Loading...
HomeMy WebLinkAbout182402-Glace-Bay-Wastewater-Pre-Design-Summary-Report-Final     182402.00 / 187116.00   ●   Draft Report   ●   March 2020  Environmental Risk Assessments  & Preliminary Design of Seven Future  Wastewater Treatment  Systems in CBRM    Glace Bay Wastewater Interception & Treatment System  Prepared by:      Prepared for:    Final                                                                     Glace Bay WW Interception &  Treatment System Pre‐Design  Summary Report‐Draft  March 27, 2020 Darrin McLean James Sheppard Darrin McLean  Issue or Revision Date Issued By: Reviewed By: Prepared By:  This document was prepared for the party indicated herein. The material and information in the document reflects HE’s opinion and best judgment based on the information available at the time of preparation. Any use of this document or reliance on its content by third parties is the responsibility of the third party. HE accepts no responsibility for any damages suffered as a result of third party use of this document.                               182402.00 GLACE BAY SUMMARY REPORT.DOCX/mk  ED: 10/07/2020 10:21:00/PD: 10/07/2020 10:22:00   164 Charlotte St.    PO Box 567    Sydney, NS    B1P 6H4  March 27, 2020    Matt Viva, P.Eng.  Manager Wastewater Operations  Cape Breton Regional Municipality (CBRM)  320 Esplanade,  Sydney, NS B1P 7B9    Dear Mr. Viva:    RE: Glace Bay Wastewater Interception & Treatment System – Pre‐Design Summary  Report    Enclosed, please find, for your review, a copy of the draft Pre‐Design Summary Report for the  Glace Bay Wastewater Interception & Treatment System.    This report presents a description of proposed wastewater interception and treatment  infrastructure upgrades for the Glace Bay wastewater system, as well as an estimate of the  capital, operating costs, and replacement costs for the proposed infrastructure.  In addition,  estimated costs of upgrades and assessments related to the existing wastewater collection  system are provided.   A summary of geotechnical work completed for the wastewater  treatment facility site is also provided, along with an archaeological resources impact  assessment review for all sites of proposed wastewater infrastructure, and a Phase I  Environmental Site Assessment.  Finally, an Implementation Timeline is provided, which  outlines a tentative schedule for implementation of the various proposed wastewater system  upgrades.    If you have any questions or require clarification on the content presented in the attached  report, please do not hesitate to contact us.    Yours very truly,    Harbour Engineering Joint Venture          Prepared by: Reviewed by:  Darrin McLean, MBA, FEC, P.Eng. James Sheppard, P.Eng.  Senior Municipal Engineer Civil Infrastructure Engineer  Direct:  902‐539‐1330 (Ext. 3138) Direct:  902‐562‐9880  E‐Mail:  dmclean@cbcl.ca  E‐Mail:  jsheppard@dillon.ca    Project No: 182402.00 (CBCL)  187116.00 (Dillon)       final   HEJV Glace Bay Wastewater System Pre‐Design Summary Report i  Contents    CHAPTER 1 Introduction & Background ......................................................................................... 1  1.1 Introduction ........................................................................................................................ 1  1.2 Background ......................................................................................................................... 1  1.3 Description of Existing Wastewater Collection System ...................................................... 1  1.4 Service Area Population ...................................................................................................... 2  CHAPTER 2 Wastewater Interceptor System .................................................................................. 3  2.1 Description of Proposed Wastewater Interceptor Infrastructure ...................................... 3  2.2 Interception Infrastructure Land/Easement Acquisition Requirements ............................ 4  2.2.1 Lift Station Sites ...................................................................................................... 4  2.2.2 Linear Infrastructure ............................................................................................... 4  CHAPTER 3 Existing Wastewater Collection System Upgrades / Assessments ................................ 6  3.1 Sewage Pump Station Upgrades ......................................................................................... 6  3.2 Asset Condition Assessment Program ................................................................................ 6  3.3 Sewer Separation Measures ............................................................................................... 6  3.4 CSO Station Outfall Upgrades ............................................................................................. 6  CHAPTER 4 Wastewater Treatment System ................................................................................... 7  4.1 Recommended Wastewater Treatment Facility ................................................................. 7  4.2 Wastewater Treatment Facility Land Acquisition Requirements ....................................... 8  4.3 Wastewater Treatment Facility Site Geotechnical Investigations ...................................... 8  4.4 Wastewater Treatment Facility Site Environmental Site Assessment ................................ 9  CHAPTER 5 Wastewater System Archaeological Resources Impact Assessment ........................... 12  5.1 Archaeological Resources Impact Assessment ................................................................. 12  CHAPTER 6 Wastewater Infrastructure Costs ............................................................................... 14  6.1 Wastewater Interception & Treatment Capital Costs ...................................................... 14  6.2 Wastewater Interception & Treatment Annual Operating Costs ..................................... 15  6.3 Annual Capital Replacement Fund Contribution Costs .................................................... 15  6.4 Existing Wastewater Collection System Upgrades / Assessment Costs ........................... 17  CHAPTER 7 Project Implementation Timeline .............................................................................. 18  7.1 Implementation Schedule ................................................................................................. 18  Appendices   A Glace Bay Collection System Pre‐Design Brief  B Glace Bay Wastewater Treatment System Pre‐Design Brief   C Glace Bay Environmental Risk Assessment Report    HEJV Glace Bay Wastewater System Pre‐Design Summary Report ii   D Glace Bay Wastewater Treatment Facility Site Desktop Geotechnical Review   E Glace Bay Wastewater System Archaeological Resources Impact Assessment   F Glace Bay Wastewater System Phase I Environmental Site Assessment    HEJV Glace Bay Wastewater System Pre‐Design Summary Report 1 CHAPTER 1  INTRODUCTION & BACKGROUND    1.1 Introduction  Harbour Engineering Joint Venture (HEJV) was retained by the Cape Breton Regional Municipality  (CBRM) to provide engineering services associated with the preliminary design of wastewater  interception and treatment infrastructure for the community of Glace Bay, Nova Scotia as part of the  greater Environmental Risk Assessment and Preliminary Design of 7 Future Wastewater Treatment  Systems in CBRM project.  This report presents a description of the proposed infrastructure upgrades  for the Glace Bay Wastewater system, as well as an estimate of the capital, operating and replacement  costs for the proposed infrastructure.  In addition, estimated costs of upgrades and assessments  related to the existing wastewater collection system are provided.  A summary of geotechnical work  completed for the wastewater treatment facility site is also provided, along with an archaeological  resources impact assessment review for all sites of proposed wastewater infrastructure, and a Phase  I Environmental Site Assessment.  Finally, an Implementation Timeline is provided, which outlines a  tentative schedule for implementation of the various proposed wastewater system upgrades.    1.2 Background  The wastewater collection system in the community of Glace Bay, as in many communities throughout  CBRM, currently discharges untreated wastewater to the Atlantic Ocean.  The evolution of the existing  wastewater collection and disposal systems in CBRM included the creation of regions of a community  which were serviced by a common wastewater collection system tied to a local marine outfall.  Such  design approaches have traditionally been the most cost‐effective manner of providing centralized  wastewater collection, and the marine environment has long been the preferred receiving water given  the available dilution.  Due to a changing regulatory environment, CBRM is working toward intercepting  and treating the wastewater in these communities prior to discharge.    The Glace Bay system has been classified as high risk under the federal Wastewater System Effluent  Regulations (WSER) under the Fisheries Act, requiring implementation of treatment systems by the year  2021.    1.3 Description of Existing Wastewater Collection System  The Glace Bay wastewater collection system includes a significant portion of the footprint of the  former Town of Glace Bay and the community of Reserve Mines.  The remainder of the Glace Bay  area flows to the Dominion system.  The system consists of approximately 118km of gravity sewer  and 3.1km of force main.  It also includes six pump stations and nine known overflows.    HEJV Glace Bay Wastewater System Pre‐Design Summary Report 2   The majority of the wastewater is already directed to the main outfall at Glace Bay Harbour, with  the remainder being discharged through eight additional outfalls along the coast to the north of the  main outfall.  The outfalls are located at or near the following locations:   GB#1 – Khalsa Drive   GB#2 – Shea’s Lane   GB#3 – Centre Avenue;   GB#4 – East Avenue (2 outfalls);   GB#5 – Second Street;   GB#6 and GB#7 – Upper North Street;   GB#8 – Glace Bay Harbour (main outfall);    An additional outfall is located at the northern end of Second Street. This outfall receives discharge  from one home. This home would be best served in the future by a low pressure sewer system that  would convey discharge towards the new interceptor sewer.    Approximately 85% of the flow in Glace Bay is already diverted to GB#8, making this general area an  ideal location for the future WWTP site.    1.4 Service Area Population  For Glace Bay, the service area population was estimated to be 14,536 people in 7,258 residential  units.   The population of the CBRM has been declining and this trend is expected to continue.  Recent  population projection studies predict a 17.8% decrease in population in Cape Breton County between  2016 and 2036.  For this reason, no allocation has been made for any future population growth.    For the purpose of preliminary design, wastewater infrastructure has been sized based on the current  population and measured flow data.  While this may seem overly conservative, due to significant  amounts of inflow and infiltration (I&I) observed in sewer systems in the CBRM, a given population  decrease will not necessarily result in a proportional decrease in wastewater flow.  Therefore, basing  the design on current population is considered the most reasonable approach.                                      HEJV Glace Bay Wastewater System Pre‐Design Summary Report 3   CHAPTER 2  WASTEWATER INTERCEPTOR SYSTEM    2.1 Description of Proposed Wastewater Interceptor Infrastructure  The proposed wastewater interceptor system for the Glace Bay Wastewater System includes the  following major elements:   LS‐GB 1 located near the GB#1 outfall, on PID 15441355. This pump station conveys flow  eastward through a common forcemain that extends to Centre Avenue. The forcemain from  LS‐GB1 to LS‐GB2 is 150mm in diameter. From LS‐GB2 eastward, the forcemain diameter  increases to 200mm in diameter.   LS‐GB2 is located behind Shea’s Lane and Eleventh Street on PID 15440969. This pump  station intercepts flow from outfalls GB#2 and GB#3. The pump station conveys discharge  via a 200 mm diameter forcemain to the common forcemain discussed above.   A gravity sewer that begins as a 200mm and terminates as a 450mm diameter gravity main  conveys sewage along Centre Avenue and Eighth Street.   Flow from the GB#4A outfall is intercepted by a 200mm diameter gravity main and is  directed to a proposed CSO chamber located near the Eighth Street and East Avenue  intersection.   Flow from the GB#4B outfall is intercepted by a 450mm diameter gravity main and is  directed to the same CSO chamber located near the Eighth Street/East Avenue intersection.   A 450mm diameter gravity sewer conveys the intercepted flow cross country from the CSO  toward First Street.   A 200mm diameter sewer will be required near the 2nd Street/Hub Avenue intersection to  intercept flow from GB#5 to the interceptor system located near First Street.   From the connection with the 2nd Street sewer, a gravity sewer extends from First Street  across PID 15437718. The sewer runs along West Avenue, Tennyson Street and Vivian Street  to Upper North Street, eventually to the LS‐GB3 site.   A small section of 450mm diameter gravity sewer connects GB#6 to GB#7. The flow from  the gravity sewer is directed to a CSO chamber (CSO‐5).   Flow from CSO‐5 is merged with the gravity interceptor sewer on Upper North Street and is  directed to LS‐GB3.   LS‐GB3 handles all of the flow from each of the seven outfalls north of the Glace Bay WWTP  site.   LS‐GB3 conveys sewage to the proposed WWTP via a 250mm diameter forcemain.   LS‐GB4 (located within the GB WWTP footprint) intercepts sewer from the GB#8 outfall. The  WWTP site will be complete with a CSO overflow structure that will convey overflow to the  proposed outfall.    HEJV Glace Bay Wastewater System Pre‐Design Summary Report 4  Outside of the interceptor sewer, one home at the end of 4th Street will require a low‐ pressure sewer system as it currently discharges directly to the Atlantic Ocean.    A detailed description of the proposed wastewater interceptor system, including preliminary layout  drawings is provided in Appendix A.    2.2 Interception Infrastructure Land/Easement Acquisition Requirements  2.2.1 Lift Station Sites  Construction of sewage pumping stations will require property acquisitions as shown in the table  below.    Table 1 ‐ Lift Station Sites Land Acquisition Requirements  PID# Property  Owner Assessed Value Description Size Required  Purchase  Entire Lot  (Y/N)  154413551 PWGSC $10,100 LS‐GB1/CSO  Site 15mX70m N  15440969 PWGSC $17,500 LS‐GB2/CSO  Site 60mX80m(irreg.) N  15739113  Road Parcel  Owner  Undetermined  No information LS‐GB3/CSO  Site 15mx30m Y  1Additional easement required for linear infrastructure, see Table 2 for further details on size requirements.    2.2.2 Linear Infrastructure  Installation of linear infrastructure such as pressure and gravity sewer piping and manholes will  require property acquisitions or easements as shown in the table below.    