial finding, recording and analysis, and re‐internment). This plan should be  developed in consultation with the Department of Communities, Culture & Heritage, as well as  Kwilmu’kw Maw‐klusuaqn (KMKNO). Parks Canada would also be a potential stakeholder to engage  due to the proximity of the Fortress of Louisbourg and their ongoing excavation of 18th century French  burials at Rochefort Point at the Fortress.      HEJV Louisbourg Wastewater System Summary Report 10   CHAPTER 6  WASTEWATER INFRASTRUCTURE COSTS    6.1 Wastewater Interception & Treatment Capital Costs  An opinion of probable capital cost for the recommended wastewater interception and treatment  system for Louisbourg is presented in the table below.    Table 4 ‐ Louisbourg Wastewater Interception & Treatment System Capital Costs  Project Component Capital Cost (Excluding  Taxes)  Wastewater Interception System $1,341,308  Wastewater Interception System Land Acquisition $25,000  Subtotal 1: $1,366,308  Construction Contingency (25%): $336,000  Engineering (10%): $135,000  Total Wastewater Interception: $1,837,308  Wastewater Treatment Facility $10,057,560  Wastewater Treatment Facility Land Acquisition $71,429  Subtotal 2: $10,128,989  Construction Contingency (25%): $2,514,400  Engineering (12%): $1,207,000  Total Wastewater Treatment: $13,850,389  Total Interception & Treatment System: $15,687,697        HEJV Louisbourg Wastewater System Summary Report 11 6.2 Wastewater Interception & Treatment Annual Operating Costs  An opinion of probable annual operating costs for the recommended wastewater interception and  treatment system for Louisbourg is presented in the table below.    Table 5 ‐ Louisbourg Wastewater Interception & Treatment System Operating Costs  Project Component Annual Operating Cost  (Excluding Taxes)  Wastewater Interception System  General Linear Maintenance Cost $1,000  Electrical Operational Cost $1,000  Total Wastewater Interception Annual Operating Costs: $2,000  Wastewater Treatment Facility  Staffing  $175,000  Power  $25,500  Maintenance Allowance $33,000  Total Wastewater Treatment Annual Operating Costs: $233,500  Total Interception & Treatment System Annual Operating Costs: $235,500    6.3 Annual Capital Replacement Fund Contribution Costs  The CBRM wishes to create a Capital Replacement Fund to which annual contributions would be made  to prepare for replacement of the wastewater assets at the end of their useful life. The calculation of  annual contributions to this fund involves consideration of such factors as the type of asset, the asset  value, the expected useful life of the asset, and the corresponding annual depreciation rate for the  asset. In consideration of these factors, the table below provides an estimate of the annual  contributions to a capital replacement fund for the proposed new wastewater interception and  treatment system infrastructure. This calculation also adds the same contingency factors used in the  calculation of the Opinion of Probable Capital Cost, to provide an allowance for changes during the  design and construction period. The actual Annual Capital Replacement Fund Contributions will be  calculated based on the final constructed asset value, the type of asset, the expected useful life of the  asset, and the corresponding annual depreciation rate for the asset type. Please note that costs shown  below do not account for annual inflation and do not include applicable taxes.        HEJV Louisbourg Wastewater System Summary Report 12 Table 6 ‐ Louisbourg Wastewater Interception & Treatment System Capital Replacement Fund  Costs  Description of Asset Asset Value  Asset Useful  Life  Expectancy  (Years)  Annual  Depreciation  Rate (%)  Annual Capital  Replacement  Fund  Contribution  Wastewater Interception System  Linear Assets (Piping, Manholes and  Other) $1,241,308 75 1.3% $16,137  Pump Station Structures (Concrete  Chambers, etc.) $55,000 50 2.0% $1,100  Pump Station Equipment (Mechanical  / Electrical) $45,000 20 5.0% $2,250  Subtotal $1,341,308 ‐  ‐ $19,487  Construction Contingency (Subtotal x 25%): $4,872  Engineering (Subtotal x 10%): $1,949  Wastewater Interception System Annual Capital Replacement Fund Contribution  Costs: $26,307  Wastewater Treatment System  Treatment Linear Assets (Outfall and  Yard Piping, Manholes and Other) $2,341,682 75 1.3% $30,442  Treatment Structures (Concrete  Chambers, etc.) $2,333,623 50 2.0% $46,673  Treatment Equipment (Mechanical /  Electrical, etc.) $5,382,255 20 5.0% $269,113  Subtotal $10,057,560 ‐  ‐ $346,228  Construction Contingency (Subtotal x 25%): $86,557  Engineering (Subtotal x 12%): $41,547  Wastewater Treatment System Annual Capital Replacement Fund Contribution  Costs: $474,332  Total Wastewater Interception & Treatment Annual Capital Replacement Fund  Contribution Costs: $500,640                  HEJV Louisbourg Wastewater System Summary Report 13 6.4 Existing Wastewater Collection System Upgrades / Assessment Costs  The estimated costs of upgrades and assessments related to the existing wastewater collection  system as described in Chapter 3 are shown in the table below.    Table 7 ‐ Existing Wastewater Collection System Upgrades / Assessment Costs                  Item Cost  Collection System Asset Condition Assessment Program   Condition Assessment of Manholes based  on 72MHs $40,000  Condition Assessment of Sewer Mains based on 2.1 kms of infrastructure $35,000  Total $75,000  Sewer Separation Measures   Separation based on 11.6 kms of sewer @ $45,000/km $522,000  Engineering (10%) $52,000  Contingency (25%) $131,000  Total $705,000  Total Estimated Existing Collection System Upgrade and Assessment Costs $780,000    HEJV Louisbourg Wastewater System Summary Report 14   CHAPTER 7  PROJECT IMPLEMENTATION TIMELINE    7.1 Implementation Schedule  Figure 1 provides a tentative schedule for implementation of wastewater system upgrades for  Louisbourg, including proposed wastewater interception and treatment infrastructure as well as  upgrades to and assessment of the existing collection system.    For the Low Risk systems such as Louisbourg, it is expected that implementation of proposed upgrades  will proceed on a staggered basis over the next 20 years as the availability of funding allows. As each  of these systems have the same target deadline, the prioritization will likely depend on not only the  availability of funding but also external factors. As the prioritization of the low risk systems is not  currently known, the project implementation schedule has been tentatively outlined on a generalized  basis (Year 1, Year 2, etc.) rather than with specified deadlines.    The schedule has been structured such that, in Year 1, asset condition assessments and investigations  to locate sources of extraneous water entering the system would be carried out. The two subsequent  years are allotted for design/construction of recommended upgrades, however, it is conceivable that  this could be completed in one year, depending on the scope of work required. It is proposed that,  during the following year, a follow‐up wastewater flow metering program would be carried out to  confirm design flows for new infrastructure and gauge the effect of upgrades to the existing collection  system. The subsequent four years after the follow‐up flow metering program have been allotted to  carry out design/construction of the new interception and treatment system. However, it is  conceivable that this work could be completed within three (3) years. This results in a tentative  implementation schedule that covers an eight (8) year timeline, which as noted above could be  compressed to six (6) years to align with typical funding programs for major infrastructure    It should be noted that, although the process of pursuing the acquisition of properties and easements  required to construct the proposed wastewater upgrades as outlined in previous sections is not shown  on the Project Implementation Schedule, it is recommended that the CBRM pursue these acquisitions  prior to the commencement of detailed design.    No. Project Component Period: Jan ‐ Mar Apr ‐ Jun Jul ‐ Sept Oct ‐ Dec Jan ‐ Mar Apr ‐ Jun Jul ‐ Sept Oct ‐ Dec Jan ‐ Mar Apr ‐ Jun Jul ‐ Sept Oct ‐ Dec Jan ‐ Mar Apr ‐ Jun Jul ‐ Sept Oct ‐ Dec Schedule: Cash Flow: Schedule: Cash Flow: Schedule: Cash Flow: Schedule: Cash Flow: Schedule: Cash Flow: Schedule: Cash Flow: Schedule: Cash Flow: Schedule: Cash Flow: Schedule: Cash Flow: Schedule: Cash Flow: Figure 1 ‐ Project Implementation Schedule Louisbourg Wastewater System Year:1234 1 Carry out asset condition assessment of all manholes in the existing collection system $40,000 2 Carry out video inspection and assessment of selected sanitary sewers in the existing collection system $35,000 3 Carry out Sewer Separation Investigation Study to locate sources of extraneous water entering the  collection system $30,000 4 Carry out detailed design for recommended upgrades to the existing collection system based on  previous assessments $52,000 5 Carry out tendering, construction and commissioning for recommended upgrades to the existing  collection system $522,000 6 Carry out flow metering and wastewater testing in the existing collection system to confirm  wastewater flows and organic loading 7 Carry out detailed design for proposed wastewater interception infrastructure 8 Carry out tendering, construction, commissioning and initial systems operations for proposed  wastewater interception infrastructure $20,000 $54,000 9 Carry out detailed design for proposed wastewater treatment infrastructure 10 Carry out tendering, construction, commissioning and initial systems operations for proposed  wastewater treatment infrastructure No. Project Component Period: Jan ‐ Mar Apr ‐ Jun Jul ‐ Sept Oct ‐ Dec Jan ‐ Mar Apr ‐ Jun Jul ‐ Sept Oct ‐ Dec Jan ‐ Mar Apr ‐ Jun Jul ‐ Sept Oct ‐ Dec Jan ‐ Mar Apr ‐ Jun Jul ‐ Sept Oct ‐ Dec Schedule: Cash Flow: Schedule: Cash Flow: Schedule: Cash Flow: Schedule: Cash Flow: Schedule: Cash Flow: Schedule: Cash Flow: Schedule: Cash Flow: Schedule: Cash Flow: Schedule: Cash Flow: Schedule: Cash Flow: Louisbourg Wastewater SystemFigure 1 ‐ Project Implementation Schedule 5678 1 Carry out asset condition assessment of all manholes in the existing collection system 2 Carry out video inspection and assessment of selected sanitary sewers in the existing collection system 3 Carry out Sewer Separation Investigation Study to locate sources of extraneous water entering the  collection system Year: 4 Carry out detailed design for recommended upgrades to the existing collection system based on  previous assessments 5 Carry out tendering, construction and commissioning for recommended upgrades to the existing  collection system 6 Carry out flow metering and wastewater testing in the existing collection system to confirm  wastewater flows and organic loading 7 Carry out detailed design for proposed wastewater interception infrastructure 8 Carry out tendering, construction, commissioning and initial systems operations for proposed  wastewater interception infrastructure $1,783,308 $482,800 $13,367,589 9 Carry out detailed design for proposed wastewater treatment infrastructure 10 Carry out tendering, construction, commissioning and initial systems operations for proposed  wastewater treatment infrastructure   HEJV Louisbourg Wastewater System Summary Report Appendices APPENDIX A  Louisbourg Collection System Pre‐Design  Brief  187116 ●Final Brief ●April 2020 Environmental Risk Assessments & Preliminary Design of Seven Future Wastewater Treatment Systems in CBRM Louisbourg Collection System Pre-Design Brief Prepared by: HEJVPrepared for: CBRM March 2020 Re-Issued Louisbourg Collection System Final Pre- Design Brief April 16, 2020 James Sheppard, P.Eng.Darrin McLean, MBA, FEC., P.Eng. Darrin McLean, MBA, FEC., P.Eng. Re-Issued Louisbourg Collection System Final Pre- Design Brief May 9, 2019 James Sheppard, P.Eng.Darrin McLean, MBA, FEC., P.Eng. Darrin McLean, MBA, FEC., P.Eng. Louisbourg Collection System Final Pre- Design Brief March 21, 2019 James Sheppard, P.Eng. Darrin McLean, MBA, FEC., P.Eng. Darrin McLean, MBA, FEC., P.Eng. Louisbourg Collection System Draft Pre- Design Brief December 18, 2018 James Sheppard, P.Eng. Bob King, P.Eng.Darrin McLean, MBA, FEC., P.Eng. Issue or Revision Date Prepared By:Reviewed By:Issued By: This document was prepared for the party indicated herein. The material and information in the document reflects the opinion and best judgment of Harbour Engineering Joint Venture (HEJV) based on the information available at the time of preparation. Any use of this document or reliance on its content by third parties is the responsibility of the third party. HEJV accepts no responsibility for any damages suffered as a result of third party use of this document. March 27, 2020 275 Charlotte Street Sydney, Nova Scotia Canada B1P 1C6 Tel: 902-562-9880 Fax: 902-562-9890 _________________ LOUISBOURG COLLECTION SYSTEM PRE DESIGN BRIEF/ek ED: 16/04/2020 13:32:00/PD: 16/04/2020 15:09:00 April 16, 2020 Matthew D. Viva, P.Eng. Manager of Wastewater Operations Cape Breton Regional Municipality 320 Esplanade, Sydney, NS B1P 7B9 Dear Mr. Viva: RE: Environmental Risk Assessments & Preliminary Design of Seven Future Wastewater Treatment Systems in CBRM – Louisbourg Collection System Pre-Design Brief Harbour Engineering Joint Venture (HEJV) is pleased to submit the following Collection System Pre-Design Brief for your review and comment. This Brief summarizes the interceptors and local sewers that will form the proposed wastewater collection system for the community of Louisbourg. The collection system will convey sewer to a future Wastewater Treatment Facility that has been proposed to be located west of the intersection of Strahcona and Commercial Streets, on the former fish plant site. The Brief also outlines the design requirements and standards for the required collection system infrastructure components. We look forward to your comments on this document. Yours very truly, Harbour Engineering Joint Venture Prepared by: Reviewed by: James Sheppard, P.Eng. Darrin McLean, MBA, FEC, P.Eng. Civil Infrastructure Engineer Senior Civil Engineer Direct: 902-562-9880 Direct: 902-539-1330 E-Mail:jsheppard@dillon.ca E-Mail:dmclean@cbcl.ca Project No: 187116 (Dillon) and 182402.00 (CBCL) March 27, 2020 Harbour Engineering Joint Venture Louisbourg Collection System Pre-Design Brief i Contents CHAPTER 1 Introduction & Background ........................................................................................... 1 1.1 Introduction ................................................................................................................... 1 1.2 System Background ........................................................................................................ 1 1.2.1 L#1...................................................................................................................... 2 1.2.2 L#2...................................................................................................................... 2 1.2.3 L#3...................................................................................................................... 2 1.2.4 L#4...................................................................................................................... 2 1.2.5 L#5...................................................................................................................... 2 CHAPTER 2 Design Parameters & Standards .................................................................................... 3 2.1 General Overview ........................................................................................................... 3 2.2 Design Standards ............................................................................................................ 3 CHAPTER 3 Wastewater Interceptor Pre- Design ............................................................................. 5 3.1 General Overview ........................................................................................................... 5 3.2 Design Flows .................................................................................................................. 5 3.2.1 Theoretical Flow ................................................................................................. 5 3.2.2 Observed Flow .................................................................................................... 6 3.2.3 Flow Conclusions & Recommendations ............................................................... 7 3.2.4 Wet Weather Conditions Assessment ................................................................. 8 3.3 Interceptor System ......................................................................................................... 8 3.3.1 WWTP Location Review ...................................................................................... 8 3.3.2 Interceptor System Breakdown ........................................................................... 9 3.4 Combined Sewer Overflows.......................................................................................... 10 3.4.1 CSO-1................................................................................................................ 10 3.4.2 CSO-2................................................................................................................ 11 3.5 Low Pressure Sewer System ......................................................................................... 11 CHAPTER 4 Existing Collection System Upgrades ........................................................................... 12 4.1 Asset Condition Assessment Program ........................................................................... 12 4.2 Sewer Separation Measures ......................................................................................... 12 CHAPTER 5 Pipe Material Selection and Design ............................................................................. 13 5.1 Pipe Material ................................................................................................................ 13 CHAPTER 6 Land and Easement Requirements .............................................................................. 14 6.1 WWTP Site ................................................................................................................... 14 Harbour Engineering Joint Venture Louisbourg Collection System Pre-Design Brief ii 6.2 Linear Infrastructure and Access Road .......................................................................... 14 CHAPTER 7 Site Specific Constraints ............................................................................................... 15 7.1 Construction Constraints .............................................................................................. 15 7.2 Environmental Constraints ........................................................................................... 15 7.3 Access Requirements.................................................................................................... 16 CHAPTER 8 Opinion of Probable Costs ........................................................................................... 17 8.1 Opinion of Probable Construction Costs – New Wastewater Collection Infrastructure .. 17 8.2 Opinion of Operational Costs ........................................................................................ 17 8.3 Opinion of Existing Collection System Upgrades and Assessment Costs ........................ 18 8.4 Opinion of Annual Capital Replacement Fund Contributions ......................................... 18 CHAPTER 9 References ................................................................................................................... 20 Tables Table 2-1 Sewer Design Criteria ............................................................................................... 3 Table 3-1 Theoretical Flow Summary for L#2 outfall ................................................................. 6 Table 3-2 Flow Monitoring Location Summary ......................................................................... 6 Table 3-3 Average Dry Weather and Design Flows Results ....................................................... 7 Table 3-4 Recommended Design Flows at each Outfall location ............................................... 7 Table 3-5 Observed Flows during Rainfall Events...................................................................... 8 Table 5-1 Comparison of Pipe Materials ................................................................................. 13 Table 6-1 WWTP Land Acquisition Details .............................................................................. 14 Table 6-2 Linear Infrastructure Land Acquisition Details ......................................................... 14 Table 8-1 Annual Operations and Maintenance Costs Breakdown .......................................... 17 Table 8-2 Estimated Existing Collection System Upgrade and Assessment Costs..................... 18 Table 8-3 Estimated Annual Capital Replacement Fund Contributions.................................... 19 Appendices Appendix A –Drawings Appendix B – Flow Master Reports Appendix C – Opinion of Probable Design & Construction Costs Harbour Engineering Joint Venture Louisbourg Collection System Pre-Design Brief 1 CHAPTER 1 INTRODUCTION &BACKGROUND 1.1 Introduction Harbour Engineering Joint Venture (HEJV) has been engaged by the Cape Breton Regional Municipality (CBRM) to carry out Environmental Risk Assessments (ERAs) and Preliminary Design of seven future wastewater treatment Systems in the CBRM. The future wastewater collection and treatment systems will serve the communities of Glace Bay, Port Morien, North Sydney & Sydney Mines, New Waterford, New Victoria, Louisbourg and Donkin, which currently have no wastewater treatment facilities. The preliminary design of the wastewater interceptor systems are being completed as an addition to the existing wastewater systems in each community. In general, the proposed interceptor sewers will convey wastewater from the existing outfalls to the proposed Wastewater Treatment Plant (WWTP) in each location. The complexity of each system is directly related to the number of outfalls, geographic size and topography of each community. In general, the scope of work on the interceptor system generally includes the following: ®Determination of design wastewater flows; ®Making recommendations on the best sites for proposed wastewater treatment facilities; ®Development of the most appropriate and cost-effective configurations for wastewater interception; and, ®Estimation of capital and operations costs for recommended wastewater components. This document relates to the interceptors and local gravity sewers that will form the wastewater interceptor system for the proposed WWTP in the community of Louisbourg. This brief outlines the design requirements and standards for the required infrastructure components. Information regarding the preliminary design of the proposed wastewater treatment facility for Louisbourg will be provided in a separate Design Brief. 1.2 System Background The community of Louisbourg is serviced by a gravity sewer system, ranging in size from 200 to 750mm in diameter. There are 5 wastewater sewersheds in the community of Louisbourg. Each sewershed actively discharges raw sewage to Louisbourg Harbour. The outfalls for the sewersheds are located as follows: ®L#1 – South of the Wolfe/Riverdale/Main Street intersection at the Barrachois; ®L#2 - South of the Centre and Commercial Street intersection; Harbour Engineering Joint Venture Louisbourg Collection System Pre-Design Brief 2 ®L#3 – Adjacent to the boardwalk, south of Harbourview Crescent; ®L#4 – Minto Street; and, ®L#5 – South of the Beatrice/Main Street intersection. An additional unnamed outfall is located at the south end of Marvin Street, which has been denoted as L#6 for the purposes of this preliminary design brief. This outfall receives discharge from one home. This home would be best served in the future by a low pressure sewer system that would convey discharge to the new interceptor sewer. There are several commercial buildings on the Louisbourg Waterfront that appear to not be connected to the existing sanitary sewer network. Each of these buildings may have their own outfalls for sanitary and process sewer flows. These buildings would be best served in the future by a low pressure sewer system that could convey sewer to the adjacent CBRM sewer network. 1.2.1 L#1 The L#1 sewershed is made up of a gravity network that services Wolfe and Riverdale Streets. The outfall is 450mm in diameter and conveys flow to the Barrachois, located south of the Wolfe/Main/Riverdale Street. 1.2.2 L#2 The L#2 outfall receives approximately 40% of the sanitary sewer flow generated in the community of Louisbourg. The outfall is 600mm in diameter. The outfall is located near the Louisbourg Government Wharf, adjacent to the Centre/Commercial Street intersection. 1.2.3 L#3 Two buildings discharge to the L#3 outfall. The outfall is located near the boardwalk, adjacent to the slipway, south of Harbourfront Crescent. The outfall is 100mm in diameter. 1.2.4 L#4 The L#4 outfall is located south east of Minto Street. The outfall is 100mm in diameter and services one home. 1.2.5 L#5 A gravity network conveys to the L#5 outfall which receives approximately 40% of the sanitary sewer flow generated in the community. The outfall is 750mm in diameter. A drawing of the existing Louisbourg sewer system is located in Appendix A for reference. Harbour Engineering Joint Venture Louisbourg Collection System Pre-Design Brief 3 CHAPTER 2 DESIGN PARAMETERS &STANDARDS 2.1 General Overview The development of a wastewater interceptor system for each of the communities is highly dependent upon the selection of appropriate design parameters. HEJV has reviewed applicable design standards and has developed the preliminary design of the interceptor sewer to meet and exceed these industry standards. 2.2 Design Standards The design of the interceptor system has been based on the following reference documents and standards: ®Atlantic Canada Wastewater Guidelines Manual for Collection, Treatment, and Disposal (ACWGM) (Environment Canada, 2006); and ®Water Environment Federation: Manual of Practice FD-4, Design of Wastewater and Stormwater Pumping Stations. The key design criteria that have been established for this project are presented in Table 2-1. Table 2-1 Sewer Design Criteria Description Unit Design Criteria Source Comments Hydraulic Capacity l/s Location dependent HEJV Flow has been set to minimize overflow events in the interceptor system prior to the WWTP. See discussion Chapter 3. Material of gravity pipe PVC or Reinforced concrete CBRM See discussion in Chapter 5 Hydraulic design gravity Manning’s Formula ACWGM n = 0.013 Maximum spacing between manholes m 120 for pipes up to and including 600 mm and 150 for pipes over 600 mm ACWGM Gravity pipe minimum design flow velocity m/s 0.6 ACWGM Gravity pipe maximum flow velocity m/s 4.5 ACWGM Harbour Engineering Joint Venture Louisbourg Collection System Pre-Design Brief 4 Description Unit Design Criteria Source Comments Pipe crossings separation mm 450 minimum Minimum separation must also meet Nova Scotia Environment (NSE) requirements. Horizontal pipe separation gravity pipe to water main m 3.0 ACWGM Can be laid closer if the installation meets the criteria in Section 2.8.3.1 Gravity pipe minimum depth of cover m 1.5 HEJV Subject to Interferences Gravity pipe maximum depth of cover m 4.5 HEJV Subject to Interferences.Increased depth may be considered where warranted Harbour Engineering Joint Venture Louisbourg Collection System Pre-Design Brief 5 CHAPTER 3 WASTEWATER INTERCEPTOR PRE-DESIGN 3.1 General Overview A drawing of the existing Louisbourg collection system has been included in Appendix A. The drawing was created using background data collected from various sources to depict the layout of the existing gravity network. The proposed wastewater interceptor system for Louisbourg will be a gravity sewer that will redirect flow from the existing outfalls to the proposed Waste Water Treatment Plant (WWTP) site. For this Pre-Design Brief, HEJV has compiled a preliminary plan and profile drawing of the proposed linear infrastructure. The locations of the required linear infrastructure, Combined Sewer Overflow (CSO) chambers and future WWTP have also been illustrated on the drawings and are included in Appendix A. 3.2 Design Flows HEJV completed a review of the theoretical and observed sanitary flows for the Louisbourg sewersheds. The purpose of the assessment was to estimate average and design flows for the environmental risk assessment (ERA) and the preliminary design of the future WWTP and interception system. 3.2.1 Theoretical Flow Theoretical flow was calculated based on design factors contained in the ACWGM. To estimate population, the number of private dwellings were estimated then multiplied by an average household size. An average value of 2.2 persons per household was used based on the average household size found in the 2016 Statistics Canada information for Cape Breton. The number of apartments, nursing homes, townhouses, and other residential buildings were estimated and considered in the population estimate. Population estimates are shown in Table 3-1. The peak design flow was calculated using the following equation (1): ܳ(݀)=ܲݍܯ 86.4 +ܫܣ (1) Where: Q(d) = Peak domesƟc sewage flow (l/s) P = PopulaƟon (in thousands) Harbour Engineering Joint Venture Louisbourg Collection System Pre-Design Brief 6 q = Average daily per capita domesƟc flow (l/day per capita) M = Peaking factor (Harman Method) I = unit of extraneous flow (l/s) A = Subcatchment area (hectares) ACWGM recommends an average daily domestic sanitary flow of 340 l/day per person for private residential dwellings. The unit of extraneous flow was assumed to be approximately 0.21 l/s/ha based on typical ranges outlined in ACWGM. The contributing sewershed was estimated to be 52 ha. The peaking factor used in Equation 1 was determined using the Harman Formula (2) shown below: Harman Formula ܯ =1+14 4+ܲ଴.