Table 2 ‐ Linear Infrastructure Land Acquisition Requirements  PID# Property  Owner Assessed Value Description Length Required Purchase Entire  Lot (Y/N)  154413551 PWGSC $10,100 Forcemain 84m N  15441090 PWGSC $25,300 Forcemain 67m N  15440936 Youth for  Christ Canada $289,000  Forcemain/  Gravity  Sewer  25m N  15526668 PWGSC $16,300 Gravity  Sewer 7m N  15437791 PWGSC $44,500 Gravity  Sewer 24m N  15437742 PWGSC $8,300 Gravity  Sewer 29m N  15531064 PWGSC $400 Gravity  Sewer 147m N  15531023 PWGSC $66,300 Gravity  Sewer 18m N    HEJV Glace Bay Wastewater System Pre‐Design Summary Report 5 15821127 Owner  Unknown No Information Forcemain 22m Y  15821119 Charles H  Rigby No Information Forcemain 65m Y  1 Additional easement required for pump station infrastructure, see Table 1 for further details on size requirements.                                                                                  HEJV Glace Bay Wastewater System Pre‐Design Summary Report 6   CHAPTER 3  EXISTING WASTEWATER COLLECTION SYSTEM  UPGRADES / ASSESSMENTS    3.1 Sewage Pump Station Upgrades  HEJV has reviewed the existing Glace Bay Collection System for potential upgrades to the existing  sewage pumping stations. There are currently six pump stations in the community of Glace Bay. The  age of the existing stations vary. All of the stations have been upgraded previously. Since 2015,  upgrades have been performed to 4 of the 6 existing stations. The remaining two stations were  upgraded in 2011. The Glace Bay WWTP has been classified as a high priority system and has an  implementation deadline of 2021. Plans should be made to upgrade stations that have not been  recently renewed, including the Reserve Street and Railroad Street pump stations (upgraded in  2011). Due to their age, the condition of each station should be verified at the time of detailed  design to determine if an upgrade of the existing station is required.    3.2 Asset Condition Assessment Program  To get a better sense of the condition of the existing Glace Bay sewage collection system, HEJV  recommends completing a sewage collection system asset condition assessment program in the  community. The program would carry out an investigation involving two components:  1. Visual inspection and assessment of all manholes in the collection system  2. Video inspection of 20% of all sewers in the system    The program should be completed with the issuance of a Collection System Asset Condition  Assessment Report that would summarize the condition of the various assets inspected and include  opinions of probable costs for required upgrades.    3.3 Sewer Separation Measures  CBRM should consider completing further sewer separation investigation efforts in Glace Bay. The  program would review catch basins that are currently connected or possibly connected to existing  sanitary sewers. The program should also include the costing of the installation of new storm  sewers to disconnect catch basins from the existing sanitary sewer.    3.4 CSO Station Outfall Upgrades  Upgrades should be provided at existing outfalls that will be utilized as overflows from the proposed  CSO Stations. A connection should be made with the existing outfall that would allow the pipe to be  extended into the marine environment versus conveying overflow through the existing shoreline  embankments (above shoreline elevation).    HEJV Glace Bay Wastewater System Pre‐Design Summary Report 7   CHAPTER 4  WASTEWATER TREATMENT SYSTEM    4.1 Recommended Wastewater Treatment Facility  The recommended wastewater treatment facility for Glace Bay is the Sequencing Batch Reactor (SBR)  process, which is an aerobic suspended‐growth biological treatment process.  The SBR process is a  batch process whereby secondary treatment, including nitrification, is achieved in one reactor.  It  involves a “fill and draw” type reactor where aeration and clarification occur in the same reactor.   Settling is initiated after the aeration cycle and supernatant is withdrawn through a decanter  mechanism.  The WWTP would provide the following general features:  1. Preliminary treatment involving raw wastewater screening and grit removal;  2. Secondary treatment involving three continuous‐flow SBR tanks;  3. Disinfection of the treated wastewater with the use of ultraviolet (UV) disinfection unit;  4. Sludge management by means of aerated sludge holding tanks, sludge dewatering centrifuge  and associated bin room;  5. Odour control equipment;  6. Staff work spaces, including office space, laboratory space, control room, locker room, lunch  room, and washrooms;  7. Site access and parking, along with site fencing; and,  8. New outfall.    The proposed site of the Glace Bay WWTP is located near Lower North Street.  The design loads for  the proposed WWTP are as shown in the table below.    Table 3 ‐ WWTP Design Loading Summary  Parameter Average Day Peak Day  Design Population 14,536  Flow (m3/day) 13,815 41,445  CBOD Load (kg/day) 1381.5 2763  TSS Load (kg/day) 1519.7 3039  TKN Load (kg/day) 269 538    A detailed description of the proposed wastewater treatment system, including preliminary layout  drawings is provided in Appendix B.      HEJV Glace Bay Wastewater System Pre‐Design Summary Report 8 The associated Environmental Risk Assessment Report, which outlines effluent criteria for the  proposed wastewater treatment facility for Glace Bay is provided in Appendix C.    4.2 Wastewater Treatment Facility Land Acquisition Requirements  Construction of the proposed wastewater treatment facility will require property acquisitions as  shown in the table below.    Table 4 ‐ WWTP Land Acquisition Requirements  PID# Property  Owner  Assessed  Value Size Required  Purchase  Entire Lot  (Y/N)  15408867 Hopkins H Ltd. $130,300 4698 m2 N  15524473 PWGSC $5,900 1294 m2 N  15859796 David and Ann  MacKenzie $11,700 1006 m2 Y  15833007 Marilyn Gillard No info 1022 m2 Y  15395221 Marilyn Gillard $9,700 2690 m2 Y    4.3 Wastewater Treatment Facility Site Geotechnical Investigations  A desktop geotechnical assessment was initially completed which included a review of the subsurface  soil conditions at the proposed site for the Glace Bay Wastewater Treatment Facility.  In general, the  review involved a field visit to the site to observe the general conditions and a desktop review of  available documents with the intent of commenting on the following issues:   site topography;   geology (surficial ground cover, probable overburden soil and bedrock type);   geotechnical problems and parameters;   previous land use (review of aerial photographs);   underground/surface mining activities; and   proposed supplemental ground investigation methods (test pits and/or boreholes)    The following geotechnical issues were noted at the site:  1. There is evidence of the erodibility of subsurface soils and bedrock exposure along the Atlantic  coastline.  2. The area under the proposed construction site was undermined due to historical coal mining  activities and there is a potential for undocumented bootleg pits/mines in the area.  3. There is the potential for a layer of limestone to be present underlying the surficial ground  and alternating layers of bedrock below the site.  Limestone is water soluble and has the  potential to develop karsts voids (sinkholes).  4. The presence of uncontrolled fills on the site due to historical activity.     The review recommended an intrusive borehole program on the site to further define the subsurface  conditions.    Next, an intrusive geotechnical program was completed which included advancement of six boreholes  covering to potential sites. Voids were encountered on the site situated north of Lower North Street  which was classified as being moderate to high risk for subsidence. No voids were encountered on the  site situated south of Lower North Street which was classified as being low to moderate risk. The  report included the following recommendations:    HEJV Glace Bay Wastewater System Pre‐Design Summary Report 9 1. The presence of mine workings below the subject property gives rise to the potential for  future subsidence, which could impact structures resulting in significant settlements over  time.  2. The presence of uncontrolled fill within the footprint of the new facilities should be  excavated and replaced with compacted engineered fill. Since the history of development is  unknown, fill may be present to greater depths than was encountered at the borehole  locations. Careful inspection of the base of the excavations and proof rolling with  appropriately sized equipment will be important to confirm the suitability of the bearing  material. The native glacial till materials beneath the fill should provide a suitable bearing  stratum.  3. Groundwater and surficial water control (north side of Lower North Street) should be  planned for during construction to avoid softening of the fill and native glacial till soils.  Similarly, protection of exposed sub‐grade and compacted fill surfaces against freezing and  thawing should be planned for.    Following the intrusive program, a rock mechanics evaluation, including additional intrusive  investigation, was conducted to determine whether the rock layers between the proposed WWTP  and existing voids could effectively bridge the weight of the WWTP structures, such that the level of  risk to develop the site would be reduced. This work included advancement of four boreholes. The  rock mechanics analysis resulted in a lower characterisation of the level of subsidence risk for each  of the prospective sites as compared to previous assessments. For Site #1 the report considered the  site to carry a very low risk, while Site #2 was denoted as low risk.    A copy of the Glace Bay WWTP site geotechnical summary report is provided in Appendix D.    4.4 Wastewater Treatment Facility Site Environmental Site Assessment    Harbour Engineering Joint Venture conducted a Phase I Environmental Site Assessment (ESA) on  eight properties denoted by Parcel Identification Designation Numbers (PID Nos.): 15393606,  15524481, 15654882, 15821119, 15395221, 15833007, 15864085 and 15408867 located in Glace  Bay, Nova Scotia. This Phase I Environmental Site Assessment (ESA) was conducted in accordance  with the guidelines and principles established by the Canadian Standard Association (CSA) Standard  Z768‐01 for Phase I ESAs CSA, 2001 (updated April 2003 and reaffirmed in 2016) and included a  records review, site visit, interviews with knowledgeable persons and reporting of the findings.    The following is a summary of the findings and potential sources of environmental contamination  identified during the Phase I ESA conducted at the site and the associated recommendations:   Buildings associated with fish plant operations (Hopkins H. Ltd.) are located on the south  portion of the site (i.e., PID No. 15408867). Available fire insurance plans show a petroleum  storage tank historically located on this portion of the site. The fish plant building interiors  and the immediately surrounding grounds of these buildings were not accessible at the time  of the site visit. Current petroleum storage on this portion of the site is unknown. Further,  the exact use of these fish plant buildings is also unknown. As these on‐site buildings are  located down gradient of the proposed WWTP and lift station locations, and as the  anticipated groundwater flow direction is expected to be easterly toward Glace Bay  Harbour, these buildings are unlikely to represent an environmental concern relative to the  proposed locations of the WWTP and lift station.   Findings of a Nova Scotia Environment (NSE) environmental registry search identified a  contaminated sites complaint file for 57, 59, 61 and 63 Oceancrest Drive (located    HEJV Glace Bay Wastewater System Pre‐Design Summary Report 10 immediately west of the site). These records, which were subject to the Freedom of  Information and Protection of Privacy (FOIPOP) Act, were subsequently requested. Findings  of the FOIPOP Act request indicate that the records were not available and that the file was  destroyed as per the NSE retention schedule. Therefore, the contents and nature of the  contaminated sites complaint are unknown. Although located immediately adjacent to the  site (i.e., immediately west of PID No. 15393606), these properties are approximately 200  meters (m) and 325 m northwest of the proposed WWTP and lift station locations,  respectively. Further, as the groundwater flow direction is anticipated to be easterly, the  potential for impacts to the actual proposed WWTP and lift station locations within the site  from 57, 59, 61 and 63 Oceancrest Drive are considered to be low.   Based on the age of the fish plant buildings located on the southeast portion of the site (i.e.,  PID No. 15408867), asbestos containing materials (ACM) may be present on‐site. Testing  would be required to confirm/refute the presence of ACM. It is noted that an asbestos  survey was not conducted as part of this ESA. Further, building interiors were not accessible  at the time of the site visit. Demolition practices associated with former on‐site buildings,  which may have contained ACM, are unknown.   A pad‐mounted transformer was observed on the west portion of the site (i.e., PID No.  15654882) adjacent to the Bay Plex Building. It is unknown if this transformer contains  polychlorinated biphenyls (PCBs). The transformer was observed to be in good condition  and situated on a concrete pad. No evidence of leakage or staining was observed.   An aboveground storage tank (AST) was observed on the west portion of the site (i.e., on  PID No. 15654882) in association with the Bay Plex Building. The AST was observed to be in  fair condition with some surface rusting apparent. The tank was located within a fenced  enclosure. The tank tag was not visible. Although not observed, petroleum storage tanks are  suspected on the southeast portion of the site (i.e., on PID No. 15408867) in association  with the on‐site fish plant buildings. Historical heating sources and practices associated with  former on‐site buildings are unknown. Further assessment would be required to assess if  former or current petroleum storage on‐site has resulted in an environmental concern for  the site.   Based on the age of the fish plant buildings located on the southeast portion of the site (i.e.,  PID No. 15408867), lead‐containing paint and/or solder may be present. Testing would be  required to confirm/refute the presence of lead. Precautionary measures should be taken  for individuals considered sensitive to lead if paint is peeling or in poor condition. Paint with  elevated lead concentrations, which is in poor condition should be removed using a  qualified lead abatement contractor. Precaution should be exercised during renovations  that disturb lead‐containing surfaces to minimize exposures. Demolition practices  associated with former on‐site buildings, which may have had lead‐containing paint and/or  solder, are unknown.   Mercury containing equipment may be present within the on‐site buildings, the interiors of  which were not accessible at the time of the site visit. Further, based on the age of the fish  plant buildings, located on the southeast portion of the site (i.e., PID No. 15408867),  mercury containing paints may be present. Disposal of mercury containing paints or  equipment, if found on‐site, should be in accordance with Provincial regulations. Demolition  practices associated with former on‐site buildings, which may have had mercury‐containing  paint and/or equipment, are unknown.   The on‐site building interiors were inaccessible at the time of the site visit; however, based  on the nature of on‐site building use (i.e., fish plant and rink), ozone depleting substances  (ODS) equipment is expected to be present on‐site. Maintenance to units containing ODS    HEJV Glace Bay Wastewater System Pre‐Design Summary Report 11 should be conducted using licensed contractors. Refrigerant gases are required to be  drained and recovered by a licensed contractor prior to disposal.   The on‐site building interiors were inaccessible at the time of the site visit. Due to the age of  the on‐site fish plant buildings, located on the southeast portion of the site (i.e., PID No.  15408867), there is potential that urea formaldehyde foam insulation (UFFI) may be  present. If found on‐site, UFFI should be removed as per provincial regulations.   Potential sources of magnetic fields observed during the site visit include a communication  tower located west and south of the site.   Miscellaneous debris, including household appliances, metal, plastic, wood, and rubber,  were observed across the site. Debris should be removed to a licenced disposal facility.   Portions of the site (i.e., PID Nos. 15393606, 15833007, 15395221 and 15821119) were  observed to be in‐filled. Concrete, asphalt, rubber, wood, plastic and metal debris was  observed within the in‐filled areas of the site. Seven fill piles were observed on the east  portion of the site (i.e., on PID No. 15408867). A gravel fill pile was observed on the  southwest portion of the site (i.e., on PID No. 15654882) in the gravel parking area of the  Bay Plex. This fill pile may be associated with snow removal activities. Sampling would be  require to confirm if impacts are present on‐site from the observed fill materials.   As noted above, the interior of the on‐site Bay Plex building was not accessible at the time  of the site visit. Based on available public information, the Bay Plex building reportedly  requires mould abatement and remediation prior to planned renovation and upgrades to  the facility.   Findings of the Environment and Climate Change Canada search request were pending at  the time the report was issued.    A copy of the Glace Bay WWTP site environmental site assessment is provided in Appendix F.                                                    HEJV Glace Bay Wastewater System Pre‐Design Summary Report 12   CHAPTER 5  WASTEWATER SYSTEM ARCHAEOLOGICAL  RESOURCES IMPACT ASSESSMENT    5.1 Archaeological Resources Impact Assessment  In October 2018, Davis MacIntyre & Associates Limited conducted a phase I archaeological resource  impact assessment at sites of proposed new wastewater infrastructure for the Glace Bay Wastewater  System.  The assessment included a historic background study and reconnaissance in order to  determine the potential for archaeological resources in the impact area and to provide  recommendations for further mitigation, if necessary.    The historic background study indicates that the coastal region of Glace Bay was occupied and  frequented in the mid‐18th century by the English and French, who took advantage of the lucrative  mines in the area. It is known that Mi’kmaw peoples were settled at nearby Mira and likely at Lingan  as well, when European settlers first arrived. These coves were suitable for hunting and fishing and  were well sheltered from the north Atlantic winds. The headlands between these areas, however, are  open, barren and exposed and boggy in many areas, making it an unsuitable place to live out of  wigwams. It is known, however, that they traded and interacted frequently with European settlers  along this coast so their presence does not go unnoticed, though it is unlikely that their presence  would have left an archaeological signature in the study area itself.    Much of the study area has been previously impacted by infrastructure development and housing.  The most significant potential archaeological resource near the study area is that of Fort William,  though it is believed to lie outside the study area at the end of Eleventh Street and, therefore, is not  likely to be impacted if remains of the fort do, indeed, still exist.    Therefore, no further active archaeological mitigation is recommended for the study area. However,  in the unlikely event that any archaeological resources are encountered at any time during ground  disturbance, it is required that all activity cease and the Coordinator of Special Places (902‐424‐6475)  be contacted immediately regarding a suitable method of mitigation.  Furthermore, in the event that  development plans change so that areas not evaluated as part of this assessment will be impacted, it  is recommended that those areas be assessed by a qualified archaeologist.      HEJV Glace Bay Wastewater System Pre‐Design Summary Report 13 Finally, it is recommended that, if available, a qualified palaeontologist or geologist be contracted to  examine any bedrock exposed during the project excavation, and to determine the need for any  further paleontological monitoring.     A copy of the detailed Glace Bay Wastewater System Archaeological Resources Impact Assessment  Report is provided in Appendix E.  It should be noted that this report was registered with the Nova  Scotia Department of Communities, Culture and Heritage in April 2019.                                                                               HEJV Glace Bay Wastewater System Pre‐Design Summary Report 14   CHAPTER 6  WASTEWATER INFRASTRUCTURE COSTS    6.1 Wastewater Interception & Treatment Capital Costs  An opinion of probable capital cost for the recommended wastewater interception and treatment  system for Glace Bay is presented in the table below.    Table 5 – Glace Bay Wastewater Interception & Treatment System Capital Costs  Project Component Capital Cost (Excluding  Taxes)  Wastewater Interception System $6,964,275  Wastewater Interception System Land Acquisition $207,600  Subtotal 1: $7,171,875  Construction Contingency (25%): $1,741,000  Engineering (10%): $696,000  Total Wastewater Interception: $9,608,875  Wastewater Treatment Facility $28,581,000  Wastewater Treatment Facility Land Acquisition $200,000  Subtotal 2: $28,781,000  Construction Contingency (25%): $7,145,250  Engineering (12%): $3,430,000  Total Wastewater Treatment: $39,356,250  Total Interception & Treatment System: $48,965,125      HEJV Glace Bay Wastewater System Pre‐Design Summary Report 15 6.2 Wastewater Interception & Treatment Annual Operating Costs  An opinion of probable annual operating costs for the recommended wastewater interception and  treatment system for Glace Bay is presented in the table below.    Table 6 – Glace Bay Wastewater Interception & Treatment System Operating Costs  Project Component Annual Operating Cost  (Excluding Taxes)  Wastewater Interception System  General Linear Maintenance Cost $1,000  General  Lift Station Maintenance Cost $15,500  Employee O&M Cost $14,500  Electrical Operational Cost $52,000  Backup Generator O&M Cost $9,500  Total Wastewater Interception Annual Operating Costs: $92,500  Wastewater Treatment Facility  Equipment Maintenance Cost $47,000  Chemicals $33,000  Staffing  $500,000  Power  $270,000  Sludge Disposal $220,000  Total Wastewater Treatment Annual Operating Costs: $1,070,000  Total Interception & Treatment System Annual Operating Costs: $1,162,500    6.3 Annual Capital Replacement Fund Contribution Costs  The CBRM wishes to create a Capital Replacement Fund to which annual contributions would be made  to prepare for replacement of the wastewater assets at the end of their useful life.  The calculation of  annual contributions to this fund involves consideration of such factors as the type of asset, the asset  value, the expected useful life of the asset, and the corresponding annual depreciation rate for the  asset.  In consideration of these factors, the table below provides an estimate of the annual  contributions to a capital replacement fund for the proposed new wastewater interception and  treatment system infrastructure.  This calculation also adds the same contingency factors used in the  calculation of the Opinion of Probable Capital Cost, to provide an allowance for changes during the  design and construction period.  The actual Annual Capital Replacement Fund Contributions will be    HEJV Glace Bay Wastewater System Pre‐Design Summary Report 16 calculated based on the final constructed asset value, the type of asset, the expected useful life of the  asset, and the corresponding annual depreciation rate for the asset type.  Please note that costs  shown below do not account for annual inflation and do not include applicable taxes.    Table 7 – Glace Bay Wastewater Interception & Treatment System Capital Replacement Fund  Costs  Description of Asset Asset Value  Asset Useful  Life  Expectancy  (Years)  Annual  Depreciation  Rate (%)  Annual Capital  Replacement  Fund Contribution  Wastewater Interception System  Linear Assets (Piping,  Manholes and Other) $4,858,475 75 1.3% $63,160  Pump Station Structures  (Concrete Chambers, etc.) $1,158,190 50 2.0% $23,164  Pump Station Equipment  (Mechanical / Electrical) $947,610 20 5.0% $47,381  Subtotal $6,964,275 ‐  ‐ $133,704  Construction Contingency (Subtotal x 25%): $33,426  Engineering (Subtotal x 10%): $13,370  Wastewater Interception System Annual Capital Replacement Fund  Contribution Costs: $180,500  Wastewater Treatment System  Treatment Linear Assets  (Yard Piping, Manholes and  Other)  $3,080,366 75 1.3% $41,000  Treatment Structures  (Concrete Chambers, etc.) $11,461,000 50 2.0% $229,000  Treatment Equipment  (Mechanical / Electrical,  etc.)  $14,039,634 20 5.0% $702,000  Subtotal $28,581,000 ‐  ‐ $972,000  Construction Contingency (Subtotal x 25%): $243,000  Engineering (Subtotal x 12%): $117,000  Wastewater Treatment System Annual Capital Replacement Fund Contribution  Costs: $1,332,000  Total Wastewater Interception & Treatment Annual Capital Replacement  Fund Contribution Costs: $1,512,500    HEJV Glace Bay Wastewater System Pre‐Design Summary Report 17 6.4 Existing Wastewater Collection System Upgrades / Assessment Costs  The estimated costs of upgrades and assessments related to the existing wastewater collection  system as described in Chapter 3 are shown in the table below.    Table 8 ‐ Existing Wastewater Collection System Upgrades / Assessment Costs  Item Cost  Sewage Pump Station Upgrades (for 2 stations)    Pump Station Infrastructure (controls, pumps, etc.)  $652,000  Backup Power Generation (only required for 4 stations) $233,000  Engineering (12%) $106,000  Contingency (25%) $222,000  Total $1,213,000  Collection System Asset Condition Assessment Program    Condition Assessment of Manholes based  on 1482 MHs $275,000  Condition Assessment of Sewer Mains based on 25.2 kms of  infrastructure $260,000  Total $535,000  Sewer Separation Measures    Separation based on 126 kms of sewer @ $45,000/km $5,670,000  Engineering (10%) $567,000  Contingency (25%) $1,418,000  Total $7,655,000  CSO Station Outfall Upgrades (for 5 existing outfalls)    Extension incl. drop manhole ($248,000 per connection) $1,240,000  Engineering (12%) $149,000  Contingency (25%) $310,000  Total $1,699,000  Total Estimated Existing Collection System Upgrade and  Assessment Costs $11,102,000                                            HEJV Glace Bay Wastewater System Pre‐Design Summary Report 18   CHAPTER 7  PROJECT IMPLEMENTATION TIMELINE    7.1 Implementation Schedule  Figure 1 provides a tentative schedule for implementation of wastewater system upgrades for Glace  Bay, including proposed wastewater interception and treatment infrastructure as well as upgrades to  and assessment of the existing collection system.    For the High‐risk systems such as Glace Bay, it is expected that implementation of proposed upgrades  will commence in 2020.  However, the project implementation schedule has been tentatively outlined  on a generalized basis (Year 1, Year 2, etc.) rather than with specified deadlines.    The schedule has been structured such that asset condition assessments and investigations to locate  sources of extraneous water entering the system would be carried out in Year 1.  Design/construction  of recommended upgrades will also start in Year 1.  Detailed design of proposed interception and  treatment infrastructure, including additional flow metering, will be conducted in Years 2 and 3, with  construction occurring in Years 3 through 5.  Project closeout would occur in Years 5 and 6.  This  results in a tentative implementation schedule that covers a six (6) year timeline.    It should be noted that, although the process of pursuing the acquisition of properties and easements  required to construct the proposed wastewater upgrades as outlined in previous sections is not shown  on the Project Implementation Schedule, it is recommended that the CBRM pursue these acquisitions  prior to the commencement of detailed design.            