ହ (2) The estimated average dry weather flow (ADWF) and peak design flows were calculated for the flow monitor location (L#2 outfall) based on the ACWGM methods discussed above are presented in Table 3-1. Table 3-1 Theoretical Flow Summary for L#2 outfall Estimated Area (ha)Estimated Population1 ADWF2 (l/s)Peak Design Flow3 (l/s) 36 360 1.42 13.47 1 2016 Cape Breton Census from StaƟsƟcs Canada 2Based on average daily sewer flows of 340 L/day/person (ACWGM 2006) 3EsƟmated using ACWGM equaƟon for peak domesƟc sewage flows (including extraneous flows and peaking factor) 3.2.2 Observed Flow One flow monitoring staƟon was installed in Louisbourg. The flow monitor was installed in the outlet manhole for L#2, on Commercial Street.A summary of the flow meter locaƟon and monitoring duraƟon is provided in Table 3- 2. Table 3-2 Flow Monitoring Location Summary Northing Easting Monitoring Start-End Dates Days of Data 5087630.112 4618444.369 February 26-April 11, 2018 45 Analysis for observed dry weather flows were completed using the United States Environmental Protection Agency’s (EPA) Sanitary Sewer Overflow Analysis and Planning (SSOAP) toolbox. The SSOAP toolbox is a suite of computer software tools used for capacity analysis and condition assessments of sanitary sewer systems. Flow and rainfall data were input into the SSOAP program, along with sewershed data. To determine average dry weather flow (ADWF), days that were influenced by rainfall were deleted. This was done in the SSOAP model by removing data from days that had any rain within the last 24 hours, more than 5 mm in the previous 48 hours, and more than 5 mm per day additional in the subsequent days (e.g. 10 mm in the last 3 days). Again, the subset of flow data without the three week period noted in earlier in this section was used in the SSOAP program. Harbour Engineering Joint Venture Louisbourg Collection System Pre-Design Brief 7 The calculated ADWF estimates based on monitored flow data evaluated using the SSOAP program is presented in Table 3-3, along with average, 4xADWF and peak flow from raw monitored data. Please note that the value of 4xADWF was recommended by UMA Engineering Limited as the minimum sewage flow rate that should be treated for Louisbourg in the report “Industrial Cape Breton Wastewater Characterization Program – Phase II” prepared in 1994. HEJV compared the 4xADWF value with the other values compiled in Table 3-3. Table 3-3 Average Dry Weather and Design Flows Results ADWF From SSOAP Model (l/s) Average Daily Observed Flow (l/s)4xADWF (l/s)Peak Flow (l/s) 3.0 3.72 12.0 (l/s)12.23 3.2.3 Flow Conclusions & Recommendations Based on the results presented in Tables 3-1 and 3-3,it is recommended that the peak theoretical flow be used at this time to design the interceptor sewer because the peak flows being considered only require a reasonably sized gravity interceptor sewer.Table 3-4 summarizes the peak design and average dry weather flows that will be intercepted at each outfall. Due to the existing gravity sewer configuration, a CSO has been proposed for the connection with L#5. Due to the size of the existing sewer at L#5 and its overall contribution to the Louisbourg Interceptor Sewer, HEJV recommends completing a flow monitoring program at this location during the detailed design of the project. The flows developed by HEJV for L#5 based on the completed flow monitoring program fall well short of requiring a 750mm diameter sewer. Methods of decreasing the size of the sanitary sewer in this area could be looked at with further flow monitoring and system research. If there is an influence from storm runoff, a sewer separation project could be completed in this area to reduce the size of the sanitary sewer piping on Main Street and effectively delete the requirement for CSO-1. Please see Section 3.4 for further discussion on the required CSO chambers. Table 3-4 Recommended Design Flows at each Outfall location Outfall Contributing Population ADWF2(L/s)Peak Flow3 (l/s) L#1 113 0.94 5.30 L#21 360 2.98 13.50 L#3 4.6 0.04 0.40 L#4 2.3 0.02 0.20 L#5 327 2.71 13.00 L#6 14 0.11 0.50 1 Ouƞall at monitoring locaƟon 2 Based on observed values at OF#2 3 EsƟmated using ACWGM equaƟon for peak domesƟc sewage flows (including extraneous flows and peaking factor) Harbour Engineering Joint Venture Louisbourg Collection System Pre-Design Brief 8 3.2.4 Wet Weather Conditions Assessment To evaluate performance of the proposed interception system during wet weather conditions, metered flows during rainfall events have also been considered. The results of the wet weather flow assessment at the metered location is presented in Table 3-5. The calculated flows were compared to the recommended design flow to determine if sewer overflow/surcharge conditions would be anticipated. Table 3-5 Observed Flows during Rainfall Events Monitoring Station Minor Rainfall Event (10-25 mm Daily Rainfall) # of Events Daily Average Flow (l/s) Expected Overflow1 (Y/N) Louisbourg 6 4 to 7 N 1 Overflow expected when observed flow exceeds design flow The results in Table 3-5 suggest that the interception system will be able to accommodate the wet weather flows that were monitored during the flow gauging exercise. 3.3 Interceptor System The proposed interceptor system for the Louisbourg WWTP is presented on the plan and profile drawing attached in Appendix A. The proposed interceptor system is made up of various segments of gravity sewer that extend across the community. 3.3.1 WWTP Location Review The first step in laying out the interceptor sewer route was to determine the location of the future WWTP that will serve the community. To accomplish this, the type of treatment process needed to be considered, along with the availability of land. An initial review for the Louisbourg WWTP site was completed. At that time, two locations were reviewed. Initially a mechanical plant was contemplated for an undeveloped area at the northern end of Elwood Street, while a stabilization pond was contemplated for an area north of Harbourview Drive. The undeveloped area north of Elwood Street was not selected as a feasible location due to the proximity of neighboring residential properties. The design for the interceptor sewer would have also required a pump station near the waterfront area and a forcemain to convey flows up-gradient to the WWTP, and a gravity sewer back to the waterfront area for an outfall, increasing the costs of the interceptor sewer. This same area was reviewed for a lagoon design. Due to the land requirements and the proximity of existing dwellings, the inclusion of a lagoon at Elmwood Street was determined not to be viable. The location to the north of Harbourview Drive was remote and would have provided sufficient room for the development of a stabilization pond. However, the portion of land required to construct the WWTP is owned by Public Works Government Services Canada and is a portion of the Harbour Engineering Joint Venture Louisbourg Collection System Pre-Design Brief 9 historical Fortress of Louisbourg property. Given the remoteness of the land, the infrastructure required to convey discharge to the site, an unfavourable location for an outfall (inner portion of the harbour) and property acquisition concerns, HEJV decided that this location was also not suitable. Further review of the Louisbourg area took place with several promising locations being brought forward. The site of the former SNE Sea Products Ltd. processing plant was reviewed. CBRM held initial discussions with the property owner. It was concluded that the price to purchase the former plant would be considerable. HEJV also reviewed two areas in front of the plant; however, a lift station would be required near the harbourfront to convey flow to both sites, therefore increasing the cost of the interceptor infrastructure. Another site was reviewed on the harbourfront, between Alexandra Street and Strathcona Street, on the north side of Commercial Street. The location provided sufficient room to develop the plant, but was too close to neighboring residential properties. The final location selected was adjacent to the previously mentioned former fish plant. The location would be on the same parcel of land as the former plant, but located between the existing buildings and Strathcona Street. This area is already commercially developed. Being on the waterfront, there is easy access to permit the installation of a new outfall. Due to the topography of the area, gravity flow to the WWTP site is achievable, but due to depth of the proposed linear infrastructure near the proposed WWTP site, a lift station would be required. The forcemain to serve the lift station would be of minimal length, as the station will only need to pump the sewage into the plant. The downfall for the location is the proximity to residential development. The location does not meet the ACWGM guidelines for setback distances from residential properties. As part of our pre-design efforts, HEJV met with NSE to discuss locations for future treatment plants that do not meet the ACWGM guidelines for setback distances but ultimately make the most sense for a community from an economic stand point. NSE’s feedback to HEJV was that if the location of the WWTP did not meet the ACWGM guidelines but ultimately made the most sense for a community, the detailed design of the plant would need to include odour controls, to minimize the impact to neighbouring properties. The proposed location of the WWTP has been shown on the existing sewer system drawing included in Appendix A. 3.3.2 Interceptor System Breakdown With the WWTP location selected, HEJV laid out the interceptor sewer. The interceptor sewer will divert sewer from the six existing outfalls. HEJV determined that it was possible to convey discharge to the proposed WWTP site by way of a gravity interceptor. The major elements of the interceptor system include: ®A 300mm diameter gravity sewer will intercept flow at L#1, with a connection at Riverdale Street. The gravity interceptor will cross an existing box culvert at Main Street and convey flow to CSO-2. ®CSO-1 (see Sections 3.4 and 4.2 for further discussion on this CSO chamber) will be used to redirect flow and decrease pipe size from the existing 750mm diameter L#5 outfall system to the new gravity interceptor. Harbour Engineering Joint Venture Louisbourg Collection System Pre-Design Brief 10 ®A 250 mm diameter interceptor gravity sewer will convey the flow from CSO-1 to the Louisbourg WWTP. The route will commence on Main Street and meander to Commercial Street. ®L#3 will be intercepted on Harbourview Drive. ®L#4 will be intercepted at Minto Street. ®To intercept flow at Commercial Street, the interceptor sewer increases in size to 450mm diameter at the intersection of Commercial and Aberdeen Street. ®The interceptor sewer will connect to the existing sewer on Lower Warren, Alexandra and Strathcona Street. ®The conveyed flow will then be intercepted by CSO-2, to limit the flow into the proposed WWTP. ®In addition to the specified pipe route, low pressure sewer systems should be provided for buildings along the water front that are currently not connected to the CBRM sanitary sewer system. See Section 3.5 for further details. Flow Master reports for the proposed linear infrastructure, illustrated on Sheet 1 in Appendix A, have been included in Appendix B. 3.4 Combined Sewer Overflows A Combined Sewer Overflow (CSO) should be utilized in the proposed interceptor system where flows directed to the WWTP exceed the interception design rate defined in Section 3.2.3. The proposed locations for the chambers have been illustrated on the plan and profile drawings included in Appendix A. In general, the interceptor system has been designed for peak flow. Each of the outfalls in Louisbourg discharge raw sewage to the Atlantic Ocean on a continuous basis. By installing the interceptor sewer, the amount of raw sewage being directed to the Atlantic Ocean will be greatly reduced. Given the limited number of overflows anticipated, the CSOs for Louisbourg have been proposed to be an unscreened chamber. The chambers will essentially act as a flow diversion chambers. Each CSO chamber should be complete with a weir plate that will separate the chamber into two sections, one for normal everyday flows and one for overflow events. Normal flows would be directed to the interceptor system. As the flow increases above the interception design flow rate, the level in the CSO chamber will rise, until it crests the weir plate. Flow that crests the weir plate would be directed back to the original outfall. The Louisbourg interceptor system will include 2 CSO chambers that will direct flow to various components of the system. 3.4.1 CSO-1 The CSO-1 chamber has been shown as part of the connection with the L#5 outfall. The existing gravity sewer leading to L#5 is 750mm in diameter. CSO-1 should be utilized to decrease the size of the pipe being used in the interceptor system, as the intercepted flows identified in Section 3.2 do not require a 750mm diameter gravity sewer. This flow chamber will allow the pipe size to be decreased to 250mm, while providing overflow relief in case of a high flow event. The chamber Harbour Engineering Joint Venture Louisbourg Collection System Pre-Design Brief 11 would be sized to allow the peak flow (13.0l/s) to be conveyed to the interceptor sewer. The peak flow of 13.0l/s was selected so that cleansing velocity was provided in the interceptor sewer. Additionally the flow rate is not such that would cause an upsizing of the pipe. The detailed design of the interceptor should review the infrastructure in this area to confirm if the CSO is required or if an alternative connection can be made to the existing sanitary sewer. Additionally a sewer separation project could be undertaken in this area to permit the usage of a suitably sized sanitary gravity sewer (i.e. +/- 250 diameter) to convey directly to the interceptor sewer, while diverting storm runoff to L#5 directly, deleting the requirement for CSO-1. Existing information obtained by HEJV suggests that sewer in the area should range between 200 – 300mm in diameter. The limited manhole survey completed by HEJV for infrastructure in the immediate area (one manhole up and downstream of the connection) connection conflicted with this data. 3.4.2 CSO-2 The second CSO chamber will be used to reduce the flow entering the WWTP. The flow rate will be established during the preliminary design of the WWTP. As the interceptor sewer can accommodate peak flows, without upsizing the linear infrastructure, a flow device is needed to restrict flow before the plant. The preliminary design of the WWTP will review the requirements for CSO-2. It may be possible to size the headworks to include additional flows such that they are screened and pass through the UV system prior to discharge into the harbour. 3.5 Low Pressure Sewer System There are a number of commercial buildings on the waterfront that currently do not appear to connect to the existing CBRM sanitary sewer network. HEJV recommends low pressure sewer systems to connect these buildings to adjacent sanitary sewer infrastructure for their inclusion in the interceptor sewer. The connection at each of the buildings should only be completed for domestic waste only. Process water should not be connected to the CBRM network and should be conveyed as per their NSE Approvals to Operate. Harbour Engineering Joint Venture Louisbourg Collection System Pre-Design Brief 12 CHAPTER 4 EXISTING COLLECTION SYSTEM UPGRADES 4.1 Asset Condition Assessment Program To get a better sense of the condition of the existing Louisbourg sewage collection system, HEJV recommends completing a sewage collection system asset condition assessment program in the community. The program would carry out an investigation involving two components: ®Visual inspection and assessment of all manholes in the collection system ®Video inspection of 20% of all sewers in the system The program should be completed with the issuance of a Collection System Asset Condition Assessment Report that would summarize the condition of the various assets inspected and include opinions of probable costs for required upgrades. 4.2 Sewer Separation Measures CBRM should consider completing a sewer separation investigation program for Louisbourg. The program would review catch basins that are currently connected or possibly connected to existing sanitary sewers. The program should also include the costing of the installation of new storm sewers to disconnect catch basins from the existing sanitary sewer. As discussed in Section 3.2.3, a sewer separation investigation could delete the requirement for CSO #1, should the existing system allow for the reconfiguration to a smaller gravity sewer and a separate, larger storm sewer. The storm sewer would still direct flow to L#5, whereas the re- configured gravity sewer would convey directly to the proposed interceptor sewer. Harbour Engineering Joint Venture Louisbourg Collection System Pre-Design Brief 13 CHAPTER 5 PIPE MATERIAL SELECTION AND DESIGN 5.1 Pipe Material Two pipe materials (PVC, and Reinforced Concrete) were considered for this project and were evaluated against various factors. PVC and Reinforced Concrete were reviewed against each other for a suitable gravity pipe material. A summary of the advantages and disadvantages of the different materials is presented in Table 5-1. Table 5-1 Comparison of Pipe Materials Pipe Material Advantages Disadvantages PVC ·CBRM standard ·Excellent corrosion resistance of pipe ·Standard testing method ·Light weight ·High impact strength ·CBRM staff and contractors are familiar with installation of PVC forcemains ·Cost competitive ·Requires good bedding ·Must be handled carefully in freezing conditions ·Fittings are susceptible to corrosion Reinforced Concrete ·High strength ·Standard testing method ·CBRM staff and contractors are familiar with installation ·Heavy – harder to handle ·Susceptible to attached by H2S and acids when not coated ·Requires careful installation to avoid cracking ·Short laying lengths Based on the above comparison, HEJV recommends that the material used for the gravity sewer piping for the Louisbourg interceptor sewer be PVC. Harbour Engineering Joint Venture Louisbourg Collection System Pre-Design Brief 14 CHAPTER 6 LAND AND EASEMENT REQUIREMENTS HEJV has reviewed the requirements for land acquisition and easements. While the majority of the proposed infrastructure will be installed on CBRM property and public right of ways, a portion of the proposed interceptor system and WWTP have been proposed to be constructed on privately owned land parcels. 6.1 WWTP Site As discussed in Section 3.3, the WWTP will be located on a parcel of land privately owned by 3264937 Nova Scotia Limited. HEJV understands that initial discussions have occurred between the land owner and CBRM about purchasing the entire lot. Due to the cost to acquire the entire lot, HEJV recommends purchasing a portion of the lot, located between the existing fish plant building and the Lobster Kettle Restaurant. Exact dimensions and location of the required piece of land will be confirmed in the WWTP Pre-Design Brief. Presented below in Table 6-1 are some of the pertinent details of the parcel of land required to build the WWTP. Table 6-1 WWTP Land Acquisition Details PID Property Owner Assessed Value Description Purchase Entire Lot (Y/N) 15458243 3264937 Nova Scotia Limited $307,900 WWTP Site N 6.2 Linear Infrastructure and Access Road The installation of the linear will require an easement on two parcels of privately owned by land. The remaining linear infrastructure will be installed within CBRM owned land and public right of ways. Details on the required easement area are as follows: Table 6-2 Linear Infrastructure Land Acquisition Details PID Property Owner Assessed Value Description Size Required Purchase Entire Lot (Y/N) 15458128 SNE Sea Products Incorporated $34,500 Sewer Easement 45mx10m N 15458243 3264937 Nova Scotia Limited $307,900 Sewer Easement 200mx10m N Harbour Engineering Joint Venture Louisbourg Collection System Pre-Design Brief 15 CHAPTER 7 SITE SPECIFIC CONSTRAINTS During the preliminary design of the interceptor system, HEJV has reviewed the pipe routing for potential constraints. HEJV reviewed construction constraints, environmental constraints and access requirements for the proposed interceptor infrastructure. The next sections of the Design Brief briefly touch on items that were found during HEJV’s review. 7.1 Construction Constraints HEJV has reviewed the preliminary design of the interceptor system from a construction constraints perspective. The proposed gravity interceptor sewer from Riverdale Street will be installed over an existing box culvert that crosses below Main Street. HEJV had the top of the box culvert surveyed during the preliminary design to ensure that the proposed alignment depicted on Sheet 2 in Appendix A would be achievable. A maximum grade of 0.5% can be used between the existing manhole located on Riverdale Street and the top of the existing box culvert. HEJV cautions that the resultant velocity for a 300mm diameter pipe at 0.5% grade at peak design flow will be slightly less than the required cleansing velocity of 0.6m/s. A resultant peak velocity of 0.57m/s, can be achieved. The proposed gravity sewer will also traverse a piece of CBRM land that is destined to become part of waterfront development project. CBRM owned PID 15659378 has already been part of a preliminary design project for the Synergy Louisbourg Development Society. At this time, CBRM still maintains ownership of this land parcel. A portion of the gravity interceptor has been shown to cross this land parcel. Dillon Consulting Limited, completed a preliminary design of the site in 2016. Utilizing the pre-design, the route of the proposed sewer was selected to provide minimal disturbance to the site, i.e. the route was selected to traverse across the top of a proposed parking lot. The proposed gravity route will also need to cross CBRM owned PID 15659394. Construction across this lot will be tight as the route is just south of the Louisbourg salt shed. 7.2 Environmental Constraints The route for the proposed gravity outlet is in close proximity to a shoreline along Commercial Street. Care will need to be exercised during construction to ensure appropriate erosion and Harbour Engineering Joint Venture Louisbourg Collection System Pre-Design Brief 16 sedimentation control measures are put in place and properly maintained during construction. The excavation in this area will also be deeper, so dewatering will be a major concern as well. 7.3 Access Requirements Access to the WWTP site will be straight forward. Some thought will need to be given to the land purchase involving a portion of PID 15458243. The lot segmented and purchased by CBRM will need to leave a tract of land for an entrance to the remaining portion of PID 15458243 from Commercial/Strahcona. Harbour Engineering Joint Venture Louisbourg Collection System Pre-Design Brief 17 CHAPTER 8 OPINION OF PROBABLE COSTS 8.1 Opinion of Probable Construction Costs – New Wastewater Collection Infrastructure An opinion of Probable Design and Construction Costs for new wastewater collection infrastructure has been completed for the project. A detailed breakdown of the estimate has been provided in Appendix C. The estimate is made up of the linear infrastructure design and construction costs and associated land acquisition costs required to collect and convey the sanitary sewer in Louisbourg to the proposed WWTP. For land acquisition costs, HEJV has used a ratio of the amount of land that is affected by the required easement/property acquisition multiplied by the assessed value of the entire lot. The Opinion of Probable Design & Construction Costs for the interceptor sewer for Louisbourg is $1,837,308. This estimate is considered to be Class ‘C’, accurate within plus or minus 30%. 8.2 Opinion of Operational Costs HEJV completed an Opinion of Operational Costs for the interceptor system. For annual costs, HEJV considered the power consumption of the two CSO chambers based on typical Nova Scotia Power rates and a linear maintenance cost based on similar sanitary sewer infrastructure. A breakdown of costs has provided in Table 8-1. Table 8-1 Annual Operations and Maintenance Costs Breakdown The general linear maintenance cost for the interceptor system has been estimated to be $1,000 per year in 2018 dollars. This includes flushing, inspection, and refurbishment of structures along the linear portion of the collection system. For the electrical operation cost, basic electrical loads for instrumentation were assumed. Item Costs General Linear Maintenance Cost $1,000/yr Electrical Operational Cost $1,000/yr Harbour Engineering Joint Venture Louisbourg Collection System Pre-Design Brief 18 8.3 Opinion of Existing Collection System Upgrades and Assessment Costs An opinion of probable costs has been provided for the collection system asset condition assessment program described in Chapter 4. These costs include the video inspection and flushing of 20% of the existing sanitary sewer network, visual inspection of manholes, traffic control and the preparation of a collection system asset condition assessment report. For sewer separation measures, budgetary pricing has been calculated by reviewing recent costs of sewer separation measures in CBRM involving installation of new storm sewers to remove extraneous flow from existing sanitary sewers. These costs have been translated into a cost per lineal meter of sewer main. This unit rate was then applied to the overall collection system. The cost also includes an allowance of 10% on the cost of construction for engineering and 25% for contingency allowance. The estimated existing collection system upgrade and assessment costs are provided in Table 8-2. Estimates of costs for upgrades to and assessment of the existing collection system as outlines in Table 8-2 are considered to be Class ‘D’, accurate to within plus or minus 45%. Table 8-2 Estimated Existing Collection System Upgrade and Assessment Costs 8.4 Opinion of Annual Capital Replacement Fund Contributions The CBRM wishes to create a Capital Replacement Fund to which annual contributions would be made to prepare for replacement of the assets at the end of their useful life. The calculation of annual contributions to this fund involves consideration of such factors as the type of asset, the asset value, the expected useful life of the asset, and the corresponding annual depreciation rate for the asset. In consideration of these factors,Table 8-3 provides an estimation of the annual contributions to a capital replacement fund for the proposed new wastewater collection and interception infrastructure. Item Cost Collection System Asset Condition Assessment Program Condition Assessment of Manholes based on 72 MH’s $40,000 Condition Assessment of Sewer Mains based on 2.1km’s of infrastructure $35,000 Total $75,000 Sewer Separation Measures Separation based on 11.6km’s of sewer @ $45,000/km $522,000 Engineering (10%)$52,000 Contingency (25%)$131,000 Total $705,000 Total Estimated Existing Collection System Upgrade and Assessment Costs $780,000 Harbour Engineering Joint Venture Louisbourg Collection System Pre-Design Brief 19 Table 8-3 Estimated Annual Capital Replacement Fund Contributions Description of Asset Asset Value Asset Useful Life Expectancy (Years) Annual Depreciation Rate (%) Annual Capital Replacement Fund Contribution Linear Assets (Piping, Manholes and Other) $1,241,308 75 1.3%$16,137 Pump Station Structures (Concrete Chambers, etc.)$55,000 50 2.0%$1,100 Pump Station Equipment (Mechanical / Electrical)$45,000 20 5.0%$2,250 Subtotal $1,341,308 --$19,487 Contingency Allowance (Subtotal x 25%):$4,872 Engineering (Subtotal x 10%):$1,949 Opinion of Probable Annual Capital Replacement Fund Contribution:$26,308 Note: Annual contribuƟons do not account for annual inflaƟon. Harbour Engineering Joint Venture Louisbourg Collection System Pre-Design Brief 20 CHAPTER 9 REFERENCES Environment Canada (2006) –Atlantic Canada Wastewater Gidelines Manual for Collection, Treatment and Disposal. Harbour Engineering Inc. (2011).Cape Breton Regional Municipality Wastewater Strategy 2009. Nova Scotia Environment (2018).Environment Act. Nova Scotia Utility and Review Board (2013).Water Utility Accounting and Reporting Handbook. UMA Engineering Ltd. (1994). Industrial Cape Breton Wastewater Characterization Programme – Phase II. Water Environment Federation (2009),Design of Wastewater and Stormwater Pumping Stations Harbour Engineering Joint Venture Louisbourg Collection System Pre-Design Brief 21 APPENDIX A Drawings MAIN S T MI N T O S T PE P P E R E L L S T UP P E R W A R R E N S T LO W E R W A R R E N S T COMMERCIA L RI V E R D A L E S T HAV E N S I D E R D MAIN ST MAIN ST MA R V I N S T BE A T R I C E S T WO L F E S T ST R A T H C O N A S T EL W O O D S T HARB O U R V I E W D R 1 ENVIRONMENTAL RISK ASSESSMENTS & PRELIMINARY DESIGN JRS JRS TAB TAB 18-7116 1:3000 FEBRUARY 2018 HA R B O U R E N G I N E E R I N G J O I N T V E N T U R E , 2 7 5 C H A R L O T T E S T R E E T , S Y D N E Y , N S , B 1 P 1 C 6 A B C ISSUED FOR REVIEW ISSUED FOR DRAFT DESIGN BRIEF ISSUED FOR FINAL DESIGN BRIEF 02/27/18 11/12/18 03/11/19 JRS JRS JRS LOUISBOURG EXISTING COLLECTION SYSTEM DATE DESIGN DRAWN PROJECT NO. SHEET NO. No.DATE BYISSUED FOR written permission from Dillon Consulting Limited. than those intended at the time of its preparation without prior Do not scale dimensions from drawing. Report any discrepancies to Dillon Consulting Limited. Verify elevations and/or dimensions on drawing prior to use. Conditions of Use REVIEWED BY CHECKED BY Do not modify drawing, re-use it, or use it for purposes other SCALEj o i n t v e n t u r e MAIN ST L#1 MIN T O S T PE P P E R E L L S T UP P E R W A R R E N S T LO W E R W A R R E N S T COMMERCIA L RIV E R D A L E S T L#2 L#3 L#4 L#6 L#5 ELIZ A B E T H B E A V E R UPP E R W A R R E N S T MAI N S T MAIN ST MA R V I N S T BE A T R I C E S T WO L F E S T ST R A T H C O N A S T OUTLINE OF PROPERTY REQUIRING ACQUISITION OUTLINE OF PROPERTY REQUIRING AN EASEMENT CS0-1CS0-2 300 Ø 3 0 0 Ø 450Ø 250Ø 250Ø 250Ø 25 0 Ø 15458243 (3264937 NOVA SCOTIA LIMITED) 15458128 (SNE SEA PRODUCTS INCORPORATED MAIN ST MIN T O S T PE P P E R E L L S T UP P E R W A R R E N S T LO W E R W A R R E N S T COMMERCIA L RIV E R D A L E S T MAI N S T MAIN ST MA R V I N S T BE A T R I C E S T WO L F E S T ST R A T H C O N A S T EL W O O D S T 2 ENVIRONMENTAL RISK ASSESSMENTS & PRELIMINARY DESIGN OF 7 FUTURE WASTEWATER TREATMENT SYSTEMS IN CBRM TGB TGB TAB JRS 18-7116 1:2500 OCTOBER 2018 HA R B O U R E N G I N E E R I N G J O I N T V E N T U R E , 2 7 5 C H A R L O T T E S T R E E T , S Y D N E Y , N S , B 1 P 1 C 6 A B ISSUED FOR REVIEW ISSUED FOR FINAL DESIGN BRIEF 02/27/18 03/11/19 JRS JRS LOUISBOURG INTERCEPTOR PLAN/PROFILE DATE DESIGN DRAWN PROJECT NO. SHEET NO. No.DATE BYISSUED FOR written permission from Dillon Consulting Limited. than those intended at the time of its preparation without prior Do not scale dimensions from drawing. Report any discrepancies to Dillon Consulting Limited. Verify elevations and/or dimensions on drawing prior to use. Conditions of Use REVIEWED BY CHECKED BY Do not modify drawing, re-use it, or use it for purposes other SCALEj o i n t v e n t u r e PLAN 1:2500 PROFILE 1:2500 (HOR.) 1:500 (VERT.) PROFILE 1:2500 (HOR.) 1:500 (VERT.) Harbour Engineering Joint Venture Louisbourg Collection System Pre-Design Brief 22 APPENDIX B Flow Master Reports Harbour Engineering Joint Venture Louisbourg Collection System Pre-Design Brief 23 APPENDIX C Opinion of Probable Design & Construction Costs OPINION OF PROBABLE COST, CLASS 'C' Preliminary Collection and Project Manager:D. McLean Interception Infrastructure Costs Only Est. by: J. Sheppard Checked by: D. McLean Louisbourg, NS PROJECT No.:187116 (Dillon) 182402.00 (CBCL) UPDATED:April 16, 2020 NUMBER UNIT Linear Infrastructure $1,041,308.00 250 mm Diameter PVC gravity sewer 855 m $400.00 $342,000.00 300 mm Diameter PVC gravity sewer 462 m $425.00 $196,350.00 450 mm Diameter PVC gravity sewer 184 m $500.00 $92,000.00 450 mm Diameter PVC gravity sewer (deep installation)75 m $600.00 $45,000.00 Precast Manhole (1200mm dia.)19 each $5,500.00 $104,500.00 Connection to Existing Main (typ)10 each $8,000.00 $80,000.00 Closed Circuit Televsion Inspection 1,576 m $8.00 $12,608.00 Trench Excavation - Rock 2,250 m3 $60.00 $135,000.00 Trench Excavation - Unsuitable Material 1,125 m3 $10.00 $11,250.00 Replacement of Unsuitable with Site Material 565 m3 $10.00 $5,650.00 Replacement of Unsuitable with Pit Run Gravel 565 m3 $30.00 $16,950.00 Combined Sewer Overflow $200,000.00 Combined Sewer Overflow 2 L.S.$100,000.00 $200,000.00 Low Pressure Pump Systems $100,000.00 Low Pressure Pump Systems 10 L.S.$10,000.00 $100,000.00 SUBTOTAL (Construction Cost)$1,341,308.00 Contingency Allowance (Subtotal x 25 %)$336,000.00 Engineering (Subtotal x 10 %)$135,000.00 Land Acquisition $25,000.00 OPINION OF PROBABLE COST (Including Contingency)$1,837,308.00 THIS OPINION OF PROBABLE COSTS IS PRESENTED ON THE BASIS OF EXPERIENCE, QUALIFICATIONS, AND BEST JUDGEMENT. IT HAS BEEN PREPARED IN ACCORDANCE WITH ACCEPTABLE PRINCIPLES AND PRACTICIES, MARKET TRENDS, NON-COMPETITIVE BIDDING SITUATIONS, UNFORSEEN LABOUR AND MATERIAL ADJUSTMENTS AND THE LIKE ARE BEYOND THE CONTROL OF HEJV. AS SUCH WE CANNOT WARRANT OR GUARANTEE THAT ACTUAL COSTS WILL NOT VARY FROM THE OPINION PROVIDED. EXTENDED TOTALS QUANTITY TOTALUNIT COSTITEM DESCRIPTION PREPARED FOR: Cape Breton Regional Municipality March 27, 2020   HEJV Louisbourg Wastewater System Summary Report Appendices APPENDIX B  Louisbourg Treatment System Pre‐Design  Brief  Prepared by: HEJVPrepared for: CBRM 187116 ●Final Brief ●April, 2020 Environmental Risk Assessments & Preliminary Design of Seven Future Wastewater Treatment Systems in CBRM Louisbourg Wastewater Treatment Facility Pre-Design Brief March 2020 Louisbourg Wastewater Treatment Facility Pre- Design FINAL (2) Brief April 13, 2020 David McKenna, P.Eng. Mike Abbott, P.Eng. DarrinMcLean,FEC, P.Eng. Louisbourg Wastewater Treatment Facility Pre- Design FINAL (1) Brief Oct 10, 2019 David McKenna, P.Eng.Mike Abbott, P.Eng.Darrin McLean,FEC, P.Eng. Louisbourg Wastewater Treatment Facility Pre- Design DRAFT2 Brief July 30, 2019 David McKenna, P.Eng.Mike Abbott, P.Eng.Darrin McLean,FEC, P.Eng. Louisbourg Wastewater Treatment Facility Pre- Design DRAFT1 Brief May 20, 2019 Daniel Bennett, P.Eng. Mike Abbott, P.Eng.Darrin McLean,FEC, P.Eng. Issue or Revision Date Prepared By:Reviewed By:Issued By: This document was prepared for the party indicated herein. The material and information in the document reflects the opinion and best judgment of Harbour Engineering Joint Venture (HEJV) based on the information available at the time of preparation. Any use of this document or reliance on its content by third parties is the responsibility of the third party. HEJV accepts no responsibility for any damages suffered as a result of third party use of this document. March 27, 2020 275 Charlotte Street Sydney, Nova Scotia Canada B1P 1C6 Tel: 902-562-9880 Fax: 902-562-9890 _______________ __ Harbour Engineering Joint Venture Louisbourg WWTP Pre-Design Brief 3 April 13, 2020 Matthew D. Viva, P.Eng. Manager of Wastewater Operations Cape Breton Regional Municipality 320 Esplanade, Sydney, NS B1P 7B9 Dear Mr. Viva: RE: Environmental Risk Assessments & Preliminary Design of Seven Future Wastewater Treatment Systems in CBRM – Final Louisbourg Wastewater Treatment Plant Pre-Design Brief Harbour Engineering Joint Venture (HEJV) is pleased to submit the finalized Louisbourg Wastewater Treatment Plant Preliminary Design Brief, which has been updated to reflect additional CBRM comments on the draft report. The report summarizes an evaluation of wastewater treatment options for the Community of Louisbourg, based on site specific constraints. Based on the preliminary design, HEJV is recommending that a new sequencing batch reactor (SBR) mechanical wastewater treatment plant be constructed on the waterfront parcel of land located at the former fish plant site on Strathcona Street. The treatment process will include influent screening and grit removal, secondary treatment, and ultraviolet disinfection. The facility will include a new building to house treatment equipment, and an odour control system is included to minimize issues with neighboring land owners. A new outfall is included in the design to discharge treated effluent further from the shoreline, to maximize dilution and minimize the risk to recreational users. We look forward to your comments on this document. Yours truly, Harbour Engineering Joint Venture Prepared by:Reviewed by: David McKenna, P.Eng.Mike Abbott, P.Eng. Wastewater Treatment Engineer Wastewater Treatment Engineer Phone: 506-633-5000 Direct: 902-423-3938 E-Mail:dmckenna@dillon.ca E-Mail:mikea@cbcl.ca Project No: 187116 (Dillon) and 182402.00 (CBCL) March 27, 2020 Harbour Engineering Joint Venture Louisbourg WWTP Pre-Design Brief iv Contents CHAPTER 1 Introduction & Background ........................................................................................... 1 1.1 Introduction ................................................................................................................... 1 1.2 Louisbourg Background .................................................................................................. 2 1.3 Objectives ...................................................................................................................... 2 CHAPTER 2 Existing Conditions ........................................................................................................ 3 2.1 Description of Existing Infrastructure .............................................................................. 3 2.2 Population Projection ..................................................................................................... 3 2.3 Wastewater Flow Characterics ....................................................................................... 4 2.3.1 Observed Flows .................................................................................................. 4 2.3.2 Calculated Theorectical Flows ............................................................................. 5 2.4 Wastewater Quality Data ............................................................................................... 6 CHAPTER 3 Basis of design ............................................................................................................... 7 3.1 Service Area ................................................................................................................... 7 3.2 Design Flows .................................................................................................................. 7 3.3 Design Influent Loading .................................................................................................. 8 3.4 Design Effluent Requirements ........................................................................................ 9 CHAPTER 4 Treatment Process Alternatives ................................................................................... 11 4.1 Preliminary Treatment ................................................................................................. 11 4.1.1 Screening .......................................................................................................... 11 4.1.2 Grit Removal ..................................................................................................... 12 4.2 Secondary Treatment ................................................................................................... 14 4.2.1 Site Specific Suitability ...................................................................................... 16 4.2.2 Description of Candidate Processes for Secondary Treatment ........................... 17 4.3 Disinfection .................................................................................................................. 20 4.3.1 Chlorination ...................................................................................................... 20 4.3.2 UV Disinfection ................................................................................................. 21 4.3.3 Disinfection Recommendation .......................................................................... 21 4.3.4 SBR Disinfection ................................................................................................ 21 4.3.5 MBBR Disinfection ............................................................................................ 21 4.4 Sludge Management .................................................................................................... 22 4.5 Secondary Treatment Options Evaluation ..................................................................... 22 Harbour Engineering Joint Venture Louisbourg WWTP Pre-Design Brief v 4.5.1 Opinion of Probable Capital Cost....................................................................... 22 4.5.2 Opinion of Probable Operating Costs ................................................................ 23 4.5.3 Life Cycle Cost Estimate .................................................................................... 23 4.5.4 Qualitative Evaluation Factors........................................................................... 24 4.5.5 Recommended Secondary Treatment Process .................................................. 25 CHAPTER 5 Preliminary Design ....................................................................................................... 26 5.1 General Overview ......................................................................................................... 26 5.2 Unit Process Description ............................................................................................... 26 5.2.1 Lift Station ........................................................................................................ 26 5.2.2 Preliminary Treatment ...................................................................................... 27 5.2.3 Secondary Treatment ....................................................................................... 28 5.2.4 Disinfection ...................................................................................................... 29 5.2.5 Sludge Management ......................................................................................... 30 5.2.6 Odour Control ................................................................................................... 31 5.3 Facility Description ....................................................................................................... 31 5.3.1 Civil and Site Works .......................................................................................... 32 5.3.2 Architectural ..................................................................................................... 32 5.3.3 Mechanical ....................................................................................................... 33 5.3.4 Electrical ........................................................................................................... 33 5.3.5 Lighting ............................................................................................................. 33 5.3.6 Instrumentation ................................................................................................ 34 5.3.7 Control System Overview .................................................................................. 34 5.3.8 Headworks........................................................................................................ 35 5.3.9 SBR ................................................................................................................... 35 5.3.10 Waste Activated Sludge .................................................................................. 35 5.3.11 Effluent Disinfection ....................................................................................... 35 CHAPTER 6 Project Costs ................................................................................................................ 36 6.1 Opinion of Probable Construction Costs ....................................................................... 36 6.2 Opinion of Annual Operating Costs ............................................................................... 36 6.3 Opinion of Annual Capital Replacement Fund Contributions ......................................... 37 CHAPTER 7 References ................................................................................................................... 38 Harbour Engineering Joint Venture Louisbourg WWTP Pre-Design Brief vi Tables Table 2-1 Mira and East Population Projection ........................................................................................ 4 Table 2-2 Flow Monitoring Location Summary ......................................................................................... 4 Table 2-3 Average Dry Weather and Design Flows Results for L#2 Sewershed.......................................... 5 Table 2-4 Theoretical Flow Summary for L#2 outfall ................................................................................ 6 Table 2-5 HEJV Wastewater Sampling Results .......................................................................................... 6 Table 2-6 CBRM Wastewater Characterization Samples ........................................................................... 6 Table 3-1 Summary of Theoretical and Observed Flows for Outfall L#2 .................................................... 7 Table 3-2 Projected Flows at each Outfall location ................................................................................... 8 Table 3-3 Theoretical Wastewater Quality ............................................................................................... 9 Table 3-4 Design Effluent Requirements ................................................................................................ 10 Table 4-1 Secondary Treatment Processes ............................................................................................. 15 Table 4-2 Sequence Batch Reactor Process Design Criteria .................................................................... 19 Table 4-3 Moving Bed Bio-Reactor Process Design Criteria .................................................................... 20 Table 4-4 Secondary Process Capital Cost Comparison ........................................................................... 23 Table 4-5 Secondary Process Annual Operating Cost Comparison .......................................................... 23 Table 4-6 Secondary Process Life Cycle Cost Comparison ....................................................................... 24 Table 4-7 Secondary Process Life Cycle Cost Comparison – 73% Capital Funding ................................... 24 Table 4-8 Secondary Process Qualitative Evaluation Factors .................................................................. 24 Table 5-1 Preliminary Design Drawings .................................................................................................. 26 Table 5-2 Pump Station Summary .......................................................................................................... 27 Table 5-3 Fine Screening Design Summary ............................................................................................. 28 Table 5-4 Grit Removal Design Summary ............................................................................................... 28 Table 5-5 Secondary Treatment Design Summary .................................................................................. 29 Table 5-6 UV Disinfection Design Summary ........................................................................................... 30 Table 5-7 Sludge Tank Design Summary ................................................................................................. 30 Table 5-8 Sludge Dewatering Design Summary ...................................................................................... 31 Table 5-9 Classification of Building Areas ............................................................................................... 33 Table 6-1 - Annual Operating Costs Breakdown (2019 Dollars) ............................................................... 36 Table 6-2 - Estimated Annual Capital Replacement Fund Contributions ................................................. 37 Appendices Appendix A –Drawings Appendix B – SBR & MBBR Estimated Capital Cost Differential Appendix C – Opinion of Probable Construction Costs Harbour Engineering Joint Venture Louisbourg WWTP Pre-Design Brief 1 CHAPTER 1 INTRODUCTION &BACKGROUND 1.1 Introduction Harbour Engineering Joint Venture (HEJV) has been engaged by the Cape Breton Regional Municipality (CBRM) to carry out Environmental Risk Assessments (ERAs) and Preliminary Design of Seven Future Wastewater Treatment Systems in the CBRM. The future wastewater collection and treatment systems will serve the communities of Glace Bay, Port Morien, North Sydney & Sydney Mines, New Waterford, New Victoria, Louisbourg, and Donkin, which currently have no wastewater treatment facilities. This preliminary design brief summarizes the proposed wastewater treatment plant (WWTP) for the Community of Louisbourg. In general, the proposed WWTPs will treat wastewater to a standard set by the Nova Scotia Department of Environment (NSE). The complexity of each system is directly related to incoming flow dynamics, wastewater characteristics, available space, population attributes, and implementation strategy. The objectives of this study can be summarized as follows: ®Using study outcomes from the ERAs, Population Growth Forecasts, Desktop Geotechnical Reports, and in conjunction with the Collection System Preliminary Design Brief, accurately assess existing conditions and determine design requirements for the new WWTP; ®Evaluate different wastewater treatment methods and make recommendations based on: treatment efficiency, operational and maintenance requirements, site constraints, capital and life cycle costing; ®Develop a clear implementation strategy that provides a plan and schedule for designing, construction, commissioning, inspection, and occupy of the recommended WWTP option; and ®Present the findings for the preliminary design in a clear, concise manner containing project information and recommendations developed throughout the preliminary design process. The contents of this document relate solely to the proposed WWTP in the community of Louisbourg, and have been produced in conjunction with the following documents: ®Louisbourg Environmental Risk Assessment; ®Louisbourg Collection System Preliminary Design Brief; ®Louisbourg Geotechnical Desktop Study; and ®Environmental Risk Assessments & Preliminary Design of Seven (7) Future Wastewater Treatment Systems in CBRM - Base Information Summary Brief. Harbour Engineering Joint Venture Louisbourg WWTP Pre-Design Brief 2 1.2 Louisbourg Background There is presently no WWTP in the Community of Louisbourg; wastewater is discharged untreated directly into the Atlantic Ocean. As is the case in hundreds of coastline communities across Atlantic Canada, the evolution of the existing wastewater collection and disposal systems in Cape Breton included the creation of clusters / neighbourhoods / regions of a community, which were serviced by a common wastewater collection system tied to a local marine outfall. Such design approaches have traditionally been the most cost-effective manner of providing centralized wastewater service, and the marine environment has long been the preferred receiving water given available dilution. Due to a changing regulatory environment, CBRM is working toward intercepting and treating the wastewater in these communities prior to discharge. 1.3 Objectives The objectives of this report will be to: ®Review historic and recent data to establish design parameters for the new WWTP, including but not limited to: population growth projections, sewer flows for both dry and wet weather periods, and wastewater loading characteristics; ®Establish site-specific criteria for evaluating available wastewater treatment technologies; ®Screening and short-listing of potential wastewater treatment technologies that are viable for the new Louisbourg WWTP; ®Evaluation of WWTP options based on the criteria herein, with a recommendation of the optimal facility for Louisbourg; and ®The presentation of preliminary engineering design for the recommended option, along with capital and operating cost estimates. Harbour Engineering Joint Venture Louisbourg WWTP Pre-Design Brief 3 CHAPTER 2 EXISTING CONDITIONS 2.1 Description of Existing Infrastructure The Community of Louisbourg has six separate sewersheds, and is serviced by a gravity sewer system ranging in size from 200 to 750mm in diameter. Each sewershed has a dedicated outfall that discharges raw sewage to Louisbourg Harbour. The outfalls for the sewersheds are located as follows: ®L#1 – South of the Wolfe/Riverdale/Main Street intersection at the Barrachois; ®L#2 - South of the Centre and Commercial Street intersection; ®L#3 – Adjacent to the boardwalk, south of Harbourview Crescent; ®L#4 – Minto Street; ®L#5 – South of the Beatrice/Main Street intersection; and ®L#6 – Marvin Street. In addition to these six named outfalls listed above, there are a number of commercial buildings on the Louisbourg waterfront that do not appear to be connected to the existing sanitary sewer network. At this moment in time it is unknown if wastewater from these buildings is connected to one of the above listed outfalls or their own individual outfalls. 2.2 Population Projection The population for the Louisbourg service area was calculated from the 2016 Census data contained in CBRM’s GIS database using the following procedure: Each residential unit within the service area boundary from CBRM’s structure database was multiplied by the average household size for the census dissemination area that it falls within. For Louisbourg, the service area population was estimated to be 821 people in 391 residential units. The population in Cape Breton County has been declining since the 1970s and a recent report by Turner Drake & Partners Ltd predicts a 17.8% decrease in population in Cape Breton County between 2016 and 2036 (Turner Drake & Partners Ltd., February 2018). HEJV has trended population data and projected areas of growth and decline as part of the Environmental Risk Assessments & Preliminary Design of Seven Future Wastewater Treatment Systems in CBRM. The report divides the CBRM into five subsets with the Community of Louisburg captured in the Mira and East data subset. This subset not only includes the service area of the future Louisbourg wastewater plant, it also includes a significant amount of unserved rural areas.Table 2-1 shows the actual and projected populations for the Mira and East area, with actual populations denoted by red bold text. Harbour Engineering Joint Venture Louisbourg WWTP Pre-Design Brief 4 Table 2-1 Mira and East Population Projection Year 1991 1996 2001 2006 2011 2016 2021 Population 7,850 7,840 7,320 6,525 5,770 5,080 4,430 The primary land use in the community of Louisbourg is residential single family dwellings with no significant multi-unit dwellings or institutions/schools. There are a number of industrial and commercial units in the community; however, it is suspected that these units are not connected to the existing sanitary sewer and are serviced by their own private outfalls. The community is in close proximity to the Fortress of Louisbourg which is a federal tourist attraction, and therefore it is expected to see a seasonal increase in the number of visitors in the area. 2.3 Wastewater Flow Characterics 2.3.1 Observed Flows HEJV conducted a sewer flow monitoring program to capture representative flow data from February 26 to April 11, 2018. The outlet of outfall L#2 was selected for the flow monitoring location as it receives approximately 40% of the sanitary sewer flow generated by community. The summary of the flow meter location data is shown in Table 2-2. Table 2-2 Flow Monitoring Location Summary Northing Easting Monitoring Start-End Dates Days of Data 5087630.112 4618444.369 February 26-April 11,45 Analysis for observed dry weather flows was completed using the United States Environmental Protection Agency’s (EPA) Sanitary Sewer Overflow Analysis and Planning (SSOAP) toolbox. The SSOAP toolbox is a suite of computer software tools used for capacity analysis and condition assessments of sanitary sewer systems. Flow and precipitation data were input into the SSOAP program, along with sewershed data. To determine average dry weather flow (ADWF), days that may have been influenced by rainfall were excluded. This was done in the SSOAP model by excluding data for days that had any rain within the last 24 hours, more than 5 mm in the previous 48 hours, and more than 5 mm per day additional in the subsequent days (e.g. 10 mm in the last 3 days). The ADWF calculated using monitored flow data and the SSOAP program is presented in Table 2-3. Table 2-3 also shows the average and peak flows from flow monitoring data, which considers wet weather flow events. The 4xADWF value is also shown, which was recommended in the report “Industrial Cape Breton Wastewater Characterization Program – Phase II” prepared in 1994 by UMA Engineering Limited as the minimum sewage flow that should be treated for the Community of Louisbourg. HEJV compared the 4xADWF value with the other values compiled in Table 2-3. Harbour Engineering Joint Venture Louisbourg WWTP Pre-Design Brief 5 Table 2-3 Average Dry Weather and Design Flows Results for L#2 Sewershed Outfall Estimated Area (ha) Estimated Population1 m3/day L/p/d m3/ha/d Observed ADWF 36 360 321 892 8.9 Observed Peak Flow 1057 2936 29.4 SSOAP Model ADWF 259 719 7.2 4 x ADWF2 1036 2878 28.7 1 2016 Cape Breton Census from StaƟsƟcs Canada 2 ADWF is from SSOAP model results 2.3.2 Calculated Theorectical Flows Theoretical flows were calculated based on design factors contained in the Atlantic Canada Wastewater Guidelines Manual (ACWGM). To estimate wastewater flow, total number of residents is multiplied by a per capita wastewater rate. Peak design flow was calculated using the following equation (1): ܳ(݀)=ܲݍܯ 86.4 +ܫܣ +ܵܰ (1) Where: Q(d) = Peak domesƟc sewage flow (l/s) P = PopulaƟon (in thousands) q = Average daily per capita domesƟc flow (l/day per capita) M = Peaking factor (Harman Method) I = unit of extraneous flow (l/s/ha) A = Subcatchment area (hectares) S = Unit of Manhole inflow allowance for each manhole in sag locaƟon, in l/sec N =Number of manholes in sag locaƟon ACWGM recommends an average daily domestic sanitary flow of 340 l/day per person for private residential dwellings, excluding extraneous flow. The unit of extraneous flow representing ingress and infiltration was assumed to be 0.21 l/s/ha based on the midpoint of the range outlined in ACWGM. The contributing sewershed was estimated to be 36 ha. The impact of inflow from manholes was excluded based on the small size of the sewershed. The peaking factor used in Equation 1 was determined using the Harman Formula (2) shown below: Harman Formula ܯ =1+14 4+ܲ଴.