No. Project Component Period: Jan - Mar Apr - Jun Jul - Sept Oct - Dec Jan - Mar Apr - Jun Jul - Sept Oct - Dec Jan - Mar Apr - Jun Jul - Sept Oct - Dec Jan - Mar Apr - Jun Jul - Sept Oct - Dec Schedule: Cash Flow: Schedule: Cash Flow: Schedule: Cash Flow: Schedule: Cash Flow:$40,000 Schedule: Cash Flow: Schedule: Cash Flow: Schedule: Cash Flow: Schedule: Cash Flow: Schedule: Cash Flow: Schedule: Cash Flow: Schedule: Cash Flow: $9,330,475 $1,372,000 $37,984,250 $260,000 $164,400 $5,119,100 $75,000 $278,400 Figure 1 - Project Implementation Schedule Glace Bay Wastewater System Year:1 2 3 4 1 Carry out asset condition assessment of all manholes in the existing collection system 2 Carry out video inspection and assessment of selected sanitary sewers in the existing collection system $275,000 $5,119,100 3 Carry out Sewer Separation Investigation Study to locate sources of extraneous water entering the collection system $75,000 4 Carry out asset condition assessment of all sewage pumping stations in the existing collection system 5 Carry out detailed design for recommended upgrades to the existing collection system based on previous assessments $164,400 6 Carry out tendering, construction and commissioning for recommended upgrades to the existing collection system 7 Carry out flow metering and wastewater testing in the existing collection system to confirm wastewater flows and organic loading 8 Carry out detailed design for proposed wastewater interception infrastructure 9 Carry out tendering, construction, commissioning and initial systems operations for proposed wastewater interception infrastructure 10 Carry out detailed design for proposed wastewater treatment infrastructure 11 Carry out tendering, construction, commissioning and initial systems operations for proposed wastewater treatment infrastructure HEJV Glace Bay Wastewater System Pre‐Design Summary Report Appendices APPENDIX A  Glace Bay Collection System Pre‐Design Brief  1.1.1.1 187116 ●Draft Brief ●April 2020 Environmental Risk Assessments & Preliminary Design of Seven Future Wastewater Treatment Systems in CBRM Glace Bay Collection System Pre-Design Brief Prepared by:Prepared for: Final March 2020 Re-Issued Glace Bay Collection System Draft Pre- Design Brief June 30, 2020 James Sheppard, P.Eng. Darrin McLean, MBA, FEC., P.Eng. Darrin McLean, MBA, FEC., P.Eng. Re-Issued Glace Bay Collection System Draft Pre- Design Brief May 9, 2019 James Sheppard, P.Eng. Darrin McLean, MBA, FEC., P.Eng. Darrin McLean, MBA, FEC., P.Eng. Glace Bay Collection System Draft Pre-Design Brief March 21, 2019 James Sheppard, P.Eng. Darrin McLean, MBA, FEC., P.Eng. Darrin McLean, MBA, FEC., P.Eng. Glace Bay Collection System Draft Pre- Design Brief September 7, 2018 James Sheppard, P.Eng. Bob King, P.Eng.Darrin McLean, MBA, FEC., P.Eng. Issue or Revision Date Prepared By:Reviewed By:Issued By: This document was prepared for the party indicated herein. The material and information in the document reflects the opinion and best judgment of Harbour Engineering Joint Venture (HEJV) based on the information available at the time of preparation. Any use of this document or reliance on its content by third parties is the responsibility of the third party. HEJV accepts no responsibility for any damages suffered as a result of third party use of this document. March 27, 2020 275 Charlotte Street Sydney, Nova Scotia Canada B1P 1C6 Tel: 902-562-9880 Fax: 902-562-9890 _________________ GLACE BAY COLLECTION SYSTEM PRE DESIGN BRIEF REV2.DOCX/sj ED: 29/06/2020 16:16:00/PD: 29/06/2020 16:18:00 June 30, 2020 Matthew D. Viva, P.Eng. Manager of Wastewater Operations Cape Breton Regional Municipality 320 Esplanade, Sydney, NS B1P 7B9 Dear Mr. Viva: RE: Environmental Risk Assessments & Preliminary Design of Seven Future Wastewater Treatment Systems in CBRM – Glace Bay Collection System Pre-Design Brief Harbour Engineering Joint Venture (HEJV) is pleased to submit the following Collection System Pre-Design Brief for your review and comment. This Brief summarizes the interceptors, local sewers and pumping stations that will form the proposed wastewater collection for the Town of Glace Bay. The interceptor system will convey sewer to the future Wastewater Treatment Plant that will be located near the breakwater at the mouth of Glace Bay Harbour. The Brief also outlines the design requirements and standards for the required infrastructure components. We look forward to your comments on this document. Yours very truly, Harbour Engineering Joint Venture Prepared by: Reviewed by: James Sheppard, P.Eng. Darrin McLean, MBA, FEC, P.Eng. Civil Infrastructure Engineer Senior Civil Engineer Direct: 902-562-9880 Direct: 902-539-1330 E-Mail:jsheppard@dillon.ca E-Mail:dmclean@cbcl.ca Project No: 187116 (Dillon) and 182402.00 (CBCL) March 27, 2020 Harbour Engineering Joint Venture Glace Bay Collection System Pre-Design Brief i Contents CHAPTER 1 Introduction & Background ........................................................................................... 1 1.1 Introduction ................................................................................................................... 1 1.2 System Background ........................................................................................................ 1 1.2.1 General ............................................................................................................... 1 1.2.2 GB#1 ................................................................................................................... 2 1.2.3 GB#2 ................................................................................................................... 2 1.2.4 GB#3 ................................................................................................................... 2 1.2.5 GB#4 ................................................................................................................... 3 1.2.6 GB#5 ................................................................................................................... 3 1.2.7 GB#6 ................................................................................................................... 3 1.2.8 GB#7 ................................................................................................................... 3 1.2.9 GB#8 ................................................................................................................... 3 CHAPTER 2 Design Parameters & Standards .................................................................................... 5 2.1 General Overview ........................................................................................................... 5 2.2 Design Standards ............................................................................................................ 5 CHAPTER 3 Wastewater Interceptor Pre- Design ............................................................................. 7 3.1 General Overview ........................................................................................................... 7 3.2 Design Flows .................................................................................................................. 7 3.2.1 Theoretical Flow ................................................................................................. 7 3.2.2 Initial Observed Flows ......................................................................................... 8 3.2.3 Additional Observed Flows ............................................................................... 10 3.2.4 Flow Conclusions & Recommendations ............................................................. 10 3.3 Interceptor System ....................................................................................................... 12 3.3.1 Option Analysis ................................................................................................. 13 3.3.2 Interceptor System Breakdown ......................................................................... 14 3.4 Combined Sewer Overflows.......................................................................................... 14 3.4.1 CSO-1................................................................................................................ 15 3.4.2 CSO-2................................................................................................................ 15 3.4.3 CSO-3................................................................................................................ 15 3.4.4 CSO-4................................................................................................................ 15 3.4.5 CSO-5................................................................................................................ 15 3.4.6 CSO-6................................................................................................................ 16 Harbour Engineering Joint Venture Glace Bay Collection System Pre-Design Brief ii 3.5 Pumping Stations ......................................................................................................... 16 3.5.1 Pumping Design Capacity .................................................................................. 16 3.5.2 Safety Features ................................................................................................. 17 3.5.3 Wetwell ............................................................................................................ 17 3.5.4 Station Piping.................................................................................................... 18 3.5.5 Equipment Access ............................................................................................. 18 3.5.6 Emergency Power ............................................................................................. 18 3.5.7 Controls ............................................................................................................ 19 3.5.8 Security ............................................................................................................ 19 CHAPTER 4 Existing Collection System Upgrades ........................................................................... 20 4.1 Sewage Pump Station Upgrades ................................................................................... 20 4.2 Asset Condition Assessment Program ........................................................................... 20 4.3 Sewer Separation Measures ......................................................................................... 20 4.4 CSO Station Outfall Upgrades ....................................................................................... 20 CHAPTER 5 Forcemain Selection and Design .................................................................................. 21 5.1 Pipe Material ................................................................................................................ 21 CHAPTER 6 Land and Easement Requirements .............................................................................. 22 6.1 Pump Station Sites ....................................................................................................... 22 6.2 WWTP Site ................................................................................................................... 23 6.3 Linear Infrastructure ..................................................................................................... 23 CHAPTER 7 Site Specific Constraints ............................................................................................... 24 7.1 Construction Constraints .............................................................................................. 24 7.2 Environmental Constraints ........................................................................................... 24 7.3 Access Requirements.................................................................................................... 25 7.4 Power Supply Requirements ......................................................................................... 25 CHAPTER 8 Opinion of Probable Costs ........................................................................................... 26 8.1 Opinion of Probable Costs – New Wastewater Collection Infrastructure ....................... 26 8.2 Opinion of Operational Costs ........................................................................................ 26 8.3 Opinion of Existing Collection System Upgrades and Assessment Costs ........................ 27 8.4 Opinion of Annual Capital Replacement Fund Contributions ......................................... 28 CHAPTER 9 References ................................................................................................................... 30 Harbour Engineering Joint Venture Glace Bay Collection System Pre-Design Brief iii Tables Table 2-1 Sewer Design Criteria ............................................................................................... 5 Table 2-2 Pumping Station Design Criteria ............................................................................... 6 Table 3-1 Theoretical Flow Summary ....................................................................................... 8 Table 3-2 Flow Monitoring Location Summary ......................................................................... 9 Table 3-3 Average Dry Weather and Design Flows Results ....................................................... 9 Table 3-4 Flow Monitoring Location Summary ....................................................................... 10 Table 3-5 Additional Average Dry Weather and Design Flows Results..................................... 10 Table 3-6 Average Dry Weather Summary for Proposed Pump Stations ................................ 11 Table 3-7 Recommended Interception Design Flow Rates at Pump Stations ........................... 11 Table 3-8 Observed Flows during Rainfall Events.................................................................... 11 Table 3-9 Inferred Flows during Rainfall Events ...................................................................... 12 Table 3-10 Pump Station Summary .......................................................................................... 17 Table 3-11 Wetwell Sizing Summary ........................................................................................ 18 Table 5-1 Comparison of Pipe Materials ................................................................................. 21 Table 6-1 Pump Station Land Acquisition Details .................................................................... 22 Table 6-2 WWTP Land Acquisition Details .............................................................................. 23 Table 6-3 Linear Infrastructure Land Acquisition Details ......................................................... 23 Table 7-1 Power Supply Details .............................................................................................. 25 Table 8-1 Annual Operations and Maintenance Costs ............................................................ 26 Table 8-2 Estimated Existing Collection System Upgrade and Assessment Costs..................... 28 Table 8-3 Estimated Annual Capital Replacement Fund Contributions.................................... 29 Appendices Appendix A –Drawings Appendix B – Flow Master Reports Appendix C – Opinion of Probable Design & Construction Costs Harbour Engineering Joint Venture Glace Bay Collection System Pre-Design Brief 1 CHAPTER 1 INTRODUCTION &BACKGROUND 1.1 Introduction Harbour Engineering Joint Venture (HEJV) has been engaged by the Cape Breton Regional Municipality (CBRM) to carry out Environmental Risk Assessments (ERAs) and Preliminary Design of seven future wastewater treatment Systems in the CBRM. The future wastewater collection and treatment systems will serve the communities of Glace Bay, Port Morien, North Sydney & Sydney Mines, New Waterford, New Victoria, Louisbourg and Donkin, which currently have no wastewater treatment facilities. The preliminary design of the wastewater interceptor systems are being completed as an addition to the existing wastewater systems in each community. In general, the proposed interceptor sewers will convey wastewater from the existing outfalls to the proposed Wastewater Treatment Plant (WWTP) in each location. The complexity of each system is directly related to the number of outfalls, geographic size and topography of each community. In general, the scope of work on the interceptor system generally includes the following: ®Determination of design wastewater flows; ®Making recommendations on the best sites for proposed wastewater treatment facilities; ®Development of the most appropriate and cost-effective configurations for wastewater interception; ®Estimation of capital and operations costs for recommended wastewater components; This document relates to the interceptors, local sewers, combined sewer overflows and pumping stations that will form the wastewater collection system for the proposed WWTP in the community of Glace Bay. This brief outlines the design requirements and standards for the required infrastructure components. Information regarding the preliminary design of the proposed wastewater treatment facility for Glace Bay will be provided in a separate Design Brief. 