ହ (2) The peaking factor, M, calculated for Louisbourg is 4.04.TheoreƟcal flows calculated for Ouƞall L2 are shown in Table 2-4. Harbour Engineering Joint Venture Louisbourg WWTP Pre-Design Brief 6 Table 2-4 Theoretical Flow Summary for L#2 outfall Estimated Area (ha) Estimated Population1 m3/day L/p/d m3/ha/d ADWF2 36 360 122.4 340 3.4 Peak Design Flow3 1148 3189 31.9 1 2016 Cape Breton Census from StaƟsƟcs Canada 2 Based on Average sewer flows of 340 L/day/person (ACWGM 2006) 3EsƟmated Using ACWGM equaƟon for peak domesƟc sewage flows (Includes extraneous flows and peaking factor) 2.4 Wastewater Quality Data HEJV collected untreated wastewater samples from three of the six outfalls (L1, L2, and L5), and the results are presented in Table 2-5. CBRM also conducted sampling at each of the outfalls from 2015 through 2017, summarized in Table 2-6. Note that only one sample was collected by CBRM at all outfalls except L2; therefore, these results are not an average and only represent a single grab sample that cannot be used with statistical confidence due to the limited dataset. Outfall L2 was sampled more than 13 times by CBRM and is more statistically significant. Table 2-5 HEJV Wastewater Sampling Results Parameter Units Outfall Location L1 L2 L5 CBOD5 mg/L 110 61 41 Total Kjeldahl Nitrogen (TKN)mg/L 6.3 6.2 4.3 Nitrogen (Ammonia Nitrogen)as N mg/L 1.0 2.9 0.96 Unionized ammonia mg/L 0.0021 0.0069 0.0022 pH pH 6.89 6.94 6.92 Total Phosphorus mg/L 0.79 1.1 0.78 Total Suspended Solids mg/L 33 43 25 E.coli MPN/100mL 200000 820000 770000 Total Coliforms MPN/100mL >2400000 >2400000 2000000 Table 2-6 CBRM Wastewater Characterization Samples Parameter Units Outfall Location L1 L2 L3 L4 L5 Avg No. of Sample Avg No. of Sample Avg No. of Sample Avg No. of Sample Avg No. of Sample CBOD5 mg/L 60 1 80.7 37 <5 1 <5 1 25 1 Nitrogen (Ammonia Nitrogen) as N mg/L 3.1 1 4.2 13 <0.05 1 <0.05 1 1.4 1 Unionized am monia mg/L 0.0095 1 0.009 13 <0.0005 1 <0.0005 1 0.002 3 1 pH pH 7.1 1 6.8 13 7.4 1 7.13 1 6.8 1 Total Suspended Solids mg/L 37 1 59.9 37 <2 1 <2 1 21 1 Harbour Engineering Joint Venture Louisbourg WWTP Pre-Design Brief 7 CHAPTER 3 BASIS OF DESIGN 3.1 Service Area The primary method used to estimate future wastewater flows and loads is the projection of current per capita flows and loads using estimates of future population. As discussed in Section 2.2, the population of Louisbourg has been steadily declining for the previous forty years and is expected to continue to decline for next twenty years. The new WWTP will have a thirty year design life. Based on the declining Louisbourg population there is potential for future industrial and commercial development in the community to be connected to the sewer system. A conservative assumption for this report is that current wastewater flows will remain relatively constant over the next thirty years, with population decline offset by industrial and commercial growth. The WSER has set the deadline of 2040 for the community of Louisbourg to meet the mandatory national effluent quality standards. Consideration should be given to re-evaluating the population and wastewater flows if a significant amount of time has passed between completion of the pre-design study and the project moving to the detailed design stage. 3.2 Design Flows The ACWGM, theoretical, and observed flows for Outfall L#2 are summarized in Section 2.2 and displayed in Table 3-1. The Louisbourg collection system pre-design has recommended that the sewer system be sized to accommodate ACWGM peak flows. Utilising data obtained from the flow monitoring program, the SSOAP calculated ADWF value from Outfall L#2 was applied to the remaining outfalls by pro-rating each based on population. The same approach was applied to calculate the theoretical peak design flows for the other outfall catchments. The calculated ADWF and peak flows are shown in Table 3-2. Table 3-1 Summary of Theoretical and Observed Flows for Outfall L#2 ADWF Peak Flow m3/day L/p/day m3/day L/p/day SSOAP 259 719 1036 2878 Theoretical 122 340 1148 3189 Observed 321 892 1057 2936 Harbour Engineering Joint Venture Louisbourg WWTP Pre-Design Brief 8 Table 3-2 Projected Flows at each Outfall location Outfall Population ADWF2 (m3/day) 4x ADWF3 (m3/day) Peak Flow4 (m3/day) L#1 113 81.3 325 458 L#21 360 259 1036 1166 L#3 5 3.6 14 35 L#4 2 1.4 5 17 L#5 327 235 940 1123 L#6 14 10 40 43 Total 821 590 2360 2875 1Ouƞall at monitoring locaƟon 2 Pro-rated on populaƟon using SSOAP value at Ouƞall #2 3 Factor of 4 was applied to ADWF to account for inflow and infiltraƟon (Industrial Cape Breton Wastewater CharacterisaƟon Program – Phase 2, 1994) 4EsƟmated Using ACWGM equaƟon for peak domesƟc sewage flows (Includes extraneous flows and peaking factor) HEJV is recommending that design flows for the new Louisbourg wastewater facility be based on the following: ®Projected ADWF of 590 m3/day (719 L/p/d); and ®Projected Peak Design of 2360 m3/day (2875 L/p/d). As stated in the Louisbourg Collection System Preliminary Design brief, the HEJV recommends that an additional flow monitoring program that includes Outfall L#5 be considered prior to detailed design, allowing for a greater confidence in the design flow parameters. As will be discussed in the following section, the WWTP will be a mechanical plant, with an inlet lift station. Setting complementary design flows for the lift station and process systems reduces the risk of not achieving wastewater treatment objectives. The risk with not pursuing additional monitoring data therefore is related to the frequency and volume of collection system overflows that could bypass the treatment facility, in the event that the theoretical peak flow underestimates actual collection system peak flows during precipitation events. 3.3 Design Influent Loading The theoretical per capita loading rates listed in the ACWGM are 0.08 kg BOD5/person/day and 0.09 kg TSS/person/day. With a total service population of 821, this would result in a loading of 65.7 kg BOD5/day and 73.9 kg TSS/day. Using the projected ADWF of 590 m3/day results in concentrations of 111 mg/L for BOD5 and 125 mg/L for TSS during dry weather conditions. HEJV is recommending that peak loading use a factor of 2.0 relative to the ACWGM theoretical per capita loading, which results in peak loading of 131 kg BOD5/day and 148 kg TSS/day, and concentrations of 55.7 mg/L for BOD5 and 62.6 mg/L for TSS based on the design peak flow of 2360 m3/d. The loading rate for TKN is assumed to be 0.0133 kg TKN/person/day based on theoretical data from the text:Wastewater Engineering: Treatment and Reuse (Metcalf & Eddy, Inc., 2003). The resulting ADWF Harbour Engineering Joint Venture Louisbourg WWTP Pre-Design Brief 9 load for TKN is therefore 10.9 kg/d, and at peak flow 21.8 kg TKN /d. Corresponding TKN concentrations are 18.5 and 9.3 mg/L at ADWF and peak flow, respectively. The observed wastewater concentrations vary significantly between each outfall and between ACWGM theoretical values. The smaller outfalls only had a single sampling event, and it’s possible that there was a minimal sanitary component relative to I/I during the time of sampling. Other potential sources for the difference in the data may be related to sampling procedures, or sampling during very wet periods. Based on the largely residential population of Louisbourg, HEJV recommends that BOD5, TSS, and TKN loading for design of the new wastewater treatment facility be based on the theoretical loadings stated above.Table 3-3 summarises the design criteria to be used for the Louisbourg WWTP. Table 3-3 Theoretical Wastewater Quality Parameter ADWF Peak Day Design Population 821 Flow (m3/day)590 2360 Strength CBOD (mg/L)111 55.7 TSS (mg/L)125 62.6 TKN (mg/L)18.5 9.3 Loading CBOD (kg/day)65.7 131 TSS (kg/day)73.9 148 TKN (kg/day)10.9 21.8 1 CBOD5 Loading Rate 0.08 kg BOD5/person/day 2 TSS Loading Rate 0.09 kg TSS/person/day 3 TKN Loading rate 0.0133 kg TKN/person/day 3.4 Design Effluent Requirements HEJV has established effluent requirements based on the federal Wastewater System Effluent Regulations (WSER) limits, and determined the effluent discharge objectives (EDOs) for parameters not included in the WSER as part of the ERA. The receiving water for the Louisbourg WWTP will be the Atlantic Ocean, adjacent to Louisbourg Harbour. The ERA generally followed Technical Supplement 3 of the Canada-wide Strategy for the Management of Municipal Wastewater Effluent – Standard Method and Contracting Provisions for the Environmental Risk Assessment. Dilution modelling was conducted to determine the maximum 1 day average effluent concentration with a mixing zone boundary of 100m for all parameters. The WSER limits and calculated EDOs from the ERA are summarized in Table 3-4. As EDOs are calculated values, they are not round whole numbers that are typical of permit requirements; therefore, we have included both the EDOs and corresponding anticipated permit values in the table. The ERA values were Harbour Engineering Joint Venture Louisbourg WWTP Pre-Design Brief 10 obtained based on the assumption of a single new outfall in Louisbourg Harbour. This assumption will be revisited and EDOs confirmed after the final configuration of the outfall is determined. Table 3-4 Design Effluent Requirements Parameter Units EDO Effluent Limit Required By CBOD5 mg/L -25 WSER TSS mg/L -25 WSER Un-ionized Ammonia (as NH3-N)mg/L -1.25 WSER Total Residual Chlorine (TRC)mg/L -0.02 WSER E. coli (E. coli/ 100mL)34,522 200 ERA/NSE Total Ammonia mg/L 710 700 ERA TKN mg/L 212 210 ERA Phosphorus mg/L 17 15 ERA Harbour Engineering Joint Venture Louisbourg WWTP Pre-Design Brief 11 CHAPTER 4 TREATMENT PROCESS ALTERNATIVES Current regulations (WSER) require that a municipal wastewater treatment process that includes secondary treatment be installed at Louisbourg by December 31, 2040. Secondary treatment provides treatment of dissolved organics and suspended solids, to a minimum performance level of 25 mg/L for both CBOD5 and TSS. Secondary treatment for a mechanical WWTP normally includes aerobic treatment, which requires aeration of the wastewater. As will be identified in the following sections, the proposed WWTP for Louisbourg will be located on a parcel of land that houses the former SNE Sea Products LTD facility. This design brief will focus on packaged plant alternatives, but also specifically address preliminary treatment, disinfection, and solids management technologies. 4.1 Preliminary Treatment Municipal wastewater typically contains large solids and grit that if not removed can damage equipment and interfere with the downstream treatment process. To eliminate this risk, these materials need to be removed from the wastewater stream. The following sections discuss options for suspended solids and grit removal. 4.1.1 Screening Screens used in preliminary treatment applications are classified based on the size of openings as either coarse or fine (6 mm openings or less). Selection of screen size and technology is dependent on multiple factors, including wastewater flowrate, downstream processes, and odour management. Coarse screens are used to remove larger objects that could damage or clog downstream equipment, so they are typically the first unit operation in a wastewater treatment plant. They can include vertical bar racks that are either manually or mechanically cleaned. There are a number of systems available, including continuous chain driven rake, reciprocating rake, and continuous belt. Fine screens provide increased solids capture compared to coarse screens, and several options are available including band screens, drum screens, and step screens. For small WWTPs like Louisbourg, there are packaged fine screen units available that include screening, solids washing and dewatering, and bagging in a single package. The screen is a small drum, with collected solids removed by a screw conveyor where the washing and dewatering occur. These units are available in multiple screen openings, but for Louisbourg, a standard opening size of 6 mm is recommended.Figure 4-1 shows a typical small facility packed drum screen unit. Harbour Engineering Joint Venture Louisbourg WWTP Pre-Design Brief 12 4.1.2 Grit Removal Grit chambers are used to remove inert, non-biodegradable materials such as sand, gravel, cinders, or other heavy solid material with specific gravities greater than those of organic solids in the wastewater. The purpose of grit removal is to protect mechanical equipment from abrasion and wear, and to reduce the formation of deposits in pipelines, channels, and tanks. Typical grit chamber configurations include gravity settling, aerated channel, and vortex. Technology selection is typically based on grit load, wastewater flow and dynamics, odour control, and footprint. For Louisbourg, grit treatment selection will consider automated systems to reduce on-site manpower requirements and odour potential. Gravity systems for grit removal are based on a horizontal grit chamber, where the flowrate was controlled in order to settle solids based on Stokes Law. These systems were difficult to control with variable flowrates, and were odorous. New gravity technologies rely on stacked parallel plates for a more efficient and compact package that are able to operate over a wide flow range. An example is the HeadCell® technology by Hydro International, shown in Figure 4-2. Figure 4-1Typical Screening Conveyor Harbour Engineering Joint Venture Louisbourg WWTP Pre-Design Brief 13 In aerated grit chambers, coarse bubble diffusers are installed along one side of each rectangular tank to create a spiral flow pattern that is perpendicular to the flow through the chamber. This spiral pattern causes the grit to settle in the tank and helps keep organic particles in suspension, so they can pass through the tank to the downstream processes. The performance of an aerated grit chamber can be controlled by adjusting the quantity of air that is supplied. If the spiral velocities are too low then organics may settle in the chamber, causing excessive quantities of organics in the dried grit. If the spiral velocities are too high, then grit may not settle in the chamber. The grit that settles in an aerated grit chamber settles in a trough that spans the length of the chamber. There are a number of options available for removing grit from the trough, including buckets, spiral conveyors, and grit pumps. A typical aerated grit chamber is shown in the Figure 4-3. Vortex-style grit chambers function by inducing a helical flow pattern in the tank, and the resulting centrifugal force causes grit to settle into a bottom hopper. Grit is then removed from the hopper using a grit pump. The vortex systems operate over a wide flow range, and have the advantage of no submerged components that require maintenance. A typical vortex grit chamber is shown in the Figure 4-4. Figure 4-2 Headcell Grit Removal System Figure 4-3 Typical Aerated Grit Chamber Figure 4-4 Typical Grit Vortex Chamber Harbour Engineering Joint Venture Louisbourg WWTP Pre-Design Brief 14 Once grit is removed from the wastewater flow, it is typically cleaned in a classifier to remove organics to reduce odour. Classifiers may be equipped with a hydrocyclone at the inlet to reduce slurry volumes through centrifugal separation prior to discharging to the classifier. Grit that settles in the classifier is removed by an auger or rake and discharged to a disposal bin until there are sufficient quantities for disposal in a landfill. For small WWTPs, there are package systems available for grit removal and washing that use the vortex or gravity separation method. Both of these systems are suitable for Louisbourg, and have similar footprint and performance. For the preliminary design, HEJV has based the grit removal on a vortex system, with a conveyor to discharge clean grit to the screenings bin. 4.2 Secondary Treatment There are many types of secondary treatment processes that can provide the required treatment to meet the effluent requirements identified in Chapter 3. These processes can be classified as either suspended growth or attached growth systems. Suspended growth systems use aeration and mixing to keep a relatively high concentration of microorganisms (biomass) that consume organics in suspension in an aeration basin. The biomass in the effluent from the aeration basin is normally separated from the treated wastewater, with a portion returned to the inlet of the aeration basin, and a portion removed as a waste stream for disposal. Attached growth systems use high surface area media on which a microbial layer (biofilm) can grow; organics in wastewater are consumed when they contact the biofilm. Both suspended and attached growth systems require aeration to provide oxygen for the bacteria, and aeration also provides a means to remove excess biofilm from the attached growth media. Additional secondary treatment systems that are commonly used by small communities include lagoon- based treatment (stabilization basins and aeration lagoons), and treatment wetlands. These systems have long hydraulic retention times, and are considered ‘land-based’ due to the large footprints required. Stabilization basins and aerated lagoons typically develop algae growth in the warm season, which increases suspended solids in the effluent, but also provides supplemental oxygen. In stabilization basins, there is no mechanical aeration. Oxygen is supplied to the wastewater by algal respiration and directly from the atmosphere; mechanical aeration is not used. Most of the oxygen from algal respiration is produced near the surface because the algae require sunlight. Diffusion of oxygen from the air and mixing from wind and waves are also highest near the surface. If a stabilization basin is shallow enough, it can be aerobic throughout, but the most common type in this region is facultative. In a facultative stabilization basin, the surface is aerobic, mid-depth has declining oxygen levels, and the bottom layer is anaerobic allowing for sludge digestion. Gases produced from the anaerobic layer, including methane and sulfide, are typically consumed or oxidized before they reach the water surface. Stabilization basins are subject to turnover in the spring and fall because they are not mixed, resulting in the release of intense odours, and therefore are normally located away from developed areas. The facultative stabilization basin will be assessed for CBRM treatment facilities (subsequently referred to in this report as “Stabilization Basin”). Stabilization basins are typically 1.5–1.8 m deep, and have retention times in the range of 25 to 180 days, with 180 days being common in Atlantic Canada. Organic loading rates for areas with an average winter air temperature of less than 0°C are typically in the range Harbour Engineering Joint Venture Louisbourg WWTP Pre-Design Brief 15 of 11–22 kg/ha/d. They have at least two cells, while larger lagoons may have more cells to minimize short circuiting. Effluent suspended solids can be seasonally high due to algae and turnover, and stabilization basins may be followed by a constructed wetland for effluent polishing. The surface of stabilization basins typically freeze in the winter, which impacts treatment performance due to lack of aeration. Sludge residuals must be removed one or more times over the life of a stabilization basin. In aerated lagoons, oxygen is supplied by mechanical aeration, and newer systems typically use subsurface fine bubble aeration. They have average retention times ranging from 5 to 30 days, with 30 days being common in Atlantic Canada. They accept higher loading rates compared to stabilization basins, are typically at least 3 m deep, require less land, and are typically less susceptible to odours. Aerated lagoons also have higher operational costs related to power for aeration blowers. Aerated lagoons can be either completely or partially mixed; completely-mixed aerated lagoons are rarely cost effective in municipal applications because they use significantly more energy than partially- mixed aerated lagoons and require additional solids separation infrastructure; therefore, only the partially mixed aerated lagoon will be assessed for CBRM installations (subsequently referred to in this report as “Aerated Lagoon”). In a partially mixed aerated lagoon, incoming organic and inorganic solids and biosolids settle in the lagoon cells, where they are digested in the resultant sludge layer. The sludge residuals must be removed one or more times over the life of the lagoon. These aerated lagoons typically include a downstream quiescent zone (no aeration) as part of the main treatment cells, and may be followed by a polishing pond or wetland to reduce suspended solids prior to discharge. Odour generation has a lower risk compared to the stabilization basin; however, if aeration control is not properly managed, septic conditions can still occur. Constructed wetlands are normally only used for effluent polishing and nutrient removal in Canada due to our cold winters. These wetlands rely on plant uptake and biofilm to provide treatment, and the resultant wetland plants must be periodically harvested from the system. There are many examples in Atlantic Canada where tertiary treatment of lagoon effluent is provided in a downstream constructed wetland. A listing of specific secondary treatment processes and the category to which they belong is presented in Table 4-1. Table 4-1 Secondary Treatment Processes Process Category Specific Process Suspended Growth Sequencing Batch Reactor (SBR) Activated Sludge Membrane Bio-Reactor (MBR) Extended Aeration Pure Oxygen Activated Sludge Oxidation Ditch Attached Growth Moving Bed Bio-Reactor (MBBR) Rotating Biological Contactor (RBC) Trickling Filter Biological Activated Filter (BAF) Harbour Engineering Joint Venture Louisbourg WWTP Pre-Design Brief 16 Process Category Specific Process Land-Based Aerated Lagoon Stabilization Basin Constructed Wetlands HEJV has worked on projects that have used the majority of the technologies listed in Table 4-1 so we are able to use our practical experience to short-list the technologies that best satisfy the project constraints at Louisbourg. 4.2.1 Site Specific Suitability The main constraints at this site that will influence wastewater treatment technology for the Louisbourg WWTP are: ®Effluent Requirements; ®Site Location; ®Odour Control; ®Capital Cost and Life Cycle Costing; and ®Ease of operation and maintenance. Each of these criteria is discussed below. 4.2.1.1 EFFLUENT REQUIREMENTS The effluent requirements summarized in Section 3.4 can be met by all of the listed technologies in Table 4-1. 4.2.1.2 SITE CONDITIONS As part of the Louisbourg Collection System Design, five locations were identified and evaluated as potential WWTP locations. The collection system design brief concluded that the most appropriate location for the WWTP is on the same parcel of land as the SNE Sea Products LTD, adjacent to the existing structures and Strathcona Street. The reasons for this decision were: the land has previously been commercially developed; proximity to the waterfront for outfall access; and ability to use gravity sewers for the collection system (however a lift station will be required at the WWTP). The proposed location of the WWTP does not meet the ACWGM guidelines for setback distances from residential properties. HEJV has met with NSE to discuss locations for future treatment plants that do not meet the ACWGM guidelines for setback distances but ultimately make the most sense for a community from an economic stand point. NSE’s feedback to HEJV was that if the location of the WWTP did not meet the ACWGM guidelines but ultimately made the most sense for a community, the detailed design of the plant would need to include odour controls, to minimize the impact to neighbouring properties. The total area of available land at the proposed location is approximately 0.9 hectares, which does not provide sufficient space to construct any of the Land Based treatments options (oxidation ditch, stabilization basin, aerated lagoon, and wetlands) listed in Table 4-1. HEJV has eliminated processes that are unable to provide sufficient treatment based on availability of land from further considerations. Harbour Engineering Joint Venture Louisbourg WWTP Pre-Design Brief 17 4.2.1.3 ODOUR CONTROL Due to proximity to neighboring homes and commercial businesses, odour control must be included in the design of the new Louisbourg WWTP. Ideally, the treatment process should have a small surface area to minimize odour footprint, and be easily contained to optimize odour control. Technologies that are difficult to contain and/or that have a high contact area between wastewater and the atmosphere (oxidation ditch, trickling filter, rotating biological contactor) were eliminated. 4.2.1.4 COST There are a number of technologies in Table 4-1 that can be eliminated based on their relatively high cost. For example, pure-oxygen activated sludge is more costly to operate compared to conventional activated sludge due to oxygen costs and the requirement for on-site storage and feed equipment for liquid oxygen. As well, prior evaluations have identified that MBBR technology is more cost effective than other fixed film options. Membrane bioreactors (MBR) are also not considered a cost effective treatment process when the effluent discharge criteria does not necessitate their use. 4.2.1.5 EASE OF OPERATION The remaining technologies typically require similar levels of operational expertise, which we would classify as moderate. However, there is a potential operational benefit to utilizing an SBR process as the CBRM WWTP operations staff have experience with this type of process. Based on this experience, SBR is the preferred candidate suspended growth treatment process. The MBBR treatment process is a simple process to operate, and does not require familiarity with bulking sludge issues and biological control. It has also been demonstrated that the MBBR technology can provide simultaneous nitrification (ammonia reduction). The MBBR technology typically uses dissolved air flotation (DAF) for effluent clarification; while this technology is relatively simple to operate and is widely used in municipal water and industrial water treatment, it is a relatively unknown process for CBRM wastewater operators. 4.2.2 Description of Candidate Processes for Secondary Treatment Based on the Louisbourg site-specific constraints above, and discussions with the CBRM, the SBR and MBBR secondary treatment technologies were short-listed for additional evaluation by HEJV, largely due to their compact footprint, similar technology used elsewhere by CBRM, operational complexity, and relative ease of odour containment and treatment. Each of these processes is described in more detail below. Both processes have similar solids production, so the sludge handling processes will not be evaluated at this stage for comparative evaluation. Similarly, the costs associated with common project elements, including site access, new outfall, solids management, electrical service, etc. will not be evaluated as part of the secondary treatment process comparison. 4.2.2.1 SEQUENCING BATCH REACTOR The Sequencing Batch Reactor (SBR) process is a suspended growth system, where active treatment occurs in a single tank. A conventional fill/draw SBR system requires at least 2 tanks. The SBR process differs from other processes as it is a batch process and reactors operate on a “fill and draw” method. Harbour Engineering Joint Venture Louisbourg WWTP Pre-Design Brief 18 Flow is directed to an available reactor where aeration and clarification occur; once treatment is achieved, settling occurs and treated effluent is withdrawn from the surface through a decanter mechanism. Alternatively, continuous flow SBR technology (ICEAS) does not follow a true fill/draw operation, but instead uses continuous flow, with pre-react and react zones. With ICEAS, aeration in the react tank is intermittently turned off to allow sludge settling and decanting or supernatant to occur. ICEAS can therefore be configured as a single tank for small communities. As indicated by the name, a conventional SBR operation is a sequence of stages, which are shown in Figure 4-5. These stages can vary between manufacturers; however, the principal remains the same and is summarized below: 1.Fill – Effluent from the preliminary treatment flows into an available reactor. Upon entering the reactor, the wastewater is held in an anoxic state, as this condition encourages the creation of microorganisms with good settling characteristics; 2.React – Once the reactor has been filled, aeration is turned on. The addition of oxygen degrades organic matter and promotes nitrogen and phosphorous removal. The length of aeration period determines the degree of BOD removal; 3.Settle – When the required BOD removal has been achieved, aeration and the mixing equipment is turned off and the reactor acts as clarifier. Solids settle at the lower portion of the reactor and form a sludge blanket, leaving a clear treated effluent above the blanket; and 4.Decant – The effluent valve is opened, and treated effluent is withdrawn from the upper portion of the reactor using a floating decanter. During this stage, WAS pumps operate to remove solids from the bottom of the reactor. Figure 4-5 SBR Batch Operation Sequence (FRWA Whitepaper -Wastewater Treatment recommendations for Small & Medium Sized Utilities, By Sterling L. Carroll, P.E., M.P.A., FRWA State Engineer, FLORIDA RURAL WATER ASSOCIATION) Harbour Engineering Joint Venture Louisbourg WWTP Pre-Design Brief 19 The process is generally implemented using a minimum of two (2) reactors in parallel. It can be conducted as a batch process where one reactor is filling while the other is settling. The ICEAS SBR receives influent during all phases of the treatment cycle and decants intermittently, so a single tank configuration is possible. No RAS is required as the mixed liquor remains in the reactor at all times, with WAS being withdrawn as necessary. The entire process is controlled using a programmable logic controller (PLC). SBRs are operated at extended solids and hydraulic retention times compared to conventional activated sludge, resulting in larger reactor volume; however, the total number of tanks required is reduced, which can result in more compact site layouts. Furthermore, since flow equalization is inherent in SBR systems, the process is more resistant to peak hydraulic loadings compared to a conventional activated sludge process, making it an attractive alternative for small to medium sized facilities. Due to the degree of control required and the large volume of tankage required in each reactor, the capital costs are often higher than more conventional activated sludge processes for larger plants. The discharge for smaller systems is typically intermittent in nature, which can result in larger, more expensive downstream UV disinfection systems. A conceptual level cost estimate has been developed for the Louisbourg SBR option based on the design flow, loads, and parameters listed in Table 4-2. A process similar to the Dominion Bridgeport WWTP SBR process has been considered. Table 4-2 Sequence Batch Reactor Process Design Criteria Parameter Proposed Typical Design Standard No. of Reactors 2 2 -3 Basin Length (m)11.4 - Basin Width (m)5.7 - Side Water Depth (m)4.5 - Total Reactor Volume (m3)588 - Design HRT (hr)24 15 –40 Cycles per Reactor per Day (average/ peak)4 -6 4 -6 React Time (min) (average/ peak)90 -60 120 -60 Settling Time (min) (average/ peak)45 -30 60 -30 Volumetric BOD5 Loading (kg BOD /m³·d)0.2 0.1 –0.3 MLSS (mg/L)3000 2000 -5000 F/M Ratio 0.07 0.04 –0.1 4.2.2.2 MOVING BED BIO-REACTOR (MBBR) The MBBR is an attached growth, continuous flow system, which was developed by the Norwegian company Kaldnes Miløteknologi (KMT). MBBRs are reaction vessels that are filled with plastic media called “carriers” that have a high surface area to support biofilm growth. There is no need for sludge recycle since the bacteria are attached to the media in the reaction vessel, and there is no need to control biomass concentration or monitor F/M ratio. Since the biomass is fixed to the media and retained in the reaction vessel, the MBBR is not subject to media washout at high flowrates, making it a good option for communities with high peak flows due to I/I conditions. Harbour Engineering Joint Venture Louisbourg WWTP Pre-Design Brief 20 The specific gravity of the plastic media is just below the specific gravity of water, which allows diffused aeration to maintain the media in suspension and completely mixed throughout the reactor. MBBR aeration is typically coarse-bubble. The media carriers impact and abrade each other in the mixed wastewater, which causes the growing biofilm to slough off to maintain an optimal biofilm thickness. MBBR effluent, containing the excess biofilm, overflows to a clarifier for solids removal; however, the MBBR media is retained in the reactor using screens. DAF has been the preferred process for clarification of MBBR effluent; however, conventional secondary clarifiers have also been used. The MBBR technology has been used for over 20 years, with a high degree of success. The plastic media is very durable, with original media still in use with no deterioration. One reactor vessel has been assumed for Louisbourg, although the reactor volume can be split into two trains to allow future maintenance. A conceptual level cost estimated has been developed for this option based on the projected design flow, loads, and design parameters listed in Table 4-3. Table 4-3 Moving Bed Bio-Reactor Process Design Criteria Parameter Value No. of Trains 1 No. of Stages 1 Total Reactor Volume (m3)100 Average / Peak HRT (hr)4 -1 Side Water Depth (m)4 BOD5 Loading (g/m2·d)6.1 Specific Surface Area (m2/m3)80 Secondary DAF Clarifier Average /Peak SOR (m/d)10 / 22 4.3 Disinfection As established in the Louisbourg ERA, NSE has typically set treated wastewater effluent bacterial limits to 200 E. coli/100mL, even though the EDO for E.Coli was established at 34,522/100mL. There are two common forms of disinfection used for small municipal WWTPs: chlorination and ultra violet light (UV) radiation. The WSER requires that Total Residual Chlorine in treated wastewater effluent be less than 0.02mg/L at discharge, so dechlorination must be provided with chlorination upstream of effluent discharge. The following sections will look at each of these disinfection options in further detail. 4.3.1 Chlorination Chlorine is a very effective wastewater disinfectant that oxidizes organic matter including bacteria and viruses. Chlorine is available in different forms including chlorine gas, liquid sodium hypochlorite, and solid calcium hypochlorite (calcium hypochlorite is typically dissolved prior to use). Chlorine is injected as a gas or liquid upstream of a contact chamber that provides the necessary hydraulic retention time for the chlorine to neutralize the bacteria. However, the wastewater leaving the chlorine contact chamber normally has a free chlorine concentration that exceeds allowable discharge limits. To remove the residual chlorine, contact with a dechlorination chemical such as sodium bisulfite is required. The main advantage of chlorination is that it is a well-established and reliable technology; however, chlorine itself is extremely toxic and needs to be transported, stored, and handled with great care. Harbour Engineering Joint Venture Louisbourg WWTP Pre-Design Brief 21 Operators need proper training, and safety equipment including emergency eye wash and showers must be available. In addition, control of the chlorine and dechlorination chemical injection rates must be closely monitored to ensure disinfection and discharge limits are achieved. 4.3.2 UV Disinfection UV disinfection has become the most commonly used form of disinfection in Canada. UV disinfection functions by exposing bacteria in the treated effluent to UV light, which damages the organisms’ DNA, preventing reproduction. There are no chemicals added to the wastewater, which reduces the safety risk for operators. The UV light is harmful to eyes, so operators must be trained on how to safely operate the equipment, and proper use of eye protection. UV systems are typically more user friendly than other disinfection systems, and do not require downstream hydraulic retention time, reducing the overall footprint of the treatment area. UV treatment requires the system to be designed for a specific UV transmittance, which is a measure of the ability of the light to penetrate the wastewater stream. It is important to operate the upstream secondary treatment process to maintain suspended solids below a target concentration, otherwise UV disinfection performance is impacted. To maintain optimum operability the UV lamps should be cleaned on a scheduled basis, to maintain lamp output and disinfection capacity. UV disinfection is flexible, and additional lamps may be added for redundancy/contingency, or added in the future to increase treatment capacity. 4.3.3 Disinfection Recommendation HEJV recommends that a UV disinfection system be installed at the Louisbourg WWTP. The UV equipment requires a smaller footprint to meet regulatory guidelines compared to chlorination. The operation and preventative maintenance requirements for the UV system are less complex than chlorination, and can be completed by CBRM Staff. Typical maintenance will include periodically cleaning the UV lamps, and replacing lamps as they deteriorate. 4.3.4 SBR Disinfection Flows from the SBR flow intermittently by gravity to the UV disinfection equipment during the decant cycle which results in a larger UV system compared to the MBBR process (approximately 50 percent higher design flow). Disinfection can take place in a single concrete or stainless steel channel located in the new WWTP building. The SBR UV system will consist of a single bank of forty (40) low pressure UV Lamps. The UV bank will arranged in ten (10) modules or racks, each containing four (4) lamps. The UV channel will include a discharge weir to maintain optimal submergence of the UV lamps. The UV system will include a monitoring system to monitor the UV dose, lamp failures, operating hours for each lamp, and other diagnostic information. An automated lamp cleaning system has not been included. 4.3.5 MBBR Disinfection Unlike SBR Disinfection, discharge flow from the MBBR process to disinfection will be continuous, which results in a smaller UV system compared to the SBR process. Disinfection can take place in a single concrete or stainless steel channel located in the new WWTP building. The MBBR UV system will consist Harbour Engineering Joint Venture Louisbourg WWTP Pre-Design Brief 22 of a single bank of thirty-two (32) low pressure UV Lamps. The UV bank will arranged in eight (8) modules or racks, each containing four (4) lamps. The UV channel will include a discharge weir to maintain optimal submergence of the UV lamps. The UV system will include a monitoring system to monitor the UV dose, lamp failures, operating hours for each lamp, and other diagnostic information. An automated lamp cleaning system has not been included. 4.4 Sludge Management Both the SBR and MBBR secondary treatment options will produce waste activated sludge which must be removed from the treatment process on a regular basis and disposed of at an approved facility. Regardless of which secondary treatment option is selected, sludge management at this facility will likely involve an aerated sludge holding tank, with either onsite or centralized offsite sludge dewatering. Onsite dewatering would involve a mechanical dewatering step, such as a rotary press or centrifuge. After the recommended secondary treatment process has been selected, a preliminary design of the solids management train will be provided in Chapter 5. 4.5 Secondary Treatment Options Evaluation Capital and operating costs have been developed for the SBR and MBBR secondary treatment options for the purposes of comparing the technology options. The estimated facility costs for the selected option are presented in Section 4.5.1. At this stage, only the liquid treatment stream is evaluated. Solids treatment train, site access, new lift station, new outfall, headworks, electrical service, site works, etc. that are common to each option have not been included at this stage in the evaluation; therefore, the cost estimates presented in this section do not represent the complete facility costs. Comprehensive facility costs for the selected treatment option will be presented in Section 6. A discussion has also been provided on qualitative factors associated with each of the secondary treatment options. 4.5.1 Opinion of Probable Capital Cost Option of probable capitals costs are provided in Table 4-4. These are comparative opinion of probable costs for secondary process alternatives only and as previously discussed exclude preliminary treatment, outfall upgrades, main lift station, and site works that would be common to all options. HEJV contacted numerous technology suppliers for quotations for both SBR and MBBR package treatment systems. These quotations were used to develop the opinion of probable capital costs for each technology (excluding common items). Details related to the costs of each of the technologies are shown in Appendix B. Of the two technology options, the SBR process has the lowest capital cost, with the MBBR estimated capital cost approximately 40% higher. The reasons for this difference were: ®Equipment Costs – The cost the MBBR equipment package is higher compared to the SBR equipment package. For the purpose of this report HEJV obtained vendor costs for a continuous Harbour Engineering Joint Venture Louisbourg WWTP Pre-Design Brief 23 flow SBR equipment package similar to the existing Dominion Bridgeport WWTP. An average cost for the MBBR equipment package was calculated from several vendor quotations; and ®Probable Capital Costs – Although the MBBR process has a smaller tank volume compared to SBR, MBBR requires effluent clarification, and a DAF process was assumed for this comparison. The DAF is located indoors, and therefore the building footprint is larger compared to SBR. Although the volume of concrete tankage is significantly less compared to SBR, the cost of constructing an indoor process area outweighs potential cost savings in tankage. Table 4-4 Secondary Process Capital Cost Comparison Cost SBR MBBR Vendor Package Cost $480,000 $825,000 Estimated Installed Capital Cost $2,580,000 $3,580,000 4.5.2 Opinion of Probable Operating Costs The opinion of probable operating cost comparison is provided in Table 4-5. The SBR technology has the lowest operating cost. The MBBR option includes operation of the DAF process, with associated chemical consumption. Maintenance costs are based on a percentage (1%) of vendor package cost, which may not accurately reflect actual costs. Labour costs for routine operation are assumed to be the same, and have not been included in the comparison. Table 4-5 Secondary Process Annual Operating Cost Comparison Operation Annual Operation Cost (Secondary Process Only) SBR MBBR Power1 $5,690 $4,360 Chemicals2 - $12,220 Maintenance Allowances $4,800 $8,250 Total $10,490 $24,830 1 Power esƟmated based on secondary treatment equipment only 2 Allowance for polymer dosing for MBBR DAFs 3 Maintenance Allowance 1% of equipment cost 4.5.3 Life Cycle Cost Estimate The Net Present Value of treatment plant options, which is a typical approach for comparing the relative costs of different options, were calculated for each option using the following equation (1): ܸܰܲ =෍ ܥ݋ݏݐ ݅݊ ܲ݁ݎ݅݋݀ ݊ (1+ܴܽݐ݁)௡ (1) Where: Cost in Period n = Net Cost in given year n = Year from 1 to 30 Rate = Discount Rate at 8% The effect of the NPV calculation is that costs which occur earlier in the project life are weighted more heavily than costs which occur farther along the project timeline, based on the idea that a dollar today is worth more than a dollar in the future. The discount rate used in these calculations is 8%, and the time period over which it is calculated is 30 years. For the purpose of comparing the two options, year 1 was Harbour Engineering Joint Venture Louisbourg WWTP Pre-Design Brief 24 assumed to be 2019. The net present value capital costs exclude taxes. These calculations do not account for revenue streams from users. The life-cycle comparison is presented in Table 4-6, based on total capital costs for installed secondary treatment equipment.Table 4-7 shows the effect of the InvesƟng in Canada Plan where 73% of investment is provided by the Provincial and Federal governments.Of the opƟons, the SBR process has both the lowest operaƟng cost and life cycle cost. If the life cycle cost was adjusted to account for CBRM paying 27% of the capital cost the SBR process would sƟll have the lowest life cycle cost. Table 4-6 Secondary Process Life Cycle Cost Comparison Cost SBR MBBR Estimated Installed Secondary Capital Cost $2,580,000 $3,580,000 Estimated Annual operating cost, $/year $10,490 $24,830 NPV Major Capital Equipment Refurbishment (15th year, 3% Inflation)$118,000 $148,000 NPV Operating Cost (30 years, 8% discount rate)$118,100 $280,000 Life Cycle Cost $2,816,100 $4,008,000 Table 4-7 Secondary Process Life Cycle Cost Comparison – 73% Capital Funding Cost SBR MBBR Estimated Installed Secondary Capital Cost $696,600 $966,600 Estimated Annual operating cost, $/year $10,490 $24,830 Major Capital Equipment Refurbishment (15th year, 3% Inflation)$118,000 $148,000 NPV Operating Cost (30 years, 8% discount rate)$118,100 $280,000 Life Cycle Cost $932,700 $1,394,600 4.5.4 Qualitative Evaluation Factors In addition to life-cycle cost, there are a number of other factors to consider when evaluating the technology options that are less easily quantified. These factors are summarized in Table 4-8 Secondary Process Qualitative Evaluation Factors, and additional discussion is provided below the table. Qualitative factors have been rated 1 to 2 for each technology with 1 being the best and 2 being the worst. Table 4-8 Secondary Process Qualitative Evaluation Factors SBR MBBR Local Experience with Process 1 2 Operational Simplicity 1 2 Sludge Production 2 1 Site Aesthetics 2 1 Odour Management 2 1 In terms of local experience with the treatment process, CBRM have experience with the SBR process at the Dominion Bridgeport WWTP. Both options are fairly straightforward to operate, however each option has their own benefits. The entire SBR process is completed in a single tank; however, due to the batch process, multiple tanks are Harbour Engineering Joint Venture Louisbourg WWTP Pre-Design Brief 25 required and the attention is required during elevated flows to ensure adequate sequencing. The MBBR process is single flow stream throughout the plant and the operation does not change based on flows, however, attention is needed during the secondary clarification stage at the DAF to ensure adequate polymer dosing. Each of the secondary treatment processes evaluated will produce sludge that will have to be removed from the process. The longer HRT provided in the SBR process will result in a thinner sludge, while the MBBR produces thicker sludge and therefore a smaller volume to handle before dewatering. The majority of the MBBR process occurs indoors and can be hidden from view from the general public, whereas the SBR process is completed in tanks which will be exposed to public view. The headworks and sludge handling associated with each process has the potential for odours, but these operations will be enclosed in a building for all technology options. The SBR process has more potential to generate odour complaints in comparison to the MBBR process. 4.5.5 Recommended Secondary Treatment Process From a life-cycle costing perspective, the SBR process offers the higher value, based on preliminary cost estimates. However the MBBR is still a relatively new technology, and with the anticipated construction date for the Louisbourg WWTP not being for another twenty years, the capital and life cycle costing should be re-evaluated closer to the construction date. It is possible that the cost of the MBBR technology will become more competitive as the technology is implemented at more facilities in North America. For the purpose of the preliminary design, the SBR technology has been selected as it is most cost effective, and CBRM is experienced at operating SBR systems. Harbour Engineering Joint Venture Louisbourg WWTP Pre-Design Brief 26 CHAPTER 5 PRELIMINARY DESIGN 5.1 General Overview This section will outline the specifics of the HEJV preliminary design for the Community of Louisbourg WWTP. The recommended configuration includes a new pump station, preliminary treatment, SBR for secondary treatment, followed by UV disinfection and new outfall pipe. An aerated sludge holding tank is included for temporary sludge storage prior to additional treatment on-site, or transport to another facility as part of a regional sludge management plan. Preliminary layouts for the proposed treatment system and locations of individual unit processes are shown in the “Preliminary Design” drawings, found in Appendix A. The processes depicted in these drawings are consistent with those recommended in the previous chapter of this report. The drawings contained in the appendix are listed in Table 5-1, below. Table 5-1 Preliminary Design Drawings Drawing Number Description C01 Location Plan C02 Process and Admin Building Layout C03 Site Works Plan P01 Process Flow Diagram 5.2 Unit Process Description 5.2.1 Lift Station The WWTP will be fed via two new gravity interceptor sewers that will capture flow from the six existing raw sewage outfalls. One new 300 mm diameter sewer will intercept flow from outfall L#1 and travel along Main Street and follow the North West boundary of the SNE Sea Products property until it has reached a new manhole adjacent to the WWTP. The second sewer, which transitions from 250 mm to 450 mm in diameter, will capture flow from the remaining five outfalls and travel down Commercial Street to the proposed new manhole adjacent to the WWTP. Combined flow from the WWTP manhole will be routed to the WWTP inlet lift station, located to the west of the proposed WWTP. Due to the topography of the area and gravity flow of the influent sewers, a lift station will be required to feed the WWTP. Wastewater will be pumped via a pipeline from the new lift station to the primary treatment Harbour Engineering Joint Venture Louisbourg WWTP Pre-Design Brief 27 equipment located in the new WWTP process building. The lift station has been designed to operate as a triplex station, with two duty pumps and one standby pump (3 x 50%). The lift station design is based on alternating pump starts between available pumps while optimizing retention time to avoid odours. The floor of the lift station wetwell will be benched to promote self- cleansing and minimize any potential dead spots where solids can accumulate. The lift station wetwell will be a common structure with the WWTP effluent chamber. The common wall separating the inlet wetwell from the effluent chamber will have a fixed overflow weir at an elevation higher than peak flow level, which will allow flows that exceed the design capacity of the WWTP to overflow to the effluent chamber. This will bypass untreated wastewater to the outfall in this situation. The overflow location should be revisited as part of the facility design, in the event that future regulations dictate preliminary treatment of overflows. The design parameters for the pumping station are summarized in Table 5-2. Table 5-2 Pump Station Summary Pumping Station Design Value Duty Pumps 2 Standby Pumps 1 ADWF (L/s)6.8 Interception Design Flow (L/s)27.3 Minimum Pump Capacity 13.7 Forcemain Diameter (mm)150 TDH (m) at Maximum Design Flow 17.0 TDH (m) at Average Flow 16.0 Approximate power requirement (each pump) kW 7.5 5.2.2 Preliminary Treatment Flow from the lift station will be pumped to the Grit and Screening Room, which is located at an elevation to allow gravity flow of wastewater through the WWTP. Influent from the lift station will discharge into an influent chamber and be directed to the screening equipment. The influent chamber will contain an overflow/bypass in the event of a plugged screen, and a mud valve that drains to the lift station wet well. The grit removal equipment is located downstream of the inlet screen. Screening Screening equipment can either be installed in a concrete channel or a self-contained stainless steel tank, since the influent from the lift station is piped. The price difference between these two alternatives is relatively small and the determining factor would be Owner preference. Wastewater will flow through a shaftless spiral fine screen with 6mm diameter openings. Captured screenings will be conveyed from the screen, dewatered and compacted in a single combined screw unit, and discharged into a bin. The screenings are washed with spray water and dewatered in the tapered screw conveyor section, with wash water returned to the influent channel. Harbour Engineering Joint Venture Louisbourg WWTP Pre-Design Brief 28 If the screen is installed directly in a concrete channel, the channel will need to have an approximate width of 0.35m and depth of 1m. A bypass/overflow channel with bar rack is included in the event the screen is off-line or screen basket plugged. The design parameters for the shaftless spiral fine screen are summarized in Table 5-3. Table 5-3 Fine Screening Design Summary Parameter Design Value Design Value No. of Units 1 Peak Flow (m3/d)2360 Screen Openings (mm)6.0 Dewatered Screenings Capacity (m3/d)Up to 18 Solids Content of Screenings (%)52 Concrete Channel Installation Channel Width (m)0.35 Channel Depth (m)1 Grit Removal The screened influent will pass through a vortex grit chamber. The vortex chamber hydraulics force particles with a diameter larger than 0.2 mm to settle at the bottom of the chamber, from where it is pumped to a grit classifier for washing and dewatering. Dewatered grit is discharged into the screenings bin, and wash water flows via gravity back to inlet channel. A bypass/overflow channel can be provided in the event the grit system is off-line or plugged. After grit removal, influent will flow to the SBR tanks via gravity. Grit production is dependent on storm events, sewer flows, sewer infiltration, and seasonal influences related to winter sand use on roads. The design parameters for the grit vortex system are summarized in Table 5-4. Table 5-4 Grit Removal Design Summary Parameter Parameter Design Value No. of Units 1 Peak Flow (m3/d)2360 Length (m)3.4 Diameter (m)2 Depth (m)3.3 Classified Grit Production (m3/d)<1.0 5.2.3 Secondary Treatment Effluent from preliminary treatment will flow via gravity into a splitter channel, where flow will be directed to the two ICEAS continuous flow SBR reactors, where the treatment steps outlined in Section 4.2.2.1 take place. Decanted effluent flows by gravity to the UV disinfection system. An air flow meter and a dissolved oxygen (DO) probe will be provided for each SBR tank. A level transmitter and a level float will also be provided for each tank. The design parameters for the ICEAS SBR system are summarized in Table 5-5. Harbour Engineering Joint Venture Louisbourg WWTP Pre-Design Brief 29 Table 5-5 Secondary Treatment Design Summary Parameter Design Value Average Flow (m3/d)590 Peak Flow (m3/d)2360 No. of Tanks 2 Tank Dimensions (m)10 L x 4 W x 5.5 D (Plus 1 m freeboard) Total Surface Area (m2)40 Total Volume (m3)440 Ave HRT (hr)24 Cycles per Reactor per Day (average/ peak)4 - 6 Preliminary Design Air Flow (m3/min)80 Air Flow per Blower (m3/hr)138 Volumetric BOD5 Loading (kg BOD /m³.d)0.16 MLSS (mg/L)3000 F/M Ratio 0.06 5.2.4 Disinfection Effluent from the SBR will flow intermittently by gravity to the ultraviolet (UV) disinfection unit during the SBR decant cycle. Disinfection equipment is located in the UV disinfection room, and similar to the screening equipment, the disinfection equipment can either be installed in a concrete channel or self- contained stainless steel channel. Unlike the screening equipment there is a significant difference in the equipment cost between the two options; however, relative to the overall project cost, this difference is small and ultimately Owner preference would determine equipment installation. Disinfection will be conducted by a UV disinfection unit located in the new process building, and connected to the upstream SBR by gravity flow piping. The UV disinfection unit will be approximately 4m long, 1m wide and 2.4m deep. The lamps are oriented horizontal, parallel to flow and contain a single module with a total of forty (40) low pressure lamps. In order for the decant flow from the SBRs to flow by gravity through the UV system, the UV unit will be installed at an elevation lower than the decant discharge. The specified power draw for the system is 33.7 kW. The UV weir height will set the hydraulic grade line for the rest of the treatment process. The high water elevation at large tide for Louisbourg is 2.1m (Geodetic) for 2018. The estimated extreme values for 100 years and 50 years periods for nearby outfalls was 0.4m and 0.3m, respectively. In addition, a sea level rise of at least 1.0 m is likely to occur within the coming century, even if the timeline remains uncertain (CBCL, 2018). Therefore, it is recommended that the UV weir height be set at a minimum elevation of 4.5m plus an allowance for head loss. The actual weir height can be higher than this elevation to accommodate the WWTP process and site grade. The design parameters for the UV disinfection system are summarized in the Table 5-6. Harbour Engineering Joint Venture Louisbourg WWTP Pre-Design Brief 30 Table 5-6 UV Disinfection Design Summary Parameter Design Value Design Value Average Flow (m3/d)590 Peak Flow Capacity (m3/d)2360 Number of Reactors (channels)1 Number of Banks per Reactor 1 Number of Lamp per Bank 40 Total Number of Lamps 40 Effluent TSS (mg/L)<20.0 Minimum UV Transmission (%UVT)65 Effluent Fecal Coliforms (MPN / 100 mL)200 5.2.5 Sludge Management Sludge generated in the treatment stream must be removed and disposed of at an approved facility. WAS from the SBR process will be pumped to an aerated sludge holding tank. The aeration will provide mixing of the sludge, prevent septic conditions, as well as further VSS reduction. The sludge holding tank will be sized such that it will provide a working volume equivalent to 10 days of WAS storage. The sludge holding volume will be provided in a single tank. Supernatant from the aerated sludge tank can be periodically decanted back to the SBRs to increase solids concentration. However, minimal thickening of sludge is expected to occur in the sludge tanks. An integrated solids management plan for the CBRM is being developed in a separate study by HEJV. The sludge management concept is that dewatered sludge will be hauled from Louisbourg at regular intervals to a centralized facility prior to transport to landfill. Sludge from the aerated sludge holding tank will be dewatered using a centrifuge. Centrifuges deliver effective dewatering of WAS sludge while reducing run hours and polymer use when compared to other available technologies. Final dewatering design will need to consider Louisbourg WWTP solids production, and the feasibility of a small centrifuge unit versus alternate technologies such as a rotary press. Readers should refer to the separate Solids Management Plan report for final recommendations. Design parameters for the Louisbourg WWTP sludge tank and centrifuge dewatering are provided below. Table 5-7 Sludge Tank Design Summary Parameter Design Value No. of Sludge pumps 2 Daily Sludge Production (kg/d)60 Solids Content (%)1.0% Daily Sludge Production (m3/d)6.0 Total Storage Volume (m3)45 No. of Tanks 1 Tank Dimensions (m)4.0 L x 3.5 W x 5.0 D Harbour Engineering Joint Venture Louisbourg WWTP Pre-Design Brief 31 Table 5-8 Sludge Dewatering Design Summary Parameter Design Value Number of Centrifuge Units 1 Sludge Flow (m3/hr)1.5 Solids Loading Rate (kg/hr)15 Polymer Consumption (kg/dry tonne)12-15 Solids Capture (%)>95 Cake Solids (%)18-22 5.2.6 Odour Control As discussed in Section 4.2.1.2,the location of the proposed WWTP does not meet the ACWGM guidelines for setback distance from residential properties; however, discussions with NSE indicate that they will accept the location of the WWTP if provisions for odour control are included in the design. Odorous air generated at the WWTP will be captured through an air collection system for central treatment. This includes outside tankage and the preliminary treatment area. The final odour treatment system will be determined as part of the final design, but HEJV has assumed a biological filter system will be used. 5.3 Facility Description The WWTP will be housed in a single structure and will be divided into process and administrative areas. The process area will include: ®Preliminary Treatment area with: o Shaftless Spiral Fine Screen; o Grit vortex chamber, grit pump and grit classifiers; and o Screenings and grit bins; ®SBR Tanks (2); ®Process Room with: o Blower Gallery; and o Sludge Pumps; ®UV Disinfection Room The administrative area with: ®Office space; ®Laboratory; ®Mechanical and electrical room; and, ®Washroom. Facilities and infrastructure provided but housed outside the structure will include: ®Lift Station and effluent chamber structure; ®Site access and parking; ®Site fencing; ®Genset; Harbour Engineering Joint Venture Louisbourg WWTP Pre-Design Brief 32 ®Yard piping; and ®New outfall. 