1.2 System Background 1.2.1 General There are 10 wastewater sewersheds in the community of Glace Bay. Two of these sewersheds have been previously re-directed to the Dominion/Bridgeport WWTP. The remaining sewersheds still actively discharge raw sewage to the Atlantic Ocean at 8 outfall locations. These outfalls are located at or near: Harbour Engineering Joint Venture Glace Bay Collection System Pre-Design Brief 2 ®GB#1 - Khalsa Drive; ®GB#2 - Shea’s Lane; ®GB#3 - Centre Avenue; ®GB#4 - East Avenue (2 outfalls); ®GB#5 - Second Street; ®GB#6 – Upper Water Street; ®GB#7 – Upper Water Street; and, ®GB#8 - Glace Bay Harbour. An additional outfall is located at the northern end of Second Street. This outfall receives discharge from one home. This home would be best served in the future by a low pressure sewer system that would convey discharge towards the new interceptor sewer. Approximately 85% of the flow in Glace Bay is already diverted to GB#8, making this general area an ideal location for the future WWTP site. The Glace Bay wastewater system features six pump stations and nine known overflows. 1.2.2 GB#1 The GB#1 sewershed is made up of a gravity network that services a section of Wallace Road, One B Road, a section of Connaught Avenue and Denver Street. The outfall for the sewershed is located between One B Road and Wallace Road, within a natural ravine. The outfall is 375mm in diameter, but reduces to a 300mm diameter prior to the end of the outfall. The outfall is located in a steep bank, above the shoreline. The outfall is complete with a bend at the end to direct flow down the bank. The combination of the smaller diameter pipe and bend do cause surcharging issues upstream of the outfall. There are no known overflows in the GB#1 sewershed. 1.2.3 GB#2 The GB#2 sewershed is serviced by a 300mm diameter outfall located 120m beyond the end of Shea’s Lane. The outfall is located within a steep bank, above the shoreline. The sewershed area includes a portion of Connaught Avenue, Churchill Street, 9th Street, 10th Street, 11th Street and Reservoir Avenue. While the majority of the sewershed is serviced by a gravity sewer, there is one pump station located on Railway Street. The station conveys sewage from the eastern end of Railway Street, 280m to the west, to a high point on the street. The station has an emergency overflow that is directed toward the pond to the south east of Railway Street. 1.2.4 GB#3 A small area including the northern end of 10th and 11th Street make up the sewershed for GB#3. The sewershed is serviced by a gravity network that outfalls at the western end of Centre Avenue. The outfall is 250mm in diameter and is located within the existing bank, above the shoreline. There are no known overflows in the GB#3 sewershed. Harbour Engineering Joint Venture Glace Bay Collection System Pre-Design Brief 3 1.2.5 GB#4 GB#4 is located at the northern end of East Avenue. The sewershed is made up of a portion of the Hub and New Aberdeen, specifically bounded by 1st and 7th Street (north to south) and the abandoned railway to the west. The area is serviced by a gravity sewer that directs flow to the intersection of Eighth Street and East Avenue. Two pipes actively discharge sewer at the GB#4 location (denoted in this report as 4a and 4b). GB#4a is a 200mm diameter outfall while GB#4b is a 450mm diameter outfall. There are no known overflows in the GB#4 sewershed. 1.2.6 GB#5 A small area bounded by CBRM PID 15437718 to the west, 4th Street to the north and 1st Street to the south makes up the sewershed for GB#5. The sewershed is serviced by a gravity network that outfalls approximately 180m north east of the end of 1st Street. The outfall is 300mm in diameter and is located within the existing bank, above the shoreline. 1.2.7 GB#6 The GB#6 sewershed accounts for the majority of the Table Head, Sterling and Beacon Street areas. The area is serviced by a gravity network that conveys to a 375mm diameter outfall, located at the end of Roost Street. The outfall does have one issue. The location is heavily impacted by wave action and erosion causing several sections of the pipe to be lost. 1.2.8 GB#7 GB#7 is located next to GB#6. The outfall services a gravity network that picks up flow from North Street, Ocean Avenue and adjacent side streets. The outfall is 400mm in diameter and is located within the existing bank near the end of Roost Street. 1.2.9 GB#8 The final active outfall in the existing Glace Bay sewer system is GB#8. The outfall receives approximately 85% of the sanitary sewer flow generated in the Town of Glace Bay. The outfall is a 1400mm diameter, concrete encased polyethylene pipe that extends 85m beyond the top of the existing embankment on PID 15864085, near the mouth of Glace Bay Harbour. The sewer system employs a combination of gravity and pumped systems. There are 5 pump stations within the GB#8 sewershed. Locations and details for each station follow: ®Reserve Street – located 200m east of the Haulage Road intersection across the street from the Cadegan Brook Wetland o Recently upgraded; o Does not have backup power; o Has 4 emergency overflows located as follows: §From the lift station to adjacent mine workings, §At Reserve Street at the brook, §At Haulage Road, and §Adjacent to Wilson Road (in the woods), at MH 21 on Drawing 6 of the Reserve Mines Sewage Disposal System Drawings by C.A. Campbell and Associates dated 1974; Harbour Engineering Joint Venture Glace Bay Collection System Pre-Design Brief 4 o Included in CBRM’s SCADA network; o Large suction lift pump station; and, o Conveys flow to a high point on Reserve Street (near Turner Street). ®McLeods Road – located 130m north of the Dominion Street intersection o Above ground suction lift pump station; o To be upgraded in the 2018 construction season; o The upgrade will include backup power; o Has an emergency overflow; o Included in CBRM’s SCADA network; and o The station conveys flow to Dominion Street, 700m east of its location. ®Brookside Street- located across the street from the Sunset Drive intersection o Submersible pump station; o To be moved and upgraded as part of an intersection project in the near future; o Does not have backup power; o No known overflows; o Not included in the CBRM SCADA network; and o The station conveys to a manhole on Brookside Street, 50m to the east. ®Lake Road – located at the eastern end of Lake Road o Above ground suction pump station o To be upgraded during the 2018 construction season; o The upgrade will include backup power; o Has an overflow that is directed to a septic tank; o Included in the CBRM SCADA network; o A new forcemain will also be installed as part of the upgrade; and o The station conveys to a high point 900m westward on Lake Road. ®South Street – located at the eastern end of South Street. o Recently upgraded; o Submersible station; o Does not have backup power; o May have a flow meter installed within the next construction season and will be included in the CBRM SCADA network; and o The station conveys 550m upstream on South Street. Besides the aforementioned emergency overflows located at the lift station sites, there are 5 additional known overflows in the GB#8 sewershed. The additional overflow locations are as follows: ®Located on the cross-country sewer between Lorway Street and Dominion Street; ®2 overflows located at Renwick Brook; and ®An overflow that utilizes the former outfall at Water Street. Harbour Engineering Joint Venture Glace Bay Collection System Pre-Design Brief 5 CHAPTER 2 DESIGN PARAMETERS &STANDARDS 2.1 General Overview The development of an appropriate wastewater interceptor system for each of the communities is highly dependent upon the selection of appropriate design parameters. HEJV has reviewed applicable design standards and legislation and has developed the preliminary design of the collector sewers to meet and exceed these industry standards. 2.2 Design Standards The design of the interceptor system therefore has been based on the following reference documents and standards: ®Atlantic Canada Wastewater Guidelines Manual for Collection, Treatment, and Disposal (ACWGM) (Environment Canada, 2006); and ®Water Environment Federation: Manual of Practice FD-4, Design of Wastewater and Stormwater Pumping Stations. The key design criteria that have been established for this project are presented in Table 2-1 and Table 2-2. Table 2-1 Sewer Design Criteria Description Unit Design Criteria Source Comments Hydraulic Capacity l/s Location dependent HEJV Flow has been set utilizing 3xADWF. Material for forcemains PVC, HDPE or ductile iron pipe with the specified corrosion protection CBRM See discussion in Chapter 5 Minimum forcemain velocity m/s 0.6 ACWGM For self-cleansing purposes Forcemain minimum depth of cover m 1.8 ACWGM Subject to Interferences Material of gravity pipe PVC or Reinforced concrete CBRM See discussion in Chapter 5 Hydraulic design gravity Manning’s Formula ACWGM n = 0.013 Hydraulic design forcemain Hazen Williams Formula ACWGM C = 120 Maximum spacing between manholes m 120 for pipes up to and including 600 mm and 150 for pipes over 600 mm ACWGM Gravity pipe minimum design flow velocity m/s 0.6 ACWGM Harbour Engineering Joint Venture Glace Bay Collection System Pre-Design Brief 6 Description Unit Design Criteria Source Comments Gravity pipe maximum flow velocity m/s 4.5 ACWGM Pipe crossings separation mm 450 minimum Minimum separation must also meet Nova Scotia Environment (NSE) requirements. Horizontal pipe separation forcemain to watermain m 3.0 NSE Horizontal pipe separation gravity pipe to water main m 3.0 ACWGM Can be laid closer if the installation meets the criteria in Section 2.8.3.1 Gravity pipe minimum depth of cover m 1.5 HEJV Subject to Interferences Gravity pipe maximum depth of cover m 4.5 HEJV Subject to Interferences. Increased depth may be considered where warranted Table 2-2 provides a summary of the key design criteria for the Pumping Stations. Table 2-2 Pumping Station Design Criteria Description Unit Design Criteria Source Comments Pump cycle time 1 hour 5 < cycle <10 WEF/ ACWGM Number of pumps Minimum of two. Must be able to pump design flow with the largest pump out of service. ACWGM Three minimum for stations with flows greater than 52 l/s. Inlet sewer One maximum ACWGM Only a single sewer entry is permitted to the wetwell. Header pipe diameter mm 100 minimum ACWGM Solids handling mm 75 (minimum)ACWGM Smaller diameter permissible for macerator type pumps. Emergency power generation To be provided for firm capacity of the facility. ACWGM Can employ overflow options per 3.3.1. Option to run one pump if conditions of 3.3.5.1 are met. Pump station wetwell ventilation Air changes/ hour 30 (Wetwell) 12 (Valve Chamber) ACWGM Based on intermittent activation when operating in the wet well. Harbour Engineering Joint Venture Glace Bay Collection System Pre-Design Brief 7 CHAPTER 3 WASTEWATER INTERCEPTOR PRE-DESIGN 3.1 General Overview Drawings of the existing Glace Bay collection system were appended to the Base Information Summary Brief that was previously submitted by HEJV. The drawings were created using background data collected from various sources to depict the layout of the existing gravity and pressure pipe routing, pump stations and outfalls. The proposed wastewater interceptor system for Glace Bay will include 2,800 metres of gravity sewer interceptors to consolidate eight existing outfalls and redirect flow to the proposed Wastewater Treatment Plant (WWTP) site. A total of four sewage pump stations will be required to deliver wastewater to the new treatment facility, with the final, LS-GB4 being integrated into the proposed WWTP. Approximately 2,000 metres of new sanitary forcemain will be required. For this Pre-Design Brief, HEJV has compiled preliminary plan and profile drawings of the proposed linear infrastructure. Pump station, Combined Sewage Overflow (CSO), outfall and WWTP locations have also been illustrated on the drawings and are included in Appendix A. 3.2 Design Flows HEJV completed a review of the theoretical and observed sanitary flows for the future combined Glace Bay sewershed. The purpose of the assessment was to estimate average and design flows for the environmental risk assessment (ERA) and the preliminary design of the future WWTP and interception system. 3.2.1 Theoretical Flow Theoretical flow was calculated based on design factors contained in the ACWGM. To estimate population, the number of private dwellings were estimated then multiplied by an average household size. An average value of 2.2 persons per household was used based on the average household size found in the 2016 Statistics Canada information for Cape Breton. The number of apartments, nursing homes, townhouses, and other residential buildings were estimated and considered in the population estimate. Population estimates are shown in Table 3-1. Peak design flow was calculated using the following equation (1): ܳ(݀)=ܲݍܯ 86.4 +ܫܣ (1) Where: Harbour Engineering Joint Venture Glace Bay Collection System Pre-Design Brief 8 Q(d) = Peak domesƟc sewage flow (l/s) P = PopulaƟon (in thousands) q = Average daily per capita domesƟc flow (l/day per capita) M = Peaking factor (Harman Method) I = unit of extraneous flow (l/s) A = Subcatchment area (hectares) ACWGM recommends an average daily domestic sanitary flow of 340 l/day per person for private residential dwellings. The unit of extraneous flow was assumed to be approximately 0.21 l/s/ha based on typical ranges outlined in ACWGM. The peaking factor used in Equation 1 was determined using the Harman Formula (2) shown below: Harmon Formula ܯ =1+14 4+ܲ଴.