5.3.1 Civil and Site Works Civil and site works will include site conditions, grading, draining, and site improvements. The proposed site previously housed several interspersed structures containing fish processing equipment and auxiliary equipment. The structures have long since undergone demolition, however the concrete foundations remain and will need to be removed. The geotechnical desktop study has indicated that the land has previously housed fuel storage tanks and although no evidence of petroleum hydrocarbon contamination in the soil has been observed, a phase 1 ESA should be conducted to confirm no contamination. The geotechnical desktop study has indicated that the subsurface geology is a stony till plain and is anticipated to be relatively thin at between 1 and 5 metres thick with under laying bedrock. Drilling and blasting techniques and consideration for excavation dewatering will be required for the construction of deep structures. There are already two existing access roads through the proposed site, and one of these will need to be removed and the other will need to be realigned and extended around the perimeter of the WWTP to facilitate access. The environmental risk assessment was completed on the assumption that the WWTP would discharge through a new outfall pipe perpendicular to the shoreline in shallow water. At this stage it is unknown if an existing outfall could function as the effluent outfall for the new facility, and this could add value by utilising existing infrastructure. However, significant infrastructure with a new linear forcemain and pumping would be required. For these reasons HEJV has based the facility design on a new outfall as part of the WWTP project. The new outfall would likely include a new HDPE outfall pipe, manholes as required, stone mattress, concrete pipe anchors, and reinstatement to the existing shoreline armour stone protection. The approximate routing of the proposed outfall is shown on Drawing C03 – Site Works Plan. 5.3.2 Architectural HEJV has worked on numerous projects where neighboring properties are located in close proximity to wastewater infrastructure such as pump stations. CBRM has expressed the need for the new building to blend into the existing neighborhood, with process tankage partially obstructed as much as possible by the building. The inner walls of the new building will be reinforced concrete bearing block. The exterior wall veneer will be vinyl or stained wood siding, to blend in with local neighbors. The new building will have a conventional gable truss roof. The roofing material will be either asphalt shingles or pre-finished metal panels, with aluminum low-maintenance fascia and soffits. Interior doors and frames will be stainless, exterior doors, windows and louvers shall be aluminium, colour anodized to match existing features. This approach will make the facility less conspicuous to the general public. Harbour Engineering Joint Venture Louisbourg WWTP Pre-Design Brief 33 All required site railings for tanks, walkways, and stairs will be welded aluminium with a clear anodized finish. Interior concrete walls of the buildings will be painted with an industrial epoxy coating. Interior metal surfaces will be painted with epoxy coatings and exterior metal will be coated with an ultraviolet resistant urethane finish. Process area ceilings and walls will be painted. Process area floors will be concrete, coated with a durable industrial floor coating. Alternative architectural designs and/or exterior colors can be re-evaluated by CBRM closer to the planned construction timeline, to ensure that the final plant buildings are aesthetically pleasing to neighbors, and fit into both current and future community architecture. 5.3.3 Mechanical Mechanical systems will be designed in accordance with NFPA 820, 2016 edition, which describes the hazard classification of specific areas and processes and prescribes ventilation criteria for those areas. Table 5-9 summarizes the proposed classification for new facilities. Table 5-9 Classification of Building Areas Location Classification Grit and Screening Platform Class 1 Zone 2 Bin Room Class 1 Zone 2 Process Room Unclassified UV Disinfection Room Unclassified Administration Area Unclassified Process Areas will be heated by electric unit heaters and electric duct heaters in the air handling units, and no provisions have been made for air conditioning. Provisions for air conditioning in non-process areas (Office, Laboratory, Washrooms, and Electrical Room) have been made. Odorous air will be contained and directed to the Odour Control Unit either by stainless steel or fibreglass ducting. The facility will need to be serviced by domestic water, and sanitary drains from the facility will be directed by gravity to the influent lift station. 5.3.4 Electrical The previous building on the proposed site was serviced by 3-phase power, however this will need to be extended to service the new WWTP. Existing power poles supporting electrical and communication services will need to be re-routed as they will interfere with the new facility. An emergency diesel generator housed in exterior enclosure along with fuel tanks will be located to the west of the process building. 5.3.5 Lighting Exterior lighting will consist of building mounted luminaires illuminating areas immediately adjacent to the buildings, as well as pole mounted area lighting for access roadways and parking areas. Exterior Harbour Engineering Joint Venture Louisbourg WWTP Pre-Design Brief 34 lights will be LED where available or to suit application. Exterior lighting fixtures shall be vandal resistant and outdoor rated. New pole mounted flood lights will be installed at the process tanks for maintenance purposes. The interior lighting system will be designed for lighting performance and luminance levels in accordance with the Illuminating Engineering Society (IESNA) Lighting Handbook, 10th Edition. Interior lights will be fluorescent, LED, or metal halide to suit the application. Emergency and exit lights will be installed along egress routing and around exit doors to meet the requirements of the National and Provincial Building Codes. 5.3.6 Instrumentation This section summarizes the functional requirements for the process control and instrumentation system. It includes a narrative description of the instrumentation and control requirements. Most unit processes in the treatment plant will be automated. There will be a main plant PLC that will be used to control the unit processes. In addition to the main PLC, a local hand-off-auto (H-O-A) switch will be required for most of the equipment. Some of the more complex unit processes will be provided with their own individual PLCs including: ®UV disinfection system; ®SBRs; and ®Generator. Each piece of equipment that is to be provided with a dedicated controller will be capable of operating in either a manual or automatic mode (SCADA controlled) via an H-O-A switch. 5.3.7 Control System Overview Unit operations at the treatment plant will be monitored and controlled using a system of instruments, equipment motors and drives, PLCs, human machine interfaces (HMI), communications cable and hardware that is integrated into a SCADA software program. The selection of Supervisory and Control Software as well as the level and type of plant instrumentation will be made following the selection of a system integrator and a review of options by the Owner and the engineers. The system will also be configured to allow authorized staff to dial in and log on from a remote location via laptop. This will permit the Supervisor or duty operator to check plant status, respond to after-hours alarms, and to change equipment operation where appropriate. In addition to the aforementioned monitoring and control terminals, there will be local control panels at key locations using “soft panel” type HMIs (human/machine interface), which will permit the operator to view process information and to take local control action. In some locations, where the only requirement is to be able to stop a motor and to lock it out for maintenance, that capability will be provided by hard-wired controls at the motor starter. Harbour Engineering Joint Venture Louisbourg WWTP Pre-Design Brief 35 The alarms integrated into the system will have audible and/or flashing light annunciation in the plant during regular hours, and call-out by telephone and/or email after hours with a user-configurable sequential call priority list. 5.3.8 Headworks The Headworks consist of fine screening and a vortex grit system. All the equipment will be controlled by the main PLC. Each piece of equipment will be monitored for status and faults in addition to the alarms for high levels in the influent channels which will be registered on the central control computers and monitors. 5.3.9 SBR Effluent from preliminary treatment will be split between the SBR tanks via actuated gates. The SBR and sludge tank blowers will be installed in the Process Building. The SBR blowers will discharge to a common air header which will have a dedicated take off for each SBR. Blower operation will be controlled by the SBR control system. The sludge tank blower will discharge to a common air header which will be connected to diffusers in the tank. The air headers will feed the fine bubble diffusers arranged along the bottom of the SBRs. A separate header will feed the fine bubble diffusers arranged along the bottom of the aerated sludge holding tanks. Dissolved oxygen will be monitored in the SBR tanks. An air flow meter in the SBR supply header will indicate, totalize, and record the air flow. The dissolved oxygen levels for each reactor will be indicated and recorded on the central SCADA system. Blower operating status, header pressure, and inlet valve positions, as well as supply line pressure will be indicated on the central computer system. The blowers will also be equipped with sensors and alarms for surge, vibration, temperature, and general faults, which will register at the central control. Treated effluent will be removed from the SBR tanks via a decanter mechanism. Flow into the decanter will be automatically controlled via a valve by the SBR control system. 5.3.10 Waste Activated Sludge The WAS will be pumped from the SBRs to the aerated sludge holding tanks automatically using WAS pumps which will be controlled by the SBR control system. WAS flow will be measured by magnetic flow meter. 5.3.11 Effluent Disinfection Ultraviolet Disinfection will be used to achieve disinfection limits for fecal coliform prior to discharge. The UV manufacturer will provide a PLC to control the UV system, which will be compatible with the central station. UV dose will be controlled by plant flow and percent UVT. Monitoring and recording of UV intensity, general alarms and low level, high levels alarms will be provided. Harbour Engineering Joint Venture Louisbourg WWTP Pre-Design Brief 36 CHAPTER 6 PROJECT COSTS 6.1 Opinion of Probable Construction Costs An opinion of Probable Construction Costs has been completed for the project, and a detailed breakdown of the estimate has been provided in Appendix C. The estimate is made up of the civil works, structural works, equipment, mechanical and electrical installation, and associated land acquisition costs. The opinion of probable construction costs for the WWTP for Louisbourg, as defined herein, is $13,850,000. 6.2 Opinion of Annual Operating Costs HEJV completed an opinion of probable operating costs for the Louisbourg WWTP using data provided by CBRM for typical annual operating costs of existing infrastructure, typical employee salaries, Nova Scotia Power rates, and experiences from similar installations for general maintenance. The opinion of operation costs include equipment maintenance costs (lift station, preliminary treatment, SBR package, and UV Equipment), employee operational costs, facility maintenance costs and electrical costs. The probable opinion of annual operating costs is presented below in Table 6-1. Table 6-1 - Annual Operating Costs Breakdown (2019 Dollars) Items Costs Operating and Maintenance Cost $33,000 Staffing Cost $175,000 Electrical Operational Cost $25,500 The maintenance costs include: pump repairs (impellers, bearings, seals), preliminary treatment equipment (bearings, cleaning, greasing), SBR and Sludge Tank diffusers (cleaning), blowers (belts, bearings, filters) and UV equipment (UV lamp, ballasts), minor building maintenance (painting, siding repairs, roof repairs), electrical repairs, and instrumentation repairs and servicing. For the electrical operation cost, HEJV assumed the building would require heat for 5 months of the year. Basic electrical loads for instrumentation were assumed. Electrical demand for process equipment was determined based on the yearly average flow of the plant. The Points Classification System in the Atlantic Canadian Guidelines was used to determine staffing requirements at the Louisbourg WWTP, and it has been determined that facility has 50 points based Harbour Engineering Joint Venture Louisbourg WWTP Pre-Design Brief 37 upon interpretation. Since Class II plants are defined as having 31 – 56 points, the WWTP will be ranked as at least a Class II treatment plant by the regulators. According to ACWGM the guidelines, a Class II plant designed for an average flow of 588 m3/day will require approximately 3,500 work-hours per year to operate, or about 2 fulltime employees. The estimated burdened staff hourly rate is $50/hour. 6.3 Opinion of Annual Capital Replacement Fund Contributions The CBRM wishes to create a Capital Replacement Fund to which annual contributions would be made to prepare for replacement of the wastewater assets at the end of their useful life. The calculation of annual contributions to this fund involves consideration of such factors as the type of asset, the asset value, the expected useful life of the asset, and the corresponding annual depreciation rate for the asset as per the accounting practices for asset depreciation and Depreciation Funds recommended in the Water utility Accounting and Reporting Handbook (Nova Scotia Utility and Review Board, 2013). In consideration of these factors,Table 6-2 provides an estimation of the annual contributions to a capital replacement fund for the proposed new wastewater treatment system infrastructure. This calculation also adds the same contingency factor used in the calculation of the Opinion of Probable Capital Cost. The actual Annual Capital Replacement Fund Contributions will be calculated based on the final constructed asset value, the type of asset, the expected useful life of the asset, and the corresponding annual depreciation rate for the type of asset. Table 6-2 - Estimated Annual Capital Replacement Fund Contributions Description of Asset Asset Value Asset Useful Life Expectancy (Years) Annual Depreciation Rate (%) Annual Capital Replacement Fund Contribution Treatment Linear Assets (Outfall and Yard Piping, Manholes and Other)$2,341,682 75 1.30%$30,442 Treatment Structures (Concrete Chambers, etc.)$2,333,623 50 2.00%$46,673 Treatment Equipment (Mechanical / Electrical, etc.)$5,382,255 20 5.00%$269,113 Subtotal $10,057,560 --$346,228 Construction Contingency (Subtotal x 25%):$86,557 Engineering (Subtotal x 12%):$41,547 Opinion of Probable Annual Capital Replacement Fund Contribution:$474,332 Notes: 1.Annual contribuƟons do not account for annual inflaƟon. 2.Costs do not include applicable taxes Harbour Engineering Joint Venture Louisbourg WWTP Pre-Design Brief 38 CHAPTER 7 REFERENCES ASA Consulting Ltd. (May 1994).Industrial Cape Breton Receiving Water Study, Phase II. Environment Canada (2006) –Atlantic Canada Wastewater Gidelines Manual for Collection, Treatment and Disposal. Harbour Engineering Inc. (2011).Cape Breton Regional Municipality Wastewater Strategy 2009 Harbour Engineering Inc. (2018).Cape Breton Regional Municipality Environmental Risk Assessment & Preliminary Design of Seven (7) Future Wastewater Treatment Systems in CBRM Base Information 2018. Nova Scotia Utility and Review Board (2013).Water Utility Accounting and Reporting Handbook. Turner Drake & Partners Ltd. (February 2018).Population Projects Cape Breton, Nova Scotia. UMA Engineering Ltd. (1994). Industrial Cape Breton Wastewater Characterization Programme – Phase II. Water Environment Federation (2009),Design of Wastewater and Stormwater Pumping Stations. Harbour Engineering Joint Venture Louisbourg WWTP Pre-Design Brief APPENDIX A Drawings Harbour Engineering Joint Venture Louisbourg WWTP Pre-Design Brief APPENDIX B SBR & MBBR Estimated Capital Cost Differential OPINION OF PROBABLE COST, CLASS 'D' SBR Cost Differential Evaluation Project Manager:D. McLean Louisbourg WWTP Est. by: D. Bennett Checked by: M. Abbot PROJECT No.:187116 (Dillon) 182402.00 (CBCL) UPDATED:July 19, 2019 NUMBER UNIT 1.0 General Conditions $233,711.80 Mobilization, Bonds, Insurance, P.C Mngmt 1 LS $100,000.00 $100,000.00 Contractor Overhead & Fees 10 %$133,711.80 2.0 Site Works $44,585.00 Site Preparation 233 m2 $5.00 $1,165.00 Mass Excavation 436 m3 $20.00 $8,720.00 Rock Excavation 145 m3 $60.00 $8,700.00 Gravel (Beneth slabs)117 m3 $40.00 $4,680.00 Fill - Import 44 m3 $30.00 $1,320.00 Site Reinstatement 1 LS $20,000.00 $20,000.00 3.0 Concrete $275,000.00 Baseslabs (Tank)122 m3 $1,000.00 $122,000.00 Tank Walls 30 m3 $1,600.00 $48,000.00 Suspended Slab 35 m3 $2,000.00 $70,000.00 Lean Concrete 10 m3 $1,000.00 $10,000.00 Misc. Concrete Items 10 %$25,000.00 4.0 Masonry $0.00 5.0 Metals & Roofing $0.00 6.0 Finishes/Doors/Windows $0.00 7.0 Process Equipment Supply $480,000.00 Process Equipment Package 1 Each $480,000.00 $480,000.00 8.0 Mechanicl $336,000.00 Process Mechanical 30 %$144,000.00 Process Installation 40 %$192,000.00 9.0 Electrical $222,853.00 Power Supply & Distribution 15 %$167,139.75 Instrumentation & Controls 5 %$55,713.25 TOTAL DIRECT & INDERECT COST (Excluding Contingencies and Allowances)$1,592,149.80 Design Development Contingency (Subtotal x 25 %)$398,100.00 Construction Contingency (Subtotal x 25 %)$398,100.00 Engineering (Subtotal x 12 %)$191,100.00 OPINION OF PROBABLE COST (Including Contingency)$2,579,449.80 PREPARED FOR: Cape Breton Regional Municipality Louisbourg, NS ITEM DESCRIPTION QUANTITY UNIT COST TOTAL EXTENDED TOTALS OPINION OF PROBABLE COST, CLASS 'D' MBBR Cost Differential Evaluation Project Manager:D. McLean Louisbourg WWTP Est. by: D. Bennett Checked by: M. Abbot PROJECT No.:187116 (Dillon) 182402.00 (CBCL) UPDATED:July 19, 2019 NUMBER UNIT 1.0 General Conditions $289,827.48 Mobilization, Bonds, Insurance, P.C Mngmt 1 LS $100,000 $100,000 Contractor Overhead & Fees 10 %$189,827.48 2.0 Site Works $36,150.00 Site Preparation 132 m2 $5.00 $660.00 Mass Excavation 248 m3 $20.00 $4,960.00 Rock Excavation 83 m3 $60.00 $4,980.00 Gravel (Beneth slabs)120 m3 $40.00 $4,800.00 Fill - Import 25 m3 $30.00 $750.00 Site Reinstatement 1 LS $20,000.00 $20,000.00 3.0 Concrete $106,304.00 Baseslabs (Tank)20 m3 $1,000.00 $20,000.00 Baseslabs (Building)32 m3 $700.00 $22,400.00 Tank Walls 11 m3 $1,600.00 $17,600.00 Precast Roof Panels 80 m2 $208.00 $16,640.00 Suspended Slab 5 m3 $2,000.00 $10,000.00 Lean Concrete 10 m3 $1,000.00 $10,000.00 Misc. Concrete Items 10 %$9,664.00 4.0 Masonry $40,400.00 Exterior Masonry 101 m2 $400.00 $40,400.00 5.0 Metals & Roofing $0.00 6.0 Finishes/Doors/Windows $0.00 7.0 Process Equipment Supply $825,000.00 Process Equipment Package 1 Each $825,000.00 $825,000.00 8.0 Mechanical $577,500.00 Process Mechanical 30 %$247,500.00 Process Installation 40 %$330,000.00 9.0 Electrical $312,920.80 Power Supply & Distribution 15 %$234,690.60 Instrumentation & Controls 5 %$78,230.20 TOTAL DIRECT & INDERECT COST (Excluding Contingencies and Allowances)$2,188,102.28 Design Development Contingency (Subtotal x 25 %)$561,100.00 Construction Contingency (Subtotal x 25 %)$561,100.00 Engineering (Subtotal x 12 %)$269,400.00 OPINION OF PROBABLE COST (Including Contingency)$3,579,702.28 PREPARED FOR: Cape Breton Regional Municipality Louisbourg, NS ITEM DESCRIPTION QUANTITY UNIT COST TOTAL EXTENDED TOTALS Harbour Engineering Joint Venture Louisbourg WWTP Pre-Design Brief APPENDIX C Opinion of Probable Construction Costs OPINION OF PROBABLE COST, CLASS 'C' Preliminary Design Louisbourg Wastewater Treatment Plant Project Manager:D. McLean Louisbourg, NS Est. by: D. Bennett Checked by: M. Abbot PROJECT No.:187116 (Dillon) SBR Treatment Process 182402.00 (CBCL) UPDATED:March 30, 2020 NUMBER UNIT 1.0 General Conditions $1,007,959.56 Mobilization, Bonds, Insurance, P.C Mngmt 1 LS $100,000.00 $100,000.00 Contractor Overhead & Fees 10 %$907,959.56 2.0 Site Works $1,929,574.00 Site Preparation 5,625 m2 $5.00 $28,125.00 Mass Excavation 1,077 m3 $20.00 $21,540.00 Rock Excavation 120 m3 $60.00 $7,200.00 Fill - Import 299 m3 $30.00 $8,970.00 Gravel (Beneath Slabs)641 m3 $40.00 $25,640.00 Asphalt 105 T $115.00 $12,075.00 Type 1 264 T $25.00 $6,600.00 Type 2 792 T $22.00 $17,424.00 Curb 350 m $100.00 $35,000.00 500 mm Diameter PVC gravity sewer (Deep install)100 m $750.00 $75,000.00 500 mm Diameter PVC Overflow (Deep install)100 m $750.00 $75,000.00 500 mm Diameter PVC Effluent (Deep install)100 m $750.00 $75,000.00 Manholes 4 ea $8,000.00 $32,000.00 Chainlink Fence and Gates 300 m $100.00 $30,000.00 Sediment Control 1 LS $10,000.00 $10,000.00 Dewatering 1 LS $50,000.00 $50,000.00 Reinstatement 1 LS $20,000.00 $20,000.00 Outfall Upgrade 1 LS $1,400,000.00 $1,400,000.00 3.0 Concrete $1,141,360.00 Baseslabs (Tank)150 m3 $1,000.00 $150,000.00 Baseslabs (Building)188 m3 $700.00 $131,600.00 Tank Walls 229 m3 $1,600.00 $366,400.00 Building Walls 67 m3 $1,500.00 $100,500.00 Suspended Slab 66 m3 $2,000.00 $132,000.00 Precast Roof Panels 450 m2 $208.00 $93,600.00 Precast Stairs 1 Ea $13,500.00 $13,500.00 Lean Concrete 50 m3 $1,000.00 $50,000.00 Misc. Concrete Items 10 %$103,760.00 4.0 Masonry $193,300.00 Interior Masonry 50 m2 170.00$$8,500.00 Exterior Masonry 462 m2 400.00$$184,800.00 5.0 Metals & Roofing $266,400.00 Metal Railings, Stairs, Grating, Hatches 641 m2 400.00$$256,400.00 Miscellaneous Metals Items 1 L.S 10,000.00$$10,000.00 6.0 Finishes/Doors/Windows $226,115.00 Membrane Roof 360 m2 150.00$$54,000.00 Carpentry, Assessories and Fixtures 360 m2 40.00$$14,400.00 Louvers 360 m2 65.00$$23,400.00 Painting 360 L.S 50.00$$18,000.00 Epoxy Painting 360 m2 54.00$$19,440.00 Floor Finishes (Lab, Office, Admin Area)140 m2 15.00$$2,100.00 Windows (Exterior - Single)10 ea 2,650.00$$26,500.00 Doors (Single Swing Steel)7 ea 1,100.00$$7,700.00 Doors (Double Swing Steel)5 ea 2,500.00$$12,500.00 Other Interior Finishes 641 m2 75.00$$48,075.00 Laboratory Specialities 1 LS 30,000.00$$30,000.00 7.0 Process Equipment Supply $1,968,303.00 Lift Station (Triplex Pump Station)1 Each $450,000.00 $450,000.00 Screening Equipment 1 Each $86,945.00 $86,945.00 Grit Removal 1 Each $186,100.00 $186,100.00 SBR Equipment 1 Each $480,000.00 $480,000.00 UV Disinfection System 1 Each $45,258.00 $45,258.00 Sludge Tank 1 Allow $120,000.00 $120,000.00 Centrifuge 1 Allow $300,000.00 $300,000.00 Odour Control 1 Allow $300,000.00 $300,000.00 8.0 Mechanical $1,826,512.10 HVAC and Plumbing 641 m2 $700.00 $448,700.00 Process Mechanical 30 %of Equipment $590,490.90 Process Installation 40 %of Equipment $787,321.20 9.0 Electrical $1,498,031.54 Power Supply & Distribution 15 %of Project Costs $1,123,359.62 Instrumentation & Controls 3 %of Project Costs $224,671.92 Generator 1 Allow $150,000.00 $150,000.00 TOTAL DIRECT & INDERECT COST (Excluding Contingencies and Allowances)$10,057,560 Contingency Allowance (Subtotal x 25 %)$2,514,400 Engineering (Subtotal x 12 %)$1,207,000 Land Purchase $71,429 OPINION OF PROBABLE COST (Including Contingency)$13,850,389 ITEM DESCRIPTION QUANTITY UNIT COST TOTAL EXTENDED TOTALS PREPARED FOR: Cape Breton Regional Municipality   HEJV Louisbourg Wastewater System Summary Report Appendices APPENDIX C  Louisbourg Environmental Risk Assessment           182402.00   ●   Report  ● May 2020 Louisbourg Wastewater Treatment Plant Environmental Risk Assessment Final Report Prepared by:   Prepared for:   March 2020                                                                         Final May 21, 2020 Darrin McLean Karen March Holly Sampson  Draft for Review December 5, 2018 Darrin McLean Karen March Holly Sampson  Issue or Revision Date Issued By: Reviewed By: Prepared By:  This document was prepared for the party indicated herein. The material and information in the document reflects HE’s opinion and best judgment based on the information available at the time of preparation. Any use of this document or reliance on its content by third parties is the responsibility of the third party. HE accepts no responsibility for any damages suffered as a result of third party use of this document.                           182402.00  March 27, 2020 275 Charlotte Street Sydney, Nova Scotia Canada B1P 1C6 Tel: 902-562-9880 Fax: 902-562-9890 _________________     182402 RE 001 FINAL WWTP ERA LOUISBOURG.DOCX/klm  ED: 21/05/2020 11:08:00/PD: 21/05/2020 11:08:00   May 21, 2020      Matt Viva, P.Eng.  Manager Wastewater Operations  Cape Breton Regional Municipality (CBRM)  320 Esplanade,  Sydney, NS  B1P 7B9      Dear Mr. Viva:    RE: Louisbourg Wastewater Treatment Plant ERA     Enclosed, please find a copy of the Environmental Risk Assessment (ERA) Report  for the Louisbourg Wastewater Treatment Plant (WWTP).    The report outlines Environmental Quality Objectives (EQOs) for all parameters  of potential concern listed in the Standard Method for a “small” facility.   Environmental Discharge Objectives (EDOs) were also calculated for all  parameters of potential concern.    If you have any questions or require clarification on the content presented in  the attached report, please do not hesitate to contact us.      Yours very truly,    Harbour Engineering             Prepared by: Reviewed by:  Holly Sampson, M.A.Sc., P.Eng. Karen March, M.Sc.  Intermediate Chemical Engineer Environmental Scientist  Direct:  902‐539‐1330 Phone: 902‐450‐4000  E‐Mail:  hsampson@cbcl.ca E‐Mail: kmarch@dillon.ca       Project No: 182402.00 (CBCL)  187116.00 (Dillon)         March 27, 2020   Harbour Engineering Joint Venture Louisbourg WWTP ERA i Contents    CHAPTER 1 Background and Objectives ................................................................................... 1  1.1 Introduction .................................................................................................................. 1  1.2 Background ................................................................................................................... 1  1.3 Facility Description ........................................................................................................ 2  CHAPTER 2 Initial Wastewater Characterization ...................................................................... 4  2.1 Substances of Potential Concern .................................................................................. 4  2.1.1 Whole Effluent Toxicity ..................................................................................... 5  2.2 Wastewater Characterization Results .......................................................................... 5  CHAPTER 3 Environmental Quality Objectives ......................................................................... 7  3.1 Water Uses .................................................................................................................... 7  3.2 Ambient Water Quality ................................................................................................. 8  3.3 Physical/ Chemical/ Pathogenic Approach ................................................................. 10  3.3.1 General Chemistry/ Nutrients ........................................................................ 10  3.3.2 Pathogens ....................................................................................................... 14  3.3.3 Summary ......................................................................................................... 14  CHAPTER 4 Mixing Zone Analysis ........................................................................................... 16  4.1 Methodology ............................................................................................................... 16  4.1.1 Definition of Mixing Zone ............................................................................... 16  4.1.2 Site Summary .................................................................................................. 18  4.1.3 Far‐Field Modeling Approach and Inputs ....................................................... 18  4.2 Modeled Effluent Dilution .......................................................................................... 21  CHAPTER 5 Effluent Discharge Objectives .............................................................................. 24  5.1 The Need for EDOs ...................................................................................................... 24  5.2 Physical/ Chemical/ Pathogenic EDOs ........................................................................ 24  5.3 Effluent Discharge Objectives ..................................................................................... 25  CHAPTER 6 Compliance Monitoring ....................................................................................... 27  CHAPTER 7 References .......................................................................................................... 28    Appendices     A Laboratory Certificates        Harbour Engineering Joint Venture Louisbourg WWTP ERA 1 CHAPTER 1  BACKGROUND AND OBJECTIVES      1.1 Introduction  Harbour Engineering (HE) was engaged by the Cape Breton Regional Municipality (CBRM) to complete  an Environmental Risk Assessment (ERA) for the proposed Louisbourg Wastewater Treatment Plant  (WWTP).  As this is a proposed WWTP that has not yet been designed, this ERA was completed with the  objective that it serve as a tool to establish effluent criteria for the design of a new WWTP.  For this  reason, the ERA was completed without the frequency of testing required by the Standard Method  outlined in Technical Supplement 3 of the Canada‐wide Strategy for the Management of Municipal  Wastewater Effluent (Standard Method) for initial effluent characterization.  With the exception of the  initial effluent characterization sampling frequency, the ERA was otherwise completed in accordance  with the Standard Method.      1.2 Background  The Canada‐wide Strategy (CWS) for the Management of Municipal Wastewater Effluent was adopted  by the Canadian Council of Ministers of the Environment (CCME) in 2009.  The Strategy is focused on  two main outcomes:  Improved human health and environmental protection; and, improved clarity  about the way municipal wastewater effluent is managed and regulated.  The Strategy requires that all  wastewater facilities discharging effluent to surface water meet the following National Performance  Standards (NPS) as a minimum:   Carbonaceous Biochemical Oxygen Demand for five days (CBOD5) – 25 mg/L;   Total Suspended Solids (TSS) – 25 mg/L; and   Total Residual Chlorine (TRC) – 0.02 mg/L.    The Wastewater Systems Effluent Regulations (WSER) came into effect in 2012 under the Fisheries Act.   The WSER include the above NPS as well as the following criteria:   Unionized ammonia – 1.25 mg/L, expressed as nitrogen (N), at 15°C ± 1°C.    The CWS requires that facilities develop site‐specific Effluent Discharge Objectives (EDOs) to address  substances not included in the NPS that are present in the effluent.  EDOs are the substance  concentrations that can be discharged in the effluent and still provide adequate protection of human  health and the environment.  They are established by conducting a site‐specific ERA.  The ERA includes  characterization of the effluent to determine substances of concern, and characterization of the    Harbour Engineering Joint Venture Louisbourg WWTP ERA 2 receiving water to determine beneficial water uses, ambient water quality, assimilative capacity, and  available dilution.  A compliance monitoring program is then developed and implemented to ensure  adherence to the established EDOs for the facility.      1.3 Facility Description  The proposed Louisbourg Wastewater Treatment Plant (WWTP) will be constructed north of  Commercial Street and west of Strathcona Street in the community of Louisbourg in CBRM, Nova  Scotia. Treated effluent will be discharged to Louisbourg Harbour in the Atlantic Ocean via an outfall  that will be constructed for the WWTP (Figure 1.2).  The service population of Louisbourg is 796  people in 391 residential units.    Figure 1.1 Site Location                    Harbour Engineering Joint Venture Louisbourg WWTP ERA 3 The theoretical domestic wastewater flow is an average of  271 m3/day with a peak of 1057 m3/day based on a per capita  flow of 340 L/person/day and a peaking factor of 3.9  calculated using the Harmon formula.  The largest outfall in  the sewer system (L2) was flow metered from February 26 to  May 8, 2018. The service population upstream of this meter  was 360 people.  The average dry weather flow was 259  m3/day (720 L/p/d). The average daily flow during the  metering period was 321 m3/day (893 L/p/d).     For the purposes of this ERA, the average daily design flow  was assumed to be 983 m3/day (1251 L/p/d) based on  analysis completed by HE.  As the population in this area is  declining, accounting for a projected population increase  during the life of the plant was not necessary.  The  preliminary design report was completed based on an  average design flow of 562 m3/day.  However, it also  recommended that additional flow monitoring be completed  prior to detailed design of the WWTP.  Therefore, the ERA will  not be revised at this time.                                   Figure 1.2 WWTP Location      Harbour Engineering Joint Venture Louisbourg WWTP ERA 4 CHAPTER 2  INITIAL WASTEWATER CHARACTERIZATION      2.1 Substances of Potential Concern  An initial characterization program covering a one‐year period is typically required by the Standard  Method to describe the effluent and identify substances of concern.  As there is no existing WWTP  for this system, and the ERA is being conducted for the purpose of determining effluent objectives  for the design of a new WWTP, only one sample event was completed of the untreated wastewater.   Sample results of the untreated wastewater were also available for some of the parameters of  potential concern from three‐years of monthly sampling conducted by CBRM from 2015 through  2017.  Substances of potential concern are listed in the Standard Method based on the size category  of the facility.  The proposed design capacity of the new WWTP will be finalized during the pre‐ design study, but for the purposes of the ERA, an average annual design flow of 983 m3/day will be  used. Therefore, the WWTP is classified as a “small” facility based on an average daily flow rate that  is between 500 and 2,500 m3/day.    The substances of potential concern for a “small” facility, as per the Standard Method, are detailed in  Table 2.1.  There were no additional substances of potential concern identified to be monitored as there  is no industrial input to the wastewater system that exceeds 5% of the total dry weather flow. It was  confirmed with CBRM that none of the fish processing plants in Louisbourg discharge to the sanitary  sewer system.    Table 2.1 Substances of Potential Concern for a Small Facility  Substance Group Substances  General Chemistry/ Nutrients  Total Suspended Solids (TSS)  Carbonaceous Biochemical Oxygen Demand (CBOD5)  Total Residual Chlorine (TRC) if chlorination is used  Total Ammonia Nitrogen  Total Kjeldahl Nitrogen (TKN)  Total Phosphorus (TP)  pH  Temperature  Pathogens E. coli      Harbour Engineering Joint Venture Louisbourg WWTP ERA 5 2.1.1 Whole Effluent Toxicity  Wastewater effluent potentially contains a variety of unknown or unidentified substances for which  guidelines do not exist.  In order to adequately protect against these unknown substances, Whole  Effluent Toxicity (WET) tests are typically conducted to evaluate acute (short‐term) and chronic (long‐ term) effects.    The Standard Method requires the following toxicity tests be conducted quarterly:   Acute toxicity – Rainbow Trout and Daphnia Magna; and   Chronic Toxicity – Ceriodaphnia Dubia and Fathead Minnow.    A draft for discussion Mixing Zone Assessment and Report Template, dated July 6, 2016 that was  prepared by a committee of representatives of the environment departments in Atlantic Canada noted  that only Ceriodaphnia dubia testing is required for chronic toxicity.  If the test does not pass, a fathead  minnow test is required.    As the wastewater in this system is currently untreated, and the purpose of the ERA is to determine  effluent discharge objectives for the design of a new WWTP, no WET tests were conducted at this time.      2.2 Wastewater Characterization Results  The results of the initial untreated wastewater characterization samples collected by Harbour  Engineering (HE) are provided in Table 2.2.  A summary of the results of the untreated wastewater  characterization samples collected by CBRM from 2015 through 2017 are summarized in Table 2.3.    Table 2.2 Initial Wastewater Characterization Results  Parameter Units L1 L2 L5  CBOD5 mg/L 110 61 41  Total Kjeldahl Nitrogen (TKN) mg/L 6.3 6.2 4.3  Nitrogen (Ammonia Nitrogen) as N mg/L 1.0 2.9 0.96  Unionized ammonia(1) mg/L 0.0021 0.0069 0.0022  pH pH 6.89 6.94 6.92  Total Phosphorus mg/L 0.79 1.1 0.78  Total Suspended Solids mg/L 33 43 25  E. coli MPN/ 100mL 200000 820000 770000  Total Coliforms MPN/ 100mL >2400000 >2400000 2000000  Note: (1) The value of unionized ammonia was determined in accordance with the formula in the WSER, the  concentration of total ammonia in the sample, and the pH of the sample.                Harbour Engineering Joint Venture Louisbourg WWTP ERA 6 Table 2.3 CBRM Wastewater Characterization Samples  Location Parameter Average Number of Samples  L1  TSS (mg/L) 37.0 1  CBOD5 (mg/L) 60.0 1  Total Ammonia (N)  (mg/L) 3.1 1  pH   7.1 1  Unionized Ammonia  (mg/L) 0.0095 1  L2  TSS (mg/L) 59.9 37  CBOD5 (mg/L) 80.7 37  Total Ammonia (N) (mg/L) 4.2 13  pH   6.8 13  Unionized Ammonia  (mg/L) 0.009 13  L3  TSS (mg/L) <2 1  CBOD5 (mg/L) <5 1  Total Ammonia (N)  (mg/L) <0.05 1  pH   7.440 1  Unionized Ammonia  (mg/L) <0.0005 1  L4  TSS (mg/L) <2 1  CBOD5 (mg/L) <5 1  Total Ammonia (N)  (mg/L) <0.05 1  pH   7.130 1  Unionized Ammonia  (mg/L) <0.0005 1  L5  TSS (mg/L) 21.0 1  CBOD5 (mg/L) 25.0 1  Total Ammonia (N)  (mg/L) 1.4 1  pH   6.8 1  Unionized Ammonia  (mg/L) 0.0023 1    As mentioned previously, although the frequency of testing specified by the Standard Method was  not met, the ERA will be completed with the available data.                              Harbour Engineering Joint Venture Louisbourg WWTP ERA 7   CHAPTER 3  ENVIRONMENTAL QUALITY OBJECTIVES      Generic Environmental Quality Objectives (EQOs) are generated from established guidelines, typically  the Wastewater Systems Effluent Regulations (WSER), the Canadian Environmental Quality Guidelines  (CEQGs) and other guidelines specified by jurisdiction.  Site‐specific EQOs are established by adjusting  the generic EQOs based on site‐specific factors, particularly ambient water quality.  For example, if the  background concentration of a substance is greater than the guideline value (generic EQO), the  background concentration is used as the site‐specific EQO.  However, substances where the EQO is  based on the WSER are not adjusted based on ambient water quality.  Furthermore, there are some  guidelines that are dependent on characteristics of the receiving water like pH or temperature.  Effluent  is required to be non‐acutely toxic at the end of pipe and non‐chronically toxic at the edge of the mixing  zone.    EQOs can be determined by three different approaches:   Physical/chemical/pathogenic – describes the substance levels that will protect water quality;   Whole Effluent Toxicity (WET) – describes the proportion of effluent that can enter the receiving  water without causing toxicological effects (both acute and chronic); and   Biological criteria (bio‐assessment) – describes the level of ecological integrity that must be  maintained.    This assessment follows the physical/chemical/pathogenic approach from the Standard Method  outlined in the CCME guidelines.  The bio‐assessment is not included in the Standard Method as it is still  being developed (CCME, 2008).      3.1 Water Uses  EQOs are numerical values and narrative statements established to protect the receiving water – in this  case, Louisbourg Harbour in the Atlantic Ocean.  The first step in determining EQOs is to define the  potential beneficial uses of the receiving water.            Harbour Engineering Joint Venture Louisbourg WWTP ERA 8 The following beneficial water uses have been identified for Louisbourg Harbour in the Atlantic Ocean:   Primary contact recreational activities (scuba diving);   Secondary contact recreational activities like boating and fishing; and   Ecosystem health for fisheries and marine aquatic life.    There is no molluscan shellfish harvesting zone in the vicinity of the outfall.  The outfall is situated in a  molluscan shellfish closure zone boundary extending from Lighthouse Point to Blackrock Point  (approximately 1.9km from the discharge).  The closure zone boundary is shown on Figure 3.1.    Figure 3.1  Location of Outfall      3.2 Ambient Water Quality  Generic EQOs are first developed based on existing guidelines and then adjusted based on site‐ specific factors, particularly background water quality.  Water quality data was obtained for two  locations in the Atlantic Ocean along the coast of Cape Breton.  The locations were chosen in an  attempt to be representative of ambient water quality outside the influence of the existing  untreated wastewater discharges in CBRM.  Samples were collected by HE on May 11, 2018, and the  sample locations are summarized as follows and presented in Figure 3.2:   BG‐1: Near Mira Gut Beach; and   BG‐2: Wadden’s Cove.    Harbour Engineering Joint Venture Louisbourg WWTP ERA 9 Figure 3.2 Ambient Water Quality Sample Locations    A third sample was collected north of Port Morien but the results were not considered  representative of background conditions as sample results indicated the sample was impacted by  wastewater.  Samples were collected as grab samples from near shore using a sampling rod.  A  summary of the ambient water quality data is shown in Table 3.1.    Table 3.1 Ambient Water Quality Data  Parameter Units BG1 BG2 AVG  Carbonaceous BOD (CBOD) mg/L <5.0 <5.0 <5.0  Total Kjeldahl Nitrogen (TKN) mg/L 0.19 0.20 0.20  Nitrogen (Ammonia Nitrogen) mg/L <0.050 <0.050 <0.05  unionized ammonia mg/L <0.0007 <0.0007 <0.0007  pH pH 7.73 7.68 7.71  Total Phosphorus (TP) mg/L 0.037 0.032 0.035  TRC(1) mg/L NM NM NM  TSS mg/L 58 5.0 32  E. coli MPN/100mL 52 86 69  Total Coliforms MPN/100mL 16000 6900 11450  Note:   (1) NM = Parameter not measured.    Harbour Engineering Joint Venture Louisbourg WWTP ERA 10 3.3 Physical/ Chemical/ Pathogenic Approach  The physical/chemical/pathogenic approach is intended to protect the receiving water by ensuring that  water quality guidelines for particular substances are being met.  EQOs are established by specifying the  level of a particular substance that will protect water quality.  Substance levels that will protect water  quality are taken from the CEQGs associated with the identified beneficial water uses.  If more than one  guideline applies, the most stringent is used.  Typically the Canadian Water Quality Guidelines (CWQGs)  for the Protection of Aquatic Life are the most stringent and have been used for this assessment.  The  Guidelines for Canadian Recreational Water have also been used to provide limits for pathogens   (E. coli).    The guidelines for the Protection of Aquatic Life provide recommendations for both freshwater and  marine (including estuarine) environments.  Since the receiving water for the proposed Louisbourg  WWTP is a marine environment, the marine guidelines were used, where available.    Site‐specific EQOs are derived in the following sections for each substance of potential concern.    3.3.1 General Chemistry/ Nutrients  The following general chemistry and nutrients parameters were identified as substances of potential  concern for a small facility: CBOD, un‐ionized ammonia, total ammonia, total nitrogen, total Kjeldahl  nitrogen (TKN), total suspended solids (TSS), total phosphorus, pH, and total residual chlorine (TRC).   EQOs for these substances are established in the following section for the ocean discharge option.    Oxygen Demand  Biochemical Oxygen Demand (BOD5) is a measure of the oxygen required to oxidize organic material  and certain inorganic materials over a given period of time (five days).  It has two components:   carbonaceous oxygen demand and nitrogenous oxygen demand.    Carbonaceous Biochemical Oxygen Demand (CBOD5) measures the amount of biodegradable  carbonaceous material in the effluent that will require oxygen to break down over a given period of  time (five days).  The CBOD5 discharged in wastewater effluent reduces the amount of dissolved  oxygen in the receiving water.  Dissolved oxygen is an essential parameter for the protection of  aquatic life; and the higher the CBOD5 concentration, the less oxygen that is available for aquatic  life.    Traditionally performance standards have been set for BOD5; however, the WSER dictate a limit for  CBOD5.  This is due to the variable effects of nitrogenous oxygen demand on the BOD5 test.    There are no CWQGs for the protection of aquatic life for CBOD5 in freshwater or in marine waters.   However, because CBOD5 affects the concentration of dissolved oxygen, the CWQG for dissolved  oxygen should be considered.  The CWQG for freshwater aquatic life dictates that the dissolved  oxygen concentrations be greater than 9.5 mg/L for early life stages in cold water ecosystems.  The  CWQG for marine aquatic life is a minimum of 8 mg/L.      Harbour Engineering Joint Venture Louisbourg WWTP ERA 11 The background dissolved oxygen concentrations were not measured in the receiving water.   However, the concentration of CBOD5 discharged in accordance with the WSER criteria should not  cause the dissolved oxygen (DO) concentration to vary outside of the normal range.  Based on an  average annual temperature of 6.9 °C (from Bedford Institute of Oceanography Area 4VN), the  solubility of oxygen in seawater is approximately 9.5 mg/L.  Assuming the background concentration  of DO is saturated, there can be a drop of 1.5 mg/L for the DO to be a minimum concentration of 8  mg/L.  The average annual temperature was used in this calculation as if the maximum annual  temperature was used, this results in the solubility of oxygen being less than the CWQG for marine  aquatic life.  For an ocean discharge, the maximum DO deficit should occur at or near the point  source.    Assuming a deoxygenation rate of 0.3/day based on a depth of approximately 2.5m at the discharge  location, and assuming a reaeration coefficient of 0.49/day based on a depth of approximately 2.5m  and an average tidal velocity of 0.069 m/s.  The maximum concentration of CBOD that would result  in a drop in DO of 1.5 mg/L can be calculated.  The tidal dispersion coefficient has been assumed to  be 150 m2/s.  The concentration of CBOD potentially affecting DO was calculated to be 13.6 mg/L.   Therefore, the WSER criteria of 25 mg/L CBOD at discharge should not cause the dissolved oxygen  (DO) concentration to vary outside of the normal range as initial dilution would result in a  concentration much lower than 13.6 mg/L CBOD.  The background level of CBOD was less than the  detection limit of 5 mg/L.    Total Ammonia and Un‐ionized Ammonia  The CWQG for the protection of aquatic life for total ammonia in freshwater is presented as a table  based on pH and temperature.  There is no CWQG for ammonia in marine water.  Total ammonia is  comprised of un‐ionized ammonia (NH3) and ionized ammonia (NH4+, ammonium).  Un‐ionized  ammonia is more toxic than ionized ammonia and the toxicity of total ammonia is related to the  concentration of un‐ionized ammonia present.  The amount of un‐ionized ammonia is variable  depending on pH and temperature, which is why the total ammonia guideline is given by pH and  temperature.  The USEPA saltwater guideline for total ammonia is 2.7 mg/L based on a temperature  of 17.7 °C, a pH of 7.7 and a salinity of 30 g/kg.  The USEPA guideline of 2.7 mg/L will be used as the  EQO for total ammonia.    The WSER requires that un‐ionized ammonia concentrations be less than 1.25 mg/L at the discharge  point.  For the purposes of this study, the EQO for un‐ionized ammonia was chosen based on the  WSER (1.25 mg/L at discharge).    Total Suspended Solids (TSS)  The WSER specifies a limit of 25 mg/L for TSS at the end of the pipe.  The CWQG for the protection of  aquatic life in marine water for total suspended solids (TSS) is as follows:   During periods of clear flow, a maximum increase of 25 mg/L from background levels for any  short‐term exposure (e.g., 24‐h period).  Maximum average increase of 5 mg/L from  background levels for longer term exposures (e.g., inputs lasting between 24 h and 30 d);  and    Harbour Engineering Joint Venture Louisbourg WWTP ERA 12  During periods of high flow, a maximum increase of 25 mg/L from background levels at any  time when background levels are between 25 and 250 mg/L.  Should not increase more than  10% of background levels when background is ≥ 250 mg/L.    The background concentration of TSS was an average of 32 mg/L.  A maximum average increase of  5mg/L from background levels would result in an EQO of 37 mg/L.  As this is greater than the WSER  criteria, the WSER criteria of 25 mg/L at discharge will apply as the EDO.  The background TSS  measurement is higher than would typically be expected in a marine environment, which may be  due to the near shore location of the samples.  However, in a worst case scenario where the  background TSS concentration was 0 mg/L, application of the WSER criteria at the end of pipe would  be the more stringent criteria provided there is greater than five times dilution.    Total Phosphorus and TKN/TN  There are no CWQGs for the protection of aquatic life for phosphorus, Total Kjeldahl Nitrogen (TKN)  or total nitrogen (TN).  However, in both freshwater and marine environments, adverse secondary  effects like eutrophication and oxygen depletion can occur.  Guidance frameworks have been  established for freshwater systems and for marine systems to provide an approach for developing  site‐specific water quality guidelines.  These approaches are based on determining a baseline  condition and evaluating various effects according to indicator variables.  The approach is generally  very time and resource intensive, but can be completed on a more limited scale to establish interim  guidelines.    The Canadian Guidance Framework for the Management of Nutrients in Nearshore Marine Systems  Scientific Supporting Document (CCME, 2007) provides a framework as well as case studies for  establishing nutrient criteria for nearshore marine systems.  This document provides a Trophic Index  for Marine Systems (TRIX), below.    Table 3.2 Criteria for evaluating trophic status of marine systems (CCME, 2007)  Trophic Status TN  (mg/m3)  TP  (mg/m3) Chlorophyll a (μg/L) Secchi Depth  (m)  Oligotrophic <260 <10 <1 >6  Mesotrophic ≥260‐350 ≥10‐30 ≥1‐3 3‐≤6  Eutrophic ≥350‐400 ≥30‐40 ≥3‐5 1.5‐≤3  Hypereutrophic >400 >40 >5 <1.5    The background concentrations of TKN and TP were measured as 0.2 mg/L and 0.035 mg/L,  respectively, which corresponds to a eutrophic status based on the phosphorus concentration.  The  uppermost limit for this trophic status is a TN concentration of 0.4 mg/L and a TP concentration of  0.04 mg/L.    This document provides another index (NOAA) to determine the degree of eutrophication of the  marine system, below.          Harbour Engineering Joint Venture Louisbourg WWTP ERA 13 Table 3.3 Trophic status classification based on nutrient and chlorophyll (CCME, 2007)  Degree of  Eutrophication  Total Dissolved N  (mg/L)  Total Dissolved P  (mg/L)  Chl a  (μg/L)  Low 0 ‐ ≤0.1 0 ‐ ≤0.01 0 ‐ ≤5  Medium >0.1 ‐ ≤1 >0.01 ‐ ≤0.1 >5 ‐ ≤20  High >1 >0.1 >20 ‐ ≤60  Hypereutrophic ‐  ‐ >60    However, the concentrations in Table 3.3 are based on dissolved nitrogen and phosphorus and the  background concentrations are for TKN and total phosphorus.  For nitrogen, with a background  concentration of 0.2 mg/L for TKN, an assumption that the dissolved nitrogen background  concentration is anywhere between 50 and 100% of the TKN background concentration would result  in classification as “medium” based on Table 3.3.  For phosphorus, with a background concentration  of 0.035 mg/L, an assumption that the dissolved background concentration is anywhere between 29  and 100% of the total background concentration would result in classification as “medium” based on  Table 3.3.    To maintain the same degree of eutrophication, the total dissolved nitrogen and total dissolved  phosphorus in the receiving water should not exceed the upper limit of the “medium” classification  which is 1 mg/L for Total Dissolved Nitrogen and 0.1 mg/L for Total Dissolved Phosphorus.  In order  to determine the upper limit of the “medium” eutrophication range based on total phosphorus and  TN concentrations, an assumption must be made as to the percentage of the TN and phosphorus  that exists in the dissolved phase, both in the receiving water and in the effluent.  As a measure of  conservatism, an assumption was made that 100% of the TN and phosphorus exist in a dissolved  phase.  This allows for the upper limits of the “medium” classification to be used directly as the EQO  which results in an EQO of 1 mg/L for TN and 0.1 mg/L for total phosphorus.    The Canadian Guidance Framework for the Management of Nutrients in Nearshore Marine Systems  Scientific Supporting Document (CCME, 2007) presents both of the above criteria for assessing  trophic status and does not provide a recommendation for use of one rather than the other.   However, the framework presents a case study to establish nutrient criteria for the Atlantic  Shoreline of Nova Scotia, and the NOAA index is used.  Therefore, that index will be used for the  purpose of this study.    pH  The CWQG for the protection for aquatic life for marine waters is 7.0 to 8.7.  This pH range will be  applied as the EQO.    Total Residual Chlorine  The WSER requires that TRC concentrations be less than 0.02 mg/L.  For the purposes of this study,  the EQO/EDO of 0.02 mg/L for TRC was chosen based on this regulation.      Harbour Engineering Joint Venture Louisbourg WWTP ERA 14 3.3.2 Pathogens  Pathogens are not included in the CCME WQGs for the protection of aquatic life.  The Health Canada  Guidelines for Canadian Recreational Water Quality specify a maximum E. coli concentration of  200 E. coli/100 mL for freshwater for primary contact recreation and 1000 E. coli/100 mL for  secondary contact recreation.  The Health Canada guideline for Canadian Recreational Water Quality  for primary and secondary contact recreation in marine water is based on enterococci rather than E.  coli.  However, historical Nova Scotia Environment has set discharge limits for E. coli rather than  enterococci for marine discharges.  The background concentration of E. coli was 69 E. coli/100 mL.   An EQO of 200 E. coli/ 100mL based on the Canadian Recreational Water Quality guideline for  primary contact for freshwater will apply at the edge of the mixing zone.    There is currently a molluscan shellfish closure zone in the immediate vicinity of the outfall (MAR‐ SSN‐2014‐109 on Figure 3.1).  However, consideration will have to be given to E. coli concentrations  outside of the closure zone.  The CSSP requires that the median of the samples collected in an area  in one survey not exceed 14 E. coli/100 mL, and no more than 10% of the samples can exceed 43 E.  coli/100mL.  However, the average measured background concentration for E. coli was 69 E.  coli/100 mL.  These background samples were collected from shore and may not be representative  of the actual ambient concentration of E. coli in the area.    3.3.3 Summary  Table 3.4 below gives a summary of the generic and site‐specific EQOs determined for parameters of  concern. The source of the EQO has been included in the table as follows:   WSER – wastewater systems effluent regulations   CWQG Marine – CCME Canadian Water Quality Guidelines for the Protection of Aquatic Life  Marine;   USEPA Saltwater – United States Environmental Protection Agency National Recommended  Water Quality Criteria – Aquatic Life Criteria – Saltwater Criterion Continuous Concentration;   CGF, Marine – Canadian Guidance Framework for the Management of Nutrients in Nearshore  Marine Systems Scientific Supporting Document   CSSP – Canadian Shellfish Sanitation Program   HC Primary Contact – Health Canada Guidelines for Canadian Recreational Water Quality –  Primary Contact Recreation   HC Secondary Contact – Health Canada Guidelines for Canadian Recreational Water Quality –  Primary Contact Recreation                        Harbour Engineering Joint Venture Louisbourg WWTP ERA 15 Table 3.4 EQO Summary   Parameter Generic EQO Background Selected EQO Source  CBOD5(1) (mg/L) 25 <5.0  25 WSER  TN (mg/L) 1 0.2 1 CGF, Marine  Nitrogen (Ammonia  Nitrogen) (mg/L)  2.7 <0.05 2.7(2) USEPA Saltwater  Unionized Ammonia (as N  at 15°C)(1) (mg/L)  1.25 <0.0007 1.25 WSER  pH 7.0 – 8.7 7.71 7.0 – 8.7 CWQG Marine  Total Phosphorus (mg/L) 0.1 0.035 0.1 CGF, Marine  TRC(1) (mg/L) 0.02 NM 0.02 WSER  TSS(1) (mg/L) 25 32 25 WSER  E. coli (molluscan  shellfish) (MPN/ 100mL)  14 69 14 CSSP  E. coli (Primary Contact)  (MPN/ 100mL)  200 69 200 HC Primary Contact  E. coli (Secondary Contact)  (MPN/ 100mL)  1000 69 1000 HC Secondary Contact  Notes:   Bold indicates EQO is a WSER requirement.  (1) EQO applies at the end of pipe.  (2) Although the EQO for ammonia has been calculated to be 2.7 mg/L, an EQO of 1 mg/L for total nitrogen would govern.   However, as the EQO for TN is based on eutrophication, EDOs will be developed for all parameters separately.                                                  Harbour Engineering Joint Venture Louisbourg WWTP ERA 16   CHAPTER 4  MIXING ZONE ANALYSIS      4.1 Methodology    4.1.1 Definition of Mixing Zone  A mixing zone is the portion of the receiving water where effluent dilution occurs.  In general, the  receiving water as a whole will not be exposed to the immediate effluent concentration at the end‐ of‐pipe but to the effluent mixed and diluted with the receiving water.  Effluent does not  instantaneously mix with the receiving water at the point of discharge.  Depending on conditions  like ambient currents, wind speeds, tidal stage and wave action, mixing can take place over a large  area – up to the point where there is no measureable difference between the receiving water and  the effluent mixed with receiving water.    The mixing process can be characterized into two distinct phases:  near‐field and far‐field.  Near‐ field mixing occurs at the outfall and is influenced by the configuration of the outfall (e.g. pipe size,  diffusers, etc.).  Far‐field mixing is influenced by receiving water characteristics like turbulence, wave  action, and stratification of the water column.    Within the mixing zone, EQOs may be exceeded but acutely toxic conditions are not permitted  unless it is determined that un‐ionized ammonia is the cause of toxicity.  If the un‐ionized ammonia  concentration is the cause of toxicity, there may be an exception (under the WSER) if the  concentration of un‐ionized ammonia is less than or equal to 0.016 mg/L, expressed as N, at any  point that is 100 m from the discharge point.  