ହ (2) The estimated average dry weather flow (ADWF) and peak design flows based on the ACWGM methods discussed above are presented in Table 3-1. Table 3-1 Theoretical Flow Summary Station Estimated Area (ha) Estimated Population1 ADWF2 (l/s)3x ADWF (l/s) Peak Design Flow3 (l/s) GB2 37 774 3.05 9.15 19.94 GB6 46 1188 4.68 14.04 27.67 GB7 13 303 1.19 3.57 7.83 May/ York 157 4433 17.45 52.35 92.02 Park 146 2900 11.41 34.23 71.30 Main 111 2206 8.68 26.04 55.04 1 2016 Cape Breton Census from StaƟsƟcs Canada 2Based on average daily sewer flows of 340 L/day/person (ACWGM 2006) 3EsƟmated using ACWGM equaƟon for peak domesƟc sewage flows (including extraneous flows and peaking factor) 3.2.2 Initial Observed Flows Data from six flow monitoring stations was utilized as part of an initial flow monitoring program, three of which (GB2, 6, and 7) were installed within sewersheds that correspond to the location of proposed pump stations LS-GB1, LS-GB2 and LS-GB3. The remaining three stations were deployed within the sewershed for LS-GB4, to be located within the proposed WWTP footprint. The dates of the deployments range as several of the stations were deployed during a previous CBCL sewer separation project. A summary of the flow meter deployment locations and monitoring duration is provided in Table 3-2. Harbour Engineering Joint Venture Glace Bay Collection System Pre-Design Brief 9 Table 3-2 Flow Monitoring Location Summary Station Street Name Northing Easting Monitoring Start-End Dates Days of Data GB2 GB-2 Shea's Lane 5120819.237 4618204.218 November 23 – December 21, 2017 29 GB6 GB-6 Upper North Street 5119796.697 4619453.604 November 29, 2017 – January 4, 2018 37 GB7 GB-7 Upper North Street 5119732.904 4619425.228 November 30, 2017 – January 4, 2018 36 May/ York May/York St 5117903.868 4618739.961 February 15 – April 12, 2018 57 Park Park St 5117522.681 4618750.109 March 6 – April 13, 2018 39 Main 525 Main St 5118664.029 4619497.118 February 16 – April 12, 2018 57 Analysis for observed dry weather flows were completed using the United States Environmental Protection Agency’s (EPA) Sanitary Sewer Overflow Analysis and Planning (SSOAP) toolbox. The SSOAP toolbox is a suite of computer software tools used for capacity analysis and condition assessments of sanitary sewer systems. This analysis was completed for all six monitoring stations. Flow and precipitation data were input into the SSOAP program, along with sewershed data for each of the metered areas. To determine average dry weather flow (ADWF), days that were influenced by rainfall were deleted. This was done in the SSOAP model by removing data from days that had any rain within the last 24 hours, more than 5 mm in the previous 48 hours, and more than 5 mm per day additional in the subsequent days (e.g. 10 mm in the last 3 days). The calculated ADWF estimates based on monitored flow data evaluated using the SSOAP program are presented in Table 3-3, along with average, 3xADWF and peak flow amounts from raw monitored data. Please note that the value of 3xADWF was recommended by UMA Engineering Limited as the minimum sewage flow rate that should be treated for Glace Bay in the report “Industrial Cape Breton Wastewater Characterization Program – Phase II” prepared in 1994. Table 3-3 Average Dry Weather and Design Flows Results Monitoring Station ADWF From SSOAP Model (l/s) 3x ADWF (l/s) Average Daily Observed Flow (l/s) Peak Daily Average Flow (l/s) GB2 7.5 22.5 9.45 40.75 GB6 5.5 16.5 10.00 59.76 GB7 1.7 5.1 2.87 13.58 May/ York 59.1 177.3 78.36 184.45 Park 43.1 129.3 47.65 61.62 Main 19.1 57.3 27.44 69.74 Harbour Engineering Joint Venture Glace Bay Collection System Pre-Design Brief 10 3.2.3 Additional Observed Flows After a review of the data in Table 3-3, HEJV concluded that for the May/York and Park Stations, that there may be a large volume of inflow getting into that portion of the existing Glace Bay collection system due to the witnessed elevated dry weather flows. HEJV proposed that a second flow monitoring event should be undertaken to re-monitor the two aforementioned stations during the summer months to provide a confirmation for ADWF calculations. As expected the ADWF values returned during the summer months were significantly lower than the ADWF figures determined from the spring event. Location summary and design flow data for the summer flow monitoring session is presented below in Tables 3-4 and 3-5 below. Table 3-4 Flow Monitoring Location Summary Station Street Name Northing Easting Monitoring Start-End Dates Days of Data May/ York May/York St 5117903.868 4618739.961 July 27 – August 31, 2018 35 Park Park St 5117522.681 4618750.109 August 6 – September 7, 2018 32 Table 3-5 Additional Average Dry Weather and Design Flows Results Monitoring Station ADWF From SSOAP Model (l/s) 3x ADWF (l/s) Average Daily Observed Flow (l/s) Peak Daily Average Flow (l/s) May/ York 35.73 107.19 36.02 75.76 Park 20.07 60.21 21.85 48.34 3.2.4 Flow Conclusions & Recommendations Based on the analysis presented in the above sections the ADWF for the proposed pump stations were inferred based on linear interpolation of flow versus population and flow versus sewershed area. Inferred flows were only prepared for areas that are not included in the metering locations. Pump stations which incorporate flow from monitored locations used the ADWF values presented in Table 3-3. The total ADWF at each proposed pump station location is presented in Table 3-6. It is important to note that the sewershed area and the population contributing to the May/ York, Park and Main monitoring stations are substantially larger than areas and populations contributing to proposed pump stations LS-GB1 to LS-GB3. The May/York, Park and Main stations are located in sewersheds further south, which do not contribute to the three aforementioned interceptor pump stations. For these reasons these flow monitoring stations were omitted from the linear interpolation for the design flows calculated for LS-GB1 to LS-GB3. For the final pump station (LS- GB4 – located within the proposed WWTP), the Main Street Station and summer flow data for the May/York and Park Street monitoring stations were utilized as these stations were placed in the sewer shed area that contributes directly to LS-GB4 (WWTP). As the two monitoring sessions proved, there is a large influx of inflow into the existing Glace Bay collection system, and therefore the pump station would be greatly oversized if the spring data was used. It is HEJV’s understanding that CBRM would prefer to minimize inflow and infiltration, versus oversizing infrastructure. Harbour Engineering Joint Venture Glace Bay Collection System Pre-Design Brief 11 Table 3-6 Average Dry Weather Summary for Proposed Pump Stations Station Total Population1 Total Area1 (ha) ADWF based on Population2(l/s) ADWF based on Area2 (l/s) LS-GB1 630 37.34 4.36 5.65 LS-GB2 881 41.96 9.50 8.53 LS-GB3 3857 177.29 26.42 27.27 LS-GB4 - WWTP 11791 855.71 140.51 128.40 1 Only considers populaƟon and area not included in monitoring locaƟons 2Values calculated based on linear interpolaƟon plus any addiƟonal flows The recommended design flows presented below in Table 3-7 are based on 3xADWF values using the more conservative interpolated values (i.e. between population and area interpolation). Based on this analysis, HEJV’s recommended interceptor design flows for the interception and treatment systems are presented in Table 3-7. Please note that the value presented below for LS-GB4 was increased by 5%. After the second monitoring event was completed, it was found that a manhole upstream of the Main Street flow meter had two outlet pipes. HEJV made a worst case assumption that the flow split evenly out of this manhole. This would account for an additional 3.5% increase to the ADWF for the system. To be further conservative, we have allowed for a 5% increase to the LS- GB4 recommended design flow. Table 3-7 Recommended Interception Design Flow Rates at Pump Stations Station Recommended Design Flow (l/s)1 LS-GB1 16.95 LS-GB2 28.50 LS-GB3 92.75 LS-GB4 -WWTP 442.602 1 Based on 3 x ADWF, includes both metered and interpolated flows 2 Value increased by 5% as noted above. To evaluate performance of the proposed pump station during wet weather conditions, metered flows during rainfall events have also been considered for contributing stations. The results of the wet weather flow assessment at metered locations are presented in Table 3-8. Table 3-8 Observed Flows during Rainfall Events Monitoring Station Minor Rainfall Events (Daily Rainfall of 10-25 mm) Moderate Rainfall Events (Daily Rainfall of >25 mm) # of Events Daily Average Flow (l/s)# of Events Daily Average Flow (l/s) GB2 3 16 2 41 GB6 5 20-23 1 60 GB7 6 3-6 1 14 May York 8 80-185 1 76 Park 7 53-62 1 48 Harbour Engineering Joint Venture Glace Bay Collection System Pre-Design Brief 12 Monitoring Station Minor Rainfall Events (Daily Rainfall of 10-25 mm) Moderate Rainfall Events (Daily Rainfall of >25 mm) Main 5 46-70 0 N/A Average daily wet weather flow at each pump station was inferred based on linear interpolation of sewershed size and metered wet weather flows. Inferred wet weather flows are presented in Table 3-9. The calculated flows were compared to the recommended design flows to indicate if sewer overflow conditions would be expected. Table 3-9 Inferred Flows during Rainfall Events Pump Station Minor Rainfall Events (Daily Rainfall of 10-25 mm) Moderate Rainfall Events (Daily Rainfall of >25 mm) Inferred Daily Average Flow (l/s) Expected Overflow1 (Y/N) Inferred Daily Average Flow (l/s) Expected Overflow1 (Y/N) LS-GB1 17 N 45 Y LS-GB2 18 N 43 Y LS-GB3 79 N 210 Y LS-GB4 -WWTP 355 N 587 Y 1 Overflow expected when observed flow exceeds design flow presented in Table 3-9 To consider the effects of moderate rainfall, daily rainfall for the Sydney CS climate station (Environment Canada Station #8207502) was reviewed for the past 10 years of complete data (2008 - 2017). Review of these data suggests that moderate rainfall events (i.e. daily rainfall greater than 25 mm) is expected to occur frequently within a given year. Based on this review, it is expected that these moderate rainfalls events would occur on average between 10 and 15 times each year and therefore overflow may be expected during these events. Rapid snow melt may lead to additional overflow events, the occurrence of which would largely be confined to the spring freshet season. According to the U.S. Environmental Protection Agency, peak rainfall events establish peak sewer flows rather than snow melt (EPA 2007). This is reasonable since snow is temporarily stored within the watershed as snow pack and gradually melts over time (i.e. rather than sudden peak flows generated by intense rain). Mean daily temperatures were reviewed during wet periods to consider the impacts of snow accumulation and melt during the winter observation period. Mean temperatures were found to be above 0oC for the precipitation events considered in this study. A few of the events occurred with temperatures close to 0oC and are likely to have fallen as a rain-snow mix. Given these relatively mild temperatures, it is expected that the SSOAP analysis generally accounted for snow- melt wet weather inputs in estimating dry weather flows. 3.3 Interceptor System The proposed interceptor system for the Glace Bay WWTP is presented on the plan and profile drawings attached in Appendix A. The proposed interceptor system is made up of segments of pressure and gravity sewers, pump stations and combined sewer overflows. Harbour Engineering Joint Venture Glace Bay Collection System Pre-Design Brief 13 The first step in laying out the interceptor sewer route was to determine the location of the future WWTP that will serve the Town of Glace Bay. The location for the proposed WWTP was initially selected near the breakwater at the mouth of Glace Bay Harbour, adjacent to North Street. This location was selected as 85% of Glace Bay’s wastewater discharge is currently directed toward the site and has been the location reviewed by several previous studies. The downfall for the location is the proximity to residential and commercial development. The location does not meet the ACWGM guidelines for setback distances from residential and commercial properties. As part of our pre- design efforts, HEJV met with NSE to discuss locations for future treatment plants that do not meet the ACWGM guidelines for setback distances but ultimately make the most sense for a community from an economic stand point. NSE’s feedback to HEJV was that if the location of the WWTP did not meet the ACWGM guidelines but ultimately made the most sense for a community, the detailed design of the plant would need to include odour controls, to minimize the impact to neighbouring properties. During the development of the Glace Bay WWTP Pre-Design, it was determined that the site near the breakwater should be reconsidered. The required footprint of the Glace Bay WWTP was too large for the original site. A second site was reviewed and recommended to CBRM. The site was located across Lower North Street from the original location, adjacent to the BayPlex facility. The site would still be located near the GB#8 outfall, but would require a pump station to convey flows from GB#8 to the WWTP site. Considering Glace Bay is a former mining town, the next step to finalize the plant location was a geotechnical review of the two proposed sites. Several geotechnical programs were completed on the two sites including a rock mechanics evaluation, as the presence of voids were verified at the proposed site adjacent to the BayPlex. The Geotechnical Reporting concluded that the site nearest the breakwater provided for a low risk location for the WWTP. No voids were found on the site adjacent the breakwater during the intrusive investigations. Therefore from a risk perspective, HEJV decided against the aforementioned revised location, and decided that the GB WWTP would be best suited to the original location near the breakwater. HEJV recommends further geotechnical exploration be completed at this site to fully review the risk level of developing the WWTP at the proposed location. It should be noted that there are records that indicate mining may have occurred at the site adjacent to the breakwater also and should be fully reviewed prior to the commencement of detailed design. 3.3.1 Option Analysis For the majority of the analysis on routing, HEJV concentrated on locating routes that minimized the length of the completed interception system. Routes were analyzed and the shortest, most effective route was selected as the best option and carried forward in the preliminary design. A detailed analysis was completed on one route involving a decision between a pump station (located on CBRM PID 15437718) with a corresponding forcemain and a deeper gravity route (along West Avenue to Tennyson Street). Costs for each of the route were compared. The pump station for the site would have been a sizeable development with an approximate construction value of $1.0 million. It was the cost of the pump station in combination with the required forcemain and air release valve chamber that outweighed the cost to construct the deeper gravity network shown. Therefore the deeper gravity sewer was selected and carried forward in the preliminary design. Harbour Engineering Joint Venture Glace Bay Collection System Pre-Design Brief 14 3.3.2 Interceptor System Breakdown The interceptor network will divert sewer from eight existing outfalls to the proposed WWTP site. The major elements of the system include: ®LS-GB 1 located near the GB#1 outfall, on PID 15441355. This pump station conveys flow eastward through a common forcemain that extends to Centre Avenue. The forcemain from LS-GB1 to LS-GB2 is 150mm in diameter. From LS-GB2 eastward, the forcemain diameter increases to 200mm in diameter. ®LS-GB2 is located behind Shea’s Lane and Eleventh Street on PID 15440969. This pump station intercepts flow from outfalls GB#2 and GB#3. The pump station conveys discharge via a 200 mm diameter forcemain to the common forcemain discussed above. ®A gravity sewer that begins as a 200mm and terminates as a 450mm diameter gravity main conveys sewage along Centre Avenue and Eighth Street. ®Flow from the GB#4A outfall is intercepted by a 200mm diameter gravity main and is directed to a proposed CSO chamber located near the Eighth Street and East Avenue intersection. ®Flow from the GB#4B outfall is intercepted by a 450mm diameter gravity main and is directed to the same CSO chamber located near the Eighth Street/East Avenue intersection. ®A 450mm diameter gravity sewer conveys the intercepted flow cross country from the CSO toward First Street. ®A 200mm diameter sewer will be required near the 2nd Street/Hub Avenue intersection to intercept flow from GB#5 to the interceptor system located near First Street. ®From the connection with the 2nd Street sewer, a gravity sewer extends from First Street across PID 15437718. The sewer runs along West Avenue, Tennyson Street and Vivian Street to Upper North Street, eventually to the LS-GB3 site. ®A small section of 450mm diameter gravity sewer connects GB#6 to GB#7. The flow from the gravity sewer is directed to a CSO chamber (CSO-5). ®Flow from CSO-5 is merged with the gravity interceptor sewer on Upper North Street and is directed to LS-GB3. ®LS-GB3 handles all of the flow from each of the seven outfalls north of the Glace Bay WWTP site. ®LS-GB3 conveys sewage to the proposed WWTP via a 250mm diameter forcemain. ®LS-GB4 (located within the GB WWTP footprint) intercepts sewer from the GB#8 outfall. The WWTP site will be complete with a CSO overflow structure that will convey overflow to the proposed outfall. ®Outside of the interceptor sewer, one home at the end of 4th Street will require a low pressure sewer system as it currently discharges directly to the Atlantic Ocean. 3.4 Combined Sewer Overflows A Combined Sewer Overflow (CSO) should be utilized in the proposed interceptor system where flows directed to a pump station exceed the interception design rate defined in Section 3.2.3 (Table 3-5). The proposed locations for the chambers have been illustrated on the plan and profile drawings included in Appendix A. In general, the interceptor system has been designed for a capacity of 3xADWF. The CSO chambers depicted on the plan and profile drawings permit the connection to each of the existing outfalls, Harbour Engineering Joint Venture Glace Bay Collection System Pre-Design Brief 15 while only permitting the recommended interception design flows (3xADWF) into the proposed system. Each of the outfalls in Glace Bay discharge raw sewage to the Atlantic Ocean on a continuous basis. By installing the interceptor sewer, the amount of raw sewage being directed to the Atlantic Ocean will be limited. Given the limited number of overflows anticipated, the CSOs for Glace Bay have been proposed to be an unscreened chamber. The chambers will essentially act as a flow diversion chamber. The CSO chamber should be complete with a weir plate that will separate the chamber into two sections, one for normal everyday flows (below 3xADWF) and one for overflow events. Normal flows would be directed to the interceptor system. As the flow increases above the interception design flow rate, the level in the CSO chamber will rise, until it crests the weir plate. Flow that crests the weir plate would be directed back to the original outfall. The Glace Bay interceptor system will include 6 CSO chambers that will direct flow to various components of the system. In addition, an overflow should be provided at LS-GB4. 3.4.1 CSO-1 CSO-1 will be located near the GB#1 outfall. This chamber will direct flow to LS-GB1 within the Interception Rate presented in Section 3.2.3. Flow above the interception rate will overflow back into the original outfall. 3.4.2 CSO-2 CSO-2 should be located near the GB#2 outfall. The chamber will redirect flow to LS-GB2. Flows within the interception rate will be directed to the pump station, while overflow events will be sent back to the original outfall. 3.4.3 CSO-3 CSO-3 should be used to limit the flow from the GB#4 (4a and 4b). Flows within the 3xADWF criterion should be directed to the gravity sewer. Flows above the 3xADWF rate would overflow, via a new overflow pipe, back to the Atlantic Ocean. A new overflow pipe has been recommended due to the topography between the existing 4b outfall and the limited capacity of the 4a outfall. 3.4.4 CSO-4 CSO-4 should be located at the northern end of Second Street. This CSO should be used to divert flow within the intercepted rate from the GB#5 outfall to the gravity sewer that runs perpendicular to First Street. Again, flows above the interception rate should be overflowed back to the original outfall. 3.4.5 CSO-5 The last CSO in the Glace Bay Interceptor System should be located near LS-GB3. This CSO will redirect flow from GB#6 and GB#7 within the interception rate to the pump station. Flows greater than the interception value will be diverted back to the existing GB#7 outfall. Harbour Engineering Joint Venture Glace Bay Collection System Pre-Design Brief 16 3.4.6 CSO-6 An overflow should be incorporated into the WWTP site. At this time, HEJV recommends an off line overflow structure that would allow for CSO construction, prior to connecting the structure to the existing outfall pipe. Overflow events would cause the chamber to surcharge until flow crests the weir plate. Flow cresting the weir plate would be directed to the new outfall that will serve the WWTP. The detailed design of the structure will need to take into account current harbour elevations, future harbour elevations and critical inverts/manhole elevations upstream of the connection. 3.5 Pumping Stations As discussed above, four new pumping stations will be required in the proposed Glace Bay interceptor system to convey wastewater to the proposed WWTP. The pump stations should be equipped with non-clog submersible pumps with an underground wetwell and a building that will accommodate the mechanical piping, valves, electrical system, control systems, instrumentation and in some cases the backup generation system. A hydraulic analysis should be completed on the forcemain to determine if surge valves are warranted. If required, the valves should be installed prior to the forcemain exiting the pump station building to protect the pipe against unwanted surge forces. Standard pump station schematics have been presented in Appendix A for illustrative purposes. 3.5.1 Pumping Design Capacity Each Station will be designed to pump the intercepted flows defined in Section 3.2.3 with the largest pump out of service as per ACWGM. All pumps will be supplied and operated with variable frequency drives (VFD). A VFD will provide the following benefits to the pumping system: ®Energy savings by operating the pump at its best efficiency point; ®Prevent motor overload; ®Energy savings by eliminating the surge at pump start up; and ®Water hammer mitigation. 3.5.1.1 WALLACE ROAD LS-GB1 The Wallace Road pump station will convey flow from the GB#1 sewershed, to the gravity sewer system on Centre Ave, via a 100mm diameter forcemain. This forcemain will create a common header with LS-GB2 (200mm diameter). The pump station will be a duplex station, with one duty and one standby pump. The pumps will have a capacity of 29 l/s, with a TDH of 19m. 3.5.1.2 ELEVENTH STREET LS-GB2 The Eleventh Street pump station will convey flow from the GB#2 sewershed, via the common header forcemain described above (200mm diameter). Flow from the forcemain will be discharged to the gravity sewer on Centre Ave. The pump station will be a duplex station, with one duty and one standby pump. These pumps will have a capacity of 38 l/s, with a TDH of 16 m. 3.5.1.3 UPPER NORTH STREET LS-GB3 The Upper North Street pump station will receive the intercepted flows from CSO-5 and the gravity sewer from Vivian Street. Discharge from the station will be conveyed to the gravity sewer on Lower North Street via a 250mm diameter forcemain. The pump station will be a triplex station, with two Harbour Engineering Joint Venture Glace Bay Collection System Pre-Design Brief 17 duty and one standby pumps. These pumps will have a combined capacity of 93 l/s, with a TDH of 27 m. 3.5.1.4 WWTP -LS-GB4 LS GB4 will receive the intercepted flows from the existing GB#8 outfall and be located within the footprint of the proposed WWTP. The pump station will be a quadraplex station, with three duty and one standby pumps. The duty pumps will have a combined capacity of 444 l/s, with a TDH of 12 m. 3.5.1.5 PUMP STATION SUMMARY Table 3-10 Pump Station Summary Pumping Station Wallace Road LS-GB1 Eleventh Street LS-GB2 Upper North Street LS-GB3 WWTP LS-GB4 Duty Pumps 1 1 2 3 Standby Pumps 1 1 1 1 ADWF (l/s)5.65 9.5 27.27 140.51 Maximum Design Flow (l/s)16.95 28.5 92.75 442.6 Pump Capacity (l/s, each pump)17 29 93 444 Forcemain Diameter (mm)100 150 250 600 TDH (m) at Maximum Design Flow 43 19 27 12 Velocity (1 pump running) m/s 2.06 1.82 1.53 1.52 Approximate power requirement (each pump) kW 22 11.2 22 26 3.5.2 Safety Features Each station should report alarm conditions to the CBRM SCADA network. The stations should also incorporate external visual alarms to notify those outside of building of an alarm condition. External audible alarms should not be used as the station is in a populated area and disturbance to the local community should be kept to a minimum. All access hatches should include safety grating similar to Safe-Hatch by Flygt. 3.5.3 Wetwell Each of the wetwells should be constructed with a benched floor to promote self-cleansing and to minimize any potential dead spots. The size of each wetwell should be based on factors such as the volume required for pump cycling, dimensional requirements to avoid turbulence problems, the vertical separation between pump control points, the inlet sewer elevation, capacity required between alarm levels, overflow elevations, the number of pumps and the required horizontal spacing between pumps. The operating wetwell volumes for the pumping stations should be based on alternating pump starts between available pumps while reducing retention times to avoid resultant odours from septic conditions. Harbour Engineering Joint Venture Glace Bay Collection System Pre-Design Brief 18 At this time HEJV recommends a precast unit for each station. Based on the conditions discussed above, the sizing for each of the wetwells is presented below. Table 3-11 Wetwell Sizing Summary Pumping Station Size and Shape (m) Depth (m) Wallace Road LS-GB1 2.1 Circular 4.6 Eleventh Street LS-GB2 2.1 Circular 8.9 Upper North Street LS-GB3 2.4 x 3.6 Rectangular 4.1 WWTP LS-GB4 5.9 x 2.9 Rectangular 12.0 3.5.4 Station Piping Pump station internal piping should be ductile iron class 350 with coal tar epoxy lining or stainless steel with diameters as indicated in Table 3-10. Threaded flanges or Victaulic couplings should be used for ductile iron pipe joints, fittings and connections within the station. Pressed or rolled vanstone neck flanges should be used for stainless steel pipe joints, fittings and connections. Piping layout should be designed to provide minimum friction loss and to provide easy access to all valving, instrumentation and equipment for the operators. A common flow meter on the discharge header should be provided for each station to monitor flows. 3.5.5 Equipment Access At the duplex stations, pump installation and removal for the stations should be achieved using a lifting davit and electric hoist that would access the pumps through hatches located above the pumps. Due to maintenance issues associated with exterior davit sockets and portable davits, stationary lifting davits should be installed inside these pump stations and accessed through a roll up door. At the triplex and quadraplex stations, pump installation and removal should be achieved using a monorail structure with an electric hoist located inside a weathertight structure. A heated building should be provided for the pump station to eliminate maintenance issues with valve chambers. All valves and instrumentation should be above ground in the heated building to allow for easy access and maintenance. 3.5.6 Emergency Power All stations with the exception of GB-LS4 should be equipped with a backup generator sized to provide power to all equipment, lights, and other accessories during power interruptions. An automatic power transfer switch should transfer the station’s power supply to the generator during a power disruption and should return to normal operation when power has been restored. The generator should be supplied with noise suppression equipment to limit disruption to existing neighbours. Due to its location, emergency power for LS-GB4 should be provided by the backup power supply from the WWTP. If a diesel generator is selected, the fuel tank should be integral with the generator and designed to meet the requirements of the National Fire Code of Canada,Section 4 and should meet the requirements of the Contained Tank assembly document ULC-S653. Harbour Engineering Joint Venture Glace Bay Collection System Pre-Design Brief 19 As previously discussed, each pump station site will include a heated building. HEJV has reviewed the LS-GB1 to LS-GB3 sites with respect to housing the backup generator inside the building versus an outside unit designed for exterior service with a weather resistant enclosure. Ultimately the final location for each of the generators was based on economics. If the building to be included could be modified to house the generator for less than the cost of the exterior weather resistant enclosure, then the unit was proposed to be located inside. HJEV proposed that the back-up generation equipment for the three noted stations should be located inside their respective pump station buildings. 3.5.7 Controls Equipment should be controlled through a local control panel mounted in each of the pump station buildings. The local control panel would be a custom panel designed to be integrated into the CBRM SCADA network. The panel should provide a Hand/Off/Auto control selector to allow for manual control of the station. The control system should report remotely to CBRM’s SCADA system including alarm conditions. Control instrumentation and equipment should include the following: ®Level sensors/transmitters in the wetwell ®Flow meter/transmitter on the discharge forcemain(s) ®Pressure transmitter ®Surge valve position indication (if required) ®Level alarms ®Unauthorized building access ®Low fuel level ®Pump or generator fault ®Generator operation ®CSO level controls (either side of weir plate) The level in the wetwell utilizing ultrasonic level instruments should control the operation of the pumps. Auxiliary floats will provide high and low level alarms as well as back-up control in the event of a failure in the ultrasonic equipment. 3.5.8 Security Security fencing will be installed at the pumping station on the boundary of the land parcel. The structures will be monitored with an alarm system (via SCADA) to identify unauthorized access. Harbour Engineering Joint Venture Glace Bay Collection System Pre-Design Brief 20 CHAPTER 4 EXISTING COLLECTION SYSTEM UPGRADES 4.1 Sewage Pump Station Upgrades HEJV has reviewed the existing Glace Bay Collection System for potential upgrades to the existing sewage pumping stations. There are currently six pump stations in the community of Glace Bay. The age of the existing stations vary. All of the stations have been upgraded previously. Since 2015, upgrades have been performed to 4 of the 6 existing stations. The remaining two stations were upgraded in 2011. The Glace Bay WWTP has been classified as a high priority system and has an implementation deadline of 2021. Plans should be made to upgrade stations that have not been recently renewed, including the Reserve Street and Railroad Street pump stations (upgraded in 2011). Due to their age, the condition of each station should be verified at the time of detailed design to determine if an upgrade of the existing station is required. 4.2 Asset Condition Assessment Program To get a better sense of the condition of the existing Glace Bay sewage collection system, HEJV recommends completing a sewage collection system asset condition assessment program in the community. The program would carry out an investigation involving two components: ®Visual inspection and assessment of all manholes in the collection system ®Video inspection of 20% of all sewers in the system The program should be completed with the issuance of a Collection System Asset Condition Assessment Report that would summarize the condition of the various assets inspected and include opinions of probable costs for required upgrades. 4.3 Sewer Separation Measures CBRM should consider completing further sewer separation investigation efforts in Glace Bay. The program would review catch basins that are currently connected or possibly connected to existing sanitary sewers. The program should also include the costing of the installation of new storm sewers to disconnect catch basins from the existing sanitary sewer. 4.4 CSO Station Outfall Upgrades Upgrades should be provided at existing outfalls that will be utilized as overflows from the proposed CSO Stations. A connection should be made with the existing outfall that would allow the pipe to be extended into the marine environment versus conveying overflow through the existing shoreline embankments (above shoreline elevation). Harbour Engineering Joint Venture Glace Bay Collection System Pre-Design Brief 21 CHAPTER 5 FORCEMAIN SELECTION AND DESIGN 5.1 Pipe Material Four pipe materials (Ductile Iron, HDPE, PVC, and Reinforced Concrete) were considered for this project and were evaluated against various factors. Ductile Iron, HDPE and PVC were reviewed for a suitable forcemain material for the project. PVC and Reinforced Concrete were reviewed against each other for a suitable gravity pipe material. A summary of the advantages and disadvantages of the different materials is presented in Table 5-1. Table 5-1 Comparison of Pipe Materials Pipe Material Advantages Disadvantages Ductile Iron ·Is forgiving with regard to problems caused by improper bedding ·Thinnest wall, greatest strength ·Standard testing method ·CBRM staff and contractors are familiar with installation of DI forcemains ·Pipe, and fittings are susceptible to corrosion ·High weight ·Installation cost is high HDPE ·Excellent corrosion resistance of pipe ·Long laying lengths (where practical) ·Relatively easy to handle ·Requires good bedding ·Requires butt fusing ·Careful handling is required due to abrasion ·Long distances of open trench ·Not designed for vacuum conditions ·Installation cost is high if long lay lengths are not possible PVC ·CBRM standard ·Excellent corrosion resistance of pipe ·Standard testing method ·Light weight ·High impact strength ·CBRM staff and contractors are familiar with installation of PVC forcemains ·Cost competitive ·Requires good bedding ·Must be handled carefully in freezing conditions Reinforced Concrete ·High strength ·Standard testing method ·CBRM staff and contractors are familiar with installation ·Heavy – harder to handle ·Susceptible to attached by H2S and acids when not coated ·Requires careful installation to avoid cracking ·Short laying lengths Based on the above comparison, HEJV recommends that the gravity sewer and forcemain piping for the Glace Bay interceptor sewer be PVC. Harbour Engineering Joint Venture Glace Bay Collection System Pre-Design Brief 22 CHAPTER 6 LAND AND EASEMENT REQUIREMENTS HEJV has reviewed the requirements for land acquisition and easements. The majority of the proposed system, gravity sewers and forcemains and one of the pump station sites will be constructed within public right-of-ways or on CBRM owned properties. However, some of the proposed linear infrastructure, pump stations, CSOs and the treatment plant are shown on private and federal lands. 6.1 Pump Station Sites HEJV proposes that the land parcels for each of the pump station sites be purchased due to the development being a permanent above ground structure requiring regular access from CBRM staff. HEJV considers easements to be an acceptable option to both CBRM and current land owners for the construction and maintenance of the interceptor linear infrastructure. Find below a summary of the required land acquisitions that should be undertaken to permit the installation of the required pump station infrastructure. The table below lists the PID, property owner, assessed value, size of parcel required and whether or not HEJV recommends purchasing the entire lot. In some circumstances, due to the size of the lot, it might make more sense to purchase the entire lot from the existing land owner, versus negotiating a piece that would considerably limit the development on the remaining site. For two of the stations, HEJV has indicated that CBRM should try to negotiate an easement on two of the PWGSC lots for lift station infrastructure. As these lots would experience a fair amount of erosion, CBRM may not want to take on the costs of future erosion control, and an easement may be in CBRM’s best interest. Table 6-1 Pump Station Land Acquisition Details PID Property Owner Assessed Value Description Size Required Purchase Entire Lot (Y/N) 154413551 PWGSC $10,100 LS-GB1/CSO Site 15mX70m N 15440969 PWGSC $17,500 LS-GB2/CSO Site 60mX80m(irreg.)N 15739113 Road Parcel Owner Undetermined LS-GB3/CSO Site 15mx30m Y 1 Additional easement required for linear infrastructure, see Table 6-2 for further details on size requirements. Harbour Engineering Joint Venture Glace Bay Collection System Pre-Design Brief 23 6.2 WWTP Site The proposed WWTP will be located near the existing GB 8 outfall, as discussed in Chapter 3. The development will require the partial purchase of two parcels of land. Presented below in Table 7-2 are some of the pertinent details of the parcel of land required to build the WWTP. Table 6-2 WWTP Land Acquisition Details PID Property Owner Assessed Value Description Size Required Purchase Entire Lot (Y/N) 15524473 PWGSC $5,900 WWTP Site To be confirmed in the WWTP Pre- Design N 15408867 Hopkins H Ltd $130,300 WWTP Site To be confirmed in the WWTP Pre- Design N 6.3 Linear Infrastructure The installation of linear infrastructure will require nine easements through private and federally owned lands. The remaining linear infrastructure will be installed within public right-of-ways and CBRM parcels of land. Easements for linear infrastructure should be developed so that a width of 10m can be used during construction and a final easement width of 6m is maintained for future considerations. Details on the required easement area is as follows: Table 6-3 Linear Infrastructure Land Acquisition Details PID Property Owner Assessed Value Description Length Required Purchase Entire Lot (Y/N) 154413551 PWGSC $10,100 Forcemain 84m N 15441090 PWGSC $25,300 Forcemain 67m N 15440936 Youth for Christ Canada $289,000 Forcemain/ Gravity Sewer 25m N 15526668 PWGSC $16,300 Gravity Sewer 7m N 15437791 PWGSC $44,500 Gravity Sewer 24m N 15437742 PWGSC $8,300 Gravity Sewer 29m N 15531064 PWGSC $400 Gravity Sewer 147m N 15531023 PWGSC $66,300 Gravity Sewer 18m N 15821127 Owner Unknown No Information Forcemain 22m Y 15821119 Charles H Rigby No Information Forcemain 65m Y 1 Additional easement required for pump station infrastructure, see Table 6-1 for further details on size requirements. Harbour Engineering Joint Venture Glace Bay Collection System Pre-Design Brief 24 CHAPTER 7 SITE SPECIFIC CONSTRAINTS During the preliminary design of the interceptor system, HEJV has reviewed the pump station sites, CSO sites and pipe routing for potential constraints. HEJV reviewed construction constraints, access requirements and power supply requirements for the proposed infrastructure. The next sections of the Design Brief briefly touch on items that were found during HEJV’s review. 7.1 Construction Constraints HEJV has reviewed the preliminary design of the interceptor system from a construction constraints perspective. Construction sequencing will be the primary focus of this discussion. The pump stations will need to be constructed, tested and commissioned prior to any of the raw discharge being diverted to the new interceptor system. A construction constraint exists at the proposed location for the pump station at Upper North Street (LS-GB3). An open ditch currently traverses the proposed site. A combination of re-routing the ditch along with a buried culvert may be required to permit the installation of the pump station infrastructure. The construction of LS-GB4 and CSO6 will be challenging. With the depth of the proposed pump station chambers, issues with groundwater and bedrock will likely be encountered. There will be many crossings with existing sanitary and storm sewer that will need to be carefully evaluated and planned during the detailed design of the Glace Bay interceptor system. Sections of the proposed infrastructure will also parallel existing sewer infrastructure. HEJV’s routing has attempted to minimize the interference between existing and proposed infrastructure. 7.2 Environmental Constraints The proposed pipe routing will cross two streams between GB#1 and GB#2. Existing stream crossings at Station 0+010 and Station 0+430 will involve a crossing with an active stream. Construction of the works will require a temporary stream diversion. A sandbag berm will need to be installed 5m upstream from the proposed works. When the berm is installed a pump should be used to pump water around the proposed works. A sandbag berm should then be installed downstream of the proposed works. The water between the berms should then be pumped out. Harbour Engineering Joint Venture Glace Bay Collection System Pre-Design Brief 25 7.3 Access Requirements Access to the majority of the pump station, CSO and WWTP sites should be fairly straight forward. Some thought will need to be applied to the access road for GB-LS1. The ROW for Wallace Road does extend near the site so an access road could be extended from the intersection of Wallace Road and Khalsa Drive. The access road would be approximately 100m in length. 7.4 Power Supply Requirements Three phase power will be required for each of the pump station sites. Three phase power will need to be extended to each of the pump station sites. Find below a table indicating the length of extension required and the originating location for the closest three phase power source for each station. Table 7-1 Power Supply Details Station Required Extension Length (m)Originating Location LS-GB1 550 Intersection of Cooling Street & West Avenue LS-GB2 180 Intersection of Cooling Street & West Avenue LS-GB3 300 Sterling Road Harbour Engineering Joint Venture Glace Bay Collection System Pre-Design Brief 26 CHAPTER 8 OPINION OF PROBABLE COSTS 8.1 Opinion of Probable Costs – New Wastewater Collection Infrastructure An opinion of Probable Design and Construction Costs for the proposed wastewater collection system infrastructure has been completed for the project. A detailed breakdown of the estimate has been provided in Appendix C. The estimate is made up of the linear infrastructure design and construction costs and associated land acquisition costs, CSO Chambers and pump stations required to collect and convey the sanitary sewer in Glace Bay to the proposed WWTP. For land acquisition costs, HEJV has used a ratio of the amount of land that is affected by the required easement/property acquisition multiplied by the assessed value of the entire lot. The Opinion of Probable Design and Construction Costs for the interceptor sewer for Glace Bay is $9,610,875. This estimate is considered to be Class ‘C’, accurate to within plus or minus 30%. 8.2 Opinion of Operational Costs HEJV completed an Opinion of Operational Costs for the interceptor system using data provided by CBRM for typical annual operating costs of their existing submersible pump stations, typical employee salaries, Nova Scotia Power rates, and experience from similar stations for general maintenance. The opinion of operational costing includes the initial capital costs as detailed in Section 8.1 in combination with general pump station maintenance costs, general linear maintenance costs, employee operation and maintenance costs, electrical operational costs and backup generator operation and maintenance costs. A breakdown of costs has provided in Table 8- 1. Table 8-1 Annual Operations and Maintenance Costs The general station maintenance cost presented above includes pump repairs (impellers, bearings, seals), minor building maintenance (painting, siding repairs, roof repairs), electrical repairs and instrumentation repairs and servicing. Item Cost General Pump Station Maintenance Cost $15,500/yr General Linear Maintenance Cost $1,000/yr Employee O&M Cost $14,500/yr Electrical Operational Cost $52,000/yr Backup Generator O&M Cost $9,500/yr Harbour Engineering Joint Venture Glace Bay Collection System Pre-Design Brief 27 The general linear maintenance cost for the interceptor system has been estimated to be $1000 per year in 2018 dollars. This includes flushing, inspection, and refurbishment of structures along the linear portion of the collection system. Employee O&M costs were averaged from data provided by CBRM. It was determined that staffing to maintain their existing pump stations requires an average of 100 hours of effort per submersible pump station per year. For the electrical operation cost, HEJV assumed the building would require heat for 5 months of the year. Basic electrical loads for instrumentation were assumed. Electrical demand from the pumping system was determined based on the yearly average flow of the station. Backup generator operation and maintenance costs assumed that a diesel backup generator would be utilized. The costs include an annual diesel fuel cost assuming that the generator is run for one hour each month, as well as annual maintenance for the generator (change of filters and oil, inspection of the generator, and load bank testing). 8.3 Opinion of Existing Collection System Upgrades and Assessment Costs Opinions of probable cost have been provided to complete the work that was discussed in Chapter 4. For sewerage pumping stations, the opinion of probable cost includes a full retrofit of each of the existing stations noted in Chapter 4 including new pumps, controls and backup power generation. The need to upgrade these stations should be verified at detailed design, as discussed in Chapter 4. In addition, HEJV has also allowed for two additional backup generators for the Brookside Street and South Street stations. These stations were upgraded in 2015, without the inclusion of backup power generation. Lift station upgrade costs are presented in Table 8-2. HEJV has provided an allowance of 12% on the cost of construction for engineering and 25% for contingency allowance. An opinion of probable costs has been provided for the collection system asset condition assessment program described in Chapter 4. These costs include the video inspection and flushing of 20% of the existing sanitary sewer network, visual inspection of manholes, traffic control and the preparation of a collection system asset condition assessment report. For sewer