Outside of the mixing zone, EQOs must be achieved.   The effluent is also required to be non‐chronically toxic outside of the mixing zone.  The allocation of  a mixing zone varies from one substance to another – degradable substances are allowed to mix in a  portion of the receiving water whereas toxic, persistent, and bio‐accumulative substances (such as  chlorinated dioxins and furans, PCBs, mercury and toxaphene) are not allowed a mixing zone.    A number of general criteria for allocating a mixing zone are recommended in the Strategy, including the  following:        Harbour Engineering Joint Venture Louisbourg WWTP ERA 17  The dimensions of a mixing zone should be restricted to avoid adverse effects on the designated  uses of the receiving water system (i.e., the mixing zone should be as small as possible);   Conditions outside of the mixing zone should be sufficient to support all of the designated uses  of the receiving water system;   A zone of passage for mobile aquatic organisms must be maintained;   Placement of mixing zones must not block migration into tributaries;   Changes to the nutrient status of the water body as a result of an effluent discharge should be  avoided; eutrophication or toxic blooms of algae are unacceptable impacts;   Mixing zones for adjacent wastewater discharges should not overlap; and   Adverse effects on the aesthetic qualities of the receiving water system (e.g. odour, colour,  scum, oil, floating debris) should be avoided (CCME, 1996).    The limits of the mixing zone may be defined for the following three categories of aquatic  environments based on their physical characteristics:   streams and rivers;   lakes, reservoirs and enclosed bays; and   estuarine and marine waters.    Where several limits are in place, the first one to be reached sets the maximum extent of the mixing  zone allowed for the dilution assessment.  Nutrients and fecal coliforms are not allocated any  maximum dilution.  For fecal coliforms, the location of the water use must be considered and  protected by the limits of the mixing zone.    Based on these general guidelines, mixing zone extents must be defined on a case‐by‐case basis that  account for local conditions.  It may also be based on arbitrary mixing zone limits for open water  discharges, e.g. a 100 m (Environment Canada, 2006) or 250 m (NB DOE, 2012) radius from the  outfall and/or a dilution limit.  A Draft for Discussion document “Mixing Zone Assessment and  Report Templates” dated July 7, 2016, prepared by a committee of representatives of the  environment departments in Atlantic Canada, provides guidance regarding mixing zones for ERAs in  the Atlantic Provinces.  This document recommends that for ocean and estuary receiving waters a  maximum dilution limit of 1:1000 be applied for far‐field mixing.    Finally, the assessment shall be based on ‘critical conditions’.  For example, in the case of a river  discharge ‘critical conditions’ can be defined as the seven‐day average low river flow for a given  return period.  The Standard Method provides the following guidance on EDO development:    “…reasonable and realistic but yet protective scenarios should be used.  The  objective is to simulate the critical conditions of the receiving water, where critical  conditions are where the risk that the effluent will have an effect on the receiving  environment is the highest – it does not mean using the highest effluent flow, the  lowest river flow and the highest background concentration simultaneously.”        Harbour Engineering Joint Venture Louisbourg WWTP ERA 18 As the critical low flow condition is used for the receiving water, the WWTP effluent will be  modelled based on an annual average flow, rather than a maximum daily or hourly flow, as applying  a critical high flow condition for the effluent simultaneously with a critical low flow condition in the  receiving water would result in overly conservative EDOs as this scenario doesn’t provide a  reasonable or realistic representation of actual conditions.    4.1.2 Site Summary  The WWTF is assumed to discharge through an outfall pipe perpendicular to the shoreline in shallow  water, extended to a depth estimated at ‐1.5 m below low tide. The low tide and ‐1.5 m depth  contours were estimated based on navigation charts. The total average effluent discharge is  modeled as a continuous point source of 983 m3/day.    The major coastal hydrodynamic features of the area are as follows:   Along‐shore currents along the open coastline are in phase with the tide, i.e. the current speed  peaks at high and low tide;   At the outfall site, breaking waves and associated longshore currents will contribute to effluent  dispersion during storms. For this assessment, we have assumed calm summer conditions (i.e.  no waves), when effluent dilution would be at a minimum.    4.1.3 Far‐Field Modeling Approach and Inputs  The local mixing zone is limited by the water depth at the outfall of approximately ‐1.5 m Chart  Datum and by the presence of the shoreline. Since the outfall is in very shallow water, the buoyant  plume will always reach the surface upon release from the outfall (Fisher et al., 1979). Far‐field  mixing will then be determined by ambient currents, which is best simulated with a hydrodynamic  and effluent dispersion model.      We implemented a full hydrodynamic model of the receiving coastal waters using the Danish  Hydraulic Institute’s MIKE21 model. MIKE21 is ideally suited to the study of outfall discharges in  shallow coastal areas where complex tidal and wind‐driven currents drive the dispersion process.  The model was developed using navigation charts, tidal elevations and wind observations for the  area. A similar model had been used by CBCL for CBRM in the past:   In 2005 for the assessment of the past wastewater contamination problem at Dominion  Beach, which led to the design of the WWTP at Dominion (CBCL, 2005).   In 2014 for ERAs at the Dominion and Battery Point WWTPs.    The hydrodynamic model was calibrated to the following bottom current meter data:   1992 current meters (4 locations) located in 10 m‐depth for the study by ASA (ASA, 1994) on  local oceanography and effluent dispersion;   2006 current meters (2 locations) off the Donkin peninsula for the CBCL study of mine  effluent dispersion.            Harbour Engineering Joint Venture Louisbourg WWTP ERA 19 Calibration consisted of adjusting the following parameters:   Bottom friction; and   Model spatial resolution in the area of the current meters.    Numerical Model Domain with Locations of Current Meter Observations and Modeled Outfall  Location are shown in Figure 4.1.  Inputs and calibrated outputs are shown in Figure 4.2.  The  modelled current magnitudes at New Waterford, Glace Bay and Donkin are in relatively good  agreement with observations, which is satisfactory to assess the overall dilution patterns of effluent  from the outfall.  The effect of waves was not included in the model, and therefore the modeled  effluent concentration near the outfall is expected to be conservatively high.    Figure 4.1 Numerical Model Domain with Locations of Current Meter Observations and  Modeled Outfall Location    Harbour Engineering Joint Venture Louisbourg WWTP ERA 20   Figure 4.2 Time‐series of Hydrodynamic Model Inputs and Calibration Outputs     Harbour Engineering Joint Venture Louisbourg WWTP ERA 21 4.2 Modeled Effluent Dilution  Snapshots of typical modeled effluent dispersion patterns are shown on Figure 4.3. Statistics on  effluent concentrations were performed over the 1‐month model run, and over a running 7‐day and  1‐day averaging period. Composite images of maximum and average effluent concentrations are  shown on Figure 4.4.    Effluent concentration peaks at any given location are short‐lived because the plume is changing  direction every few hours depending on tides and winds.  Therefore, a representative dilution  criteria at the mixing zone limit is best calculated using an average value. We propose to use the  one‐day average effluent concentration criteria over the one‐month modeling simulation that  includes a representative combination of site‐specific tides and winds.    The diluted effluent plume reaches the shoreline directly north of the outfall and tends to remain  concentrated within the two piers surrounding it. Lower concentrations of effluent were observed  to reach the shoreline on the east and north ends of the basin. Maximum concentrations 100m  away from the outfall are observed both North‐West and South‐East of the outfall. The 100 m  distance from the outfall to the shoreline is within the brackets of mixing zone radiuses defined by  various guidelines. We propose that this distance be used as mixing zone limit.     The maximum 1‐day average effluent concentration 100 m away from the outfall over the  simulation period is 0.38%.  Therefore we propose that a dilution factor of 263:1 be used for  calculating EDOs.      Table 4.1 Modelled Dilution Values 100 and 200 m away from the Outfall  Distance  away from  the outfall  Hourly maximum  effluent  concentration  Maximum 1‐day  average effluent  concentration  Maximum 7‐day  average effluent  concentration  1‐Month average  effluent  concentration  100 m 1.68 % (59.52:1  Dilution)  0.38 % (263.16:1  Dilution)  0.29 % (344.83:1  Dilution)  0.23 % (434.78:1  Dilution)  200 m 1.11 % (90.09:1  Dilution)  0.3 % (333.33:1  Dilution)  0.26 % (384.62:1  Dilution)  0.22 % (454.55:1  Dilution)                          Harbour Engineering Joint Venture Louisbourg WWTP ERA 22   Figure 4.3 Snapshots of Typical Modeled Effluent Dispersion Patterns       Harbour Engineering Joint Venture Louisbourg WWTP ERA 23   Figure 4.4 Composite Images of Modeled Hourly Maximum (top) and Maximum 7‐Day  Average Effluent Concentrations (middle) with Concentration Time‐Series  (bottom)  Note: 100‐m radius (black) and 200‐m radius (grey) circle shown around outfall.      Harbour Engineering Joint Venture Louisbourg WWTP ERA 24   CHAPTER 5  EFFLUENT DISCHARGE OBJECTIVES      5.1 The Need for EDOs  Effluent Discharge Objectives (EDOs) represent the effluent substance concentrations that will protect  the receiving environment and its designated water uses.  They describe the effluent quality necessary  to allow the EQOs to be met at the edge of the mixing zone.  The EQOs are established in Chapter 3; see  Table 3.4 for summary of results.    EDOs should be calculated where reasonable potential of exceeding the EQOs at the edge of the mixing  zone has been determined.  Typically, substances with reasonable potential of exceeding the EQOs have  been selected according to the simplified approach:  If a sample result measured in the effluent exceeds  the EQO, an EDO is determined.  As there are a limited number of parameters considered as substances  of potential concern for very small and small facilities, EDOs will be developed for all substances of  potential concern.      5.2 Physical/ Chemical/ Pathogenic EDOs  For this assessment, EDOs were calculated using the dilution values obtained at the average  expected design flow of 983 m3/day.  This resulted in a dilution of 263:1 at the edge of a 100 m  mixing zone.    Parameters for which there is a WSER criteria were not allowed any dilution and therefore the EDO  equals the WSER Criteria.  The Standard Method does not allocate any maximum dilution for  nutrients and fecal coliforms.  For nutrients, it recommends a case‐by‐case analysis.  For fecal  coliforms, the location of the water use must be protected by the limits of the mixing zone.    The dilution values were used to obtain an EDO by back‐calculating from the EQOs.  When the  background concentration of a substance was less than the detection limit, the background  concentration was not included in the calculation of the EDO.        Harbour Engineering Joint Venture Louisbourg WWTP ERA 25 5.3 Effluent Discharge Objectives  Substances of concern for which an EDO was developed are listed in Table 5.1 below with the  associated EQO, maximum measured wastewater concentration, and the associated EDO. The  effluent must also be non‐acutely toxic at the end of pipe, and non‐chronically toxic at the edge of  the mixing zone.     Table 5.1 Effluent Discharge Objectives at Average Annual Flow  Parameter  Maximum  Wastewater  Concentration  Background Selected  EQO Source Dilution  Factor EDO  CBOD(1) (mg/L) 110 <5.0 25 WSER ‐ 25  TN (mg/L) 6.3 0.2 1 CGF,  Marine 263 212  Nitrogen  (Ammonia  Nitrogen) (mg/L)  6.1 <0.05 2.7 USEPA  Saltwater 263 710  Unionized  Ammonia(1) (mg/L) 0.019 <0.0007 1.25 WSER ‐ 1.25  Total Phosphorus   (mg/L) 1.1 0.035 0.1 CGF,  Marine 263 17  Total Residual  Chlorine(1) (mg/L) NM NM 0.02 WSER ‐ 0.02  Total Suspended  Solids(1) (mg/L) 290 32 25 WSER ‐ 25  E. coli (shellfish)(2)  (MPN/ 100mL) 820,000 69 14 CSSP 3333 See  Discussion  E. coli (Primary  Contact) (MPN/  100mL)  820,000 69 200  HC  Primary  Contact  263 34,522  E. coli (Secondary  Contact) (MPN/  100mL)  820,000 69 1000  HC  Secondary  Contact  263 244,922  Notes: (1) For parameters for which the EQO is based on the WSER, no dilution has been permitted.               (2) Dilution at closure zone boundary of 3333:1.       Based on the EDOs calculated above, sample results for the following parameters exceeded the EDO  in at least one wastewater sample:   CBOD5;   TSS; and   E. coli.    CBOD and TSS will meet the EDOs at the discharge of the new WWTP through treatment. E. Coli will  meet the EDO for primary and secondary contact recreation through treatment.      Harbour Engineering Joint Venture Louisbourg WWTP ERA 26 In terms of an EDO for E. coli for the protection of molluscan shellfish, an EDO could not be  calculated because the measured background concentration was greater than the EQO.  The  average measured background concentration for E. coli was 69 E. coli/100mL compared to an EQO  of 14 E. coli/100mL.  These background samples were collected from shore and may not be  representative of the actual ambient concentration of E. coli in the area.  Therefore, rather than  calculating an EDO using the EQO and background concentration, the concentration in the discharge  will be assumed to be equal to 200 E. coli/100 mL which is the typical design value for UV systems,  and the maximum background concentration that would result in a limit of 14 E. coli/100 mL at the  edge of the closure zone will be calculated.  With a dilution of 3333:1, a concentration of 200 E.  coli/100 mL in the discharge, and an EQO of 14 E. coli/100 mL, the ambient background  concentration would have to be less than or equal to 13.9 E. coli/ 100mL.    It is possible that the existing shellfish closure zone boundaries may change after the proposed  WWTPs are constructed in CBRM. However, there will always be a closure zone surrounding each  outfall. The Canadian Shellfish Sanitation Program (CSSP) manual of operations indicates that  shellfish harvesting is prohibited in an area within a minimum 300m radius of the discharge from a  sanitary sewage system, and within the area around a sanitary discharge which does not achieve  adequate viral reduction through a combination of wastewater treatment and dilution in the  shellfish growing area.                                                       Harbour Engineering Joint Venture Louisbourg WWTP ERA 27   CHAPTER 6  COMPLIANCE MONITORING    The Standard Method utilizes the results of the ERA to recommend parameters for compliance  monitoring according to the following protocol:   The WSER requirements for TSS, CBOD and unionized ammonia must be monitored to  ensure they are continuously being achieved.  Minimum monitoring frequencies are  specified in the guidelines based on the size of the facility.  Monitoring of these  substances cannot be reduced or eliminated;   Nutrients, such as phosphorus and ammonia, and pathogens for which an EDO was  developed should be included in the monitoring program with the same sampling  frequency as TSS and CBOD5;   For additional substances, the guidelines require that all substances with average effluent  values over 80% of the EDO be monitored;   If monitoring results for the additional substances are consistently below 80% of the EDO,  the monitoring frequency can be reduced;   If average monitoring results subsequently exceed 80% of the EDO, monitoring frequency  must return to the initial monitoring frequency; and   If monitoring results are below 80% of the EDO for at least 20 consecutive samples spread  over a period of at least one‐year, monitoring for that substance can be eliminated.    Although the Standard Method results in recommending parameters for compliance monitoring, the  provincial regulator ultimately stipulates the compliance monitoring requirements as part of the  Approvals to Operate.  In New Brunswick, the New Brunswick Department of Environment and Local  Government has been using the results of the ERA to update the compliance monitoring program  listed in the Approval to operate when the existing Approvals expire.  At this time, it is premature to  use the results of this ERA to provide recommendations on parameters to monitor for compliance,  as the purpose of this ERA was to provide design criteria for design of a new WWTP.        Harbour Engineering Joint Venture Louisbourg WWTP ERA 28 CHAPTER 7  REFERENCES    ASA Consulting Limited (1994). “Industrial Cape Breton Receiving Water Study, Phase II”.  Prepared  for The Town of Glace Bay.    CBCL Limited (2005).  Dominion Beach Sewer Study.  Prepared for CBRM.    CCME (2008).  Technical Supplement 3.  Canada‐wide Strategy for the Management of Municipal  Wastewater Effluent.  Standard Method and Contracting Provisions for the Environmental Risk  Assessment.    CCME (2007).  Canadian Guidance Framework for the Management of Nutrients in Nearshore  Marine Systems Scientific Supporting Document.    CCME Canadian Environmental Quality Guidelines Summary Table.  Water Quality Guidelines for the  Protection of Aquatic Life.    Environment Canada (2006). Atlantic Canada Wastewater Guidelines Manual for Collection,  Treatment, and Disposal    Environment Canada (Environment Canada).  1999.  Canadian Environmental Protection Act Priority  Substances List II – Supporting document for Ammonia in the Aquatic Environment.  DRAFT –August  31, 1999.    Fisheries Act.  Wastewater Systems Effluent Regulations.  SOR/2012‐139.    Fisher et al. (1979).  Mixing in Inland and Coastal Waters.  Academic Press, London.    Health Canada (2012).  Guidelines for Canadian Recreational Water Quality.  Retrieved from:  http://www.hc‐sc.gc.ca/ewh‐semt/pubs/water‐eau/guide_water‐2012‐guide_eau/index‐eng.php    NB Department of Environment & Local Government, (2012). Memo    Thomann, Robert V. and Mueller, John A. 1987. Principles of Surface Water Quality Modeling and  Control.        Harbour Engineering Joint Venture Louisbourg WWTP ERA 29 USEPA. National Recommended Water Quality Criteria for Saltwater. Retrieved from:  http://water.epa.gov/scitech/swguidance/standards/criteria/current/index.cfm                Prepared by: Reviewed by:  Holly Sampson, M.A.Sc., P.Eng. Karen March, M.Sc.  Intermediate Chemical Engineer Environmental Scientist        Harbour Engineering Joint Venture Appendices APPENDIX A  Laboratory Certificates    HEJV Louisbourg Wastewater System Summary Report Appendices APPENDIX D  Louisbourg Wastewater Treatment Facility  Site Desktop Geotechnical Review     301 Alexandra Street, Sydney, NS B1S 2E8 t: 902.562.2394 f: 902.564.5660 www.exp.com October 29, 2018 SYD-00245234-A0/60.2 Mr. Terry Boutilier Dillon Consulting Limited 275 Charlotte Street Sydney, NS B1P 1C6 Re: Wastewater Treatment Plant Geotechnical Desktop Study Louisbourg Site Dear Mr. Boutilier: It is the pleasure of EXP Services Inc. (EXP) to provide Dillon Consulting Limited (Dillon) with this letter report summarizing the preliminary review completed by EXP on the potential site for the construction of a wastewater treatment facility in Louisbourg, Nova Scotia. Background A geotechnical desktop study is an essential tool used by engineers to identify and gather as much information as possible pertaining to the probable ground conditions at a proposed construction site without commissioning an intrusive ground investigation. The information obtained from the desktop study will identify potential problems, hazards and/or constraints associated with the probable ground conditions in the proposed area of construction, as well as provide geotechnical recommendations for new construction activities. When a walkover survey is completed in conjunction with the desktop study it will allow engineers to refine and enhance their understanding of each of the sites in relation to the topography, earth exposures, drainage conditions, etc. When completed together (the desktop study and the walkover survey), the findings will provide invaluable information in the early stages of the design at a negligible cost. It is the intent of the desktop study and walkover survey not only to look at the site, but also at its surroundings. Noted below are the key findings to be reported in any desktop study and walkover assessment: • site topography; • geology (surficial ground cover, probable overburden soil and bedrock type); • geotechnical problems and parameters; • previous land use (aerial photographs); Dillon Consulting Limited Wastewater Treatment Plant Geotechnical Desktop Study - Louisbourg Site SYD-00245234-A0 October 29, 2018 2 \\trow.com\PROJECTS\SYD\SYD-00245234-A0\60 Project Execution\60.2 Reports\Louisbourg\Louisbourg_Site.docx • underground/surface mining activities; and • proposed supplemental ground investigation methods (test pits and/or boreholes). Subject Site Description and Topography The proposed site for the new wastewater treatment plant (WWTP) is located on a parcel of land between the former fish processing plant and the Lobster Kettle Restaurant, off of Commercial Street in Louisbourg, Nova Scotia, and is identified by Property Identification Number (PID) 15458243. The subject property is relatively level, but slopes slightly and gently from the north toward the southeast. The property then drops off rapidly along the Atlantic coastline. The property is bound by residential dwellings to the north, the Atlantic coastline and Commercial Street to the south, Strathcona Street and the Lobster Kettle Restaurant to the east and the former commercial fish processing plant to the west. Published Geological Mapping (Surficial and Bedrock) Review of the surficial geological mapping of the study area indicated that the subsurface geology consists of a Stony Till Plain. This type of till is generally comprised of a stony, sandy matrix material with varying amounts of cobbles and boulders and can vary in thickness from 2 to 20 metres thick. Typically, these materials were released from the base of ice sheets during the melting process of the ice sheet. A review of the existing bedrock mapping for the area indicates that the site is underlain by materials from the neopoterozoic period, which are further identified from the Fourchu Group. These formations are comprised of felsic, intermediate and mafic tuff, tholeiitic volcanic arc basalt, rhyolite, sandstone, siltstone and chert. A review of historical mapping and online reference documents indicated that no mining activities have been carried out under the site. Existing Ground Conditions At the time of the investigation, the proposed site was primarily covered in low lying vegetation, interspersed with several old concrete foundations and fish processing equipment. The eastern limit of the property is enclosed by a chain link fence, complete with overhanging barb wire. A significant portion of the site appears to have been levelled by fill placement. Infilling along the shore line with armor stone was observed during the site visit. The native overburden soil (glacial till) consists of coarse sand and gravel with a high fines content of silt and sand with varying amounts of cobbles and boulders. The thickness of the native glacial till material is anticipated to be relatively thin and is anticipated to be between 1 and 5 metres thick. The native till material should provide satisfactory bearing stratum for the support of shallow foundations with bearing capacities between 150 and 200 kPa. The underlying bedrock would provide a higher Dillon Consulting Limited Wastewater Treatment Plant Geotechnical Desktop Study - Louisbourg Site SYD-00245234-A0 October 29, 2018 3 \\trow.com\PROJECTS\SYD\SYD-00245234-A0\60 Project Execution\60.2 Reports\Louisbourg\Louisbourg_Site.docx capacity for allowable bearing. Should extraction in the bedrock be required on the site, it will require drill and blast techniques. An above ground fuel storage tank was observed during the site visit; however, no evidence of petroleum hydrocarbon contamination in the soils was observed. A subsurface investigation would be required to confirm no contamination exists at the locations investigated. Geotechnical Problems and Parameters Summarized below are the key geotechnical problems of the site. • The presence of old concrete foundation and uncontrolled and/or loose fills are suspected on the site due to historical activities. • There is a potential that a substantial volume of bedrock excavation may be required on the site. Extraction and bedrock excavation will require drill and blast techniques to facilitate removal of the bedrock. • There is a potential to find impacted soils (historical photographs depict above ground fuel tanks, coal and fuel storage tanks) on the site. Soil samples should be analyzed to confirm the presence or absence of contamination. Previous Land Use Aerial photographs from 1931 to 2009 have been reviewed and are summarized below. • An aerial photograph taken in 1931 depicts the site void of any structures. A roadway from Strathcona Street connects to Gerrards Head across the Barrachois. Residential and commercial building are found to the north, east and west of the site. The site appears to be covered with low lying vegetation. • An aerial photograph taken in 1947 depicts the construction of a new wharf southwest of the site. • An aerial photograph taken in 1953 depicts the construction of several buildings (new fish processing plant) and roadways across the site. The wharf has been expanded and the roadway connecting Strathcona Street to Gerrards Head has been rerouted. • An aerial photograph taken in 1961 depicts little to no discernable change to the site since the 1953 photograph was taken. • An aerial photograph taken in 1970 depicts little to no change to the site since the 1961 photograph. • An aerial photograph taken in 1985 depicts little to no change to the site since the 1970 photograph. • An aerial photograph taken in 1987 depicts the parking lot expansion on the northern side of the fish processing plant. • An aerial photograph taken in 2009 depicts the construction of the Lobster Kettle Restaurant to the east. The roadway and parking lots on the site are paved in asphalt. Dillon Consulting Limited Wastewater Treatment Plant Geotechnical Desktop Study - Louisbourg Site SYD-00245234-A0 October 29, 2018 4 \\trow.com\PROJECTS\SYD\SYD-00245234-A0\60 Project Execution\60.2 Reports\Louisbourg\Louisbourg_Site.docx Proposed Supplemental Ground Investigation Methods It is also recommended that a preliminary geotechnical investigation (land based drilling) be completed at the site to collect pertinent information pertaining to the subsurface conditions within the footprint of the proposed new facility. This information will then be used to develop geotechnical recommendations for use in the design and construction of the new facility. Borehole locations should be selected based upon the location of buried infrastructure (sewer, water, electrical and fiber optic lines) and to provide adequate coverage of the site. It is proposed that representative soil samples be collected continually throughout the overburden material of each of the five boreholes advanced at the site. Additionally, it is recommended that during the investigation samples of the bedrock should be collected continuously to a depth of at least 15 metres, in two of the five boreholes. The intent of the bedrock coring is to accurately characterize the bedrock for design. It is recommended that the remaining three boreholes be terminated either at 12 metres depth below ground surface or once refusal on assumed bedrock is encountered (whichever comes first). A Geotechnical Engineer should oversee the advancement of each of the boreholes. A CME 55 track mounted geotechnical drill rig (or equivalent), equipped with bedrock coring equipment and a two- man crew (driller and helper), should be used to advance each of the boreholes. Representative soil samples should be attained from a 50 mm diameter standard split spoon sampler during Standard Penetrating Tests (SPT) conducted ahead of the casing and/or auger equipment. A preliminary assessment of each recovered sample should be completed for particle size, density, moisture content and color. The SPT should continue until refusal or contact with assumed bedrock. Bedrock should be confirmed through coring of the material using coring equipment and drill casing. Each core sample should be removed from the core barrel and placed into core boxes for identification. Upon completion of the intrusive portion of the program, all boreholes are to be plugged (at various depths within the borehole) using a bentonite plug and backfilled to grade using silica sand. Following the installation and backfilling activities, the location and elevations are to be determined using Real Time Kinematic (RTK) survey equipment in the AST 77 coordinate system. This letter report is prepared for the Louisbourg site. Should you have any questions or concerns, please contact John Buffett or Gary Landry at 902.562.2394. Sincerely, Sincerely, John Buffett, P.Eng., B.Sc., RSO Gary Landry, P.Eng., B.Sc. Project Engineer Project Manager EXP Services Inc.   HEJV Louisbourg Wastewater System Summary Report Appendices APPENDIX E  Louisbourg Wastewater System  Archaeological Resources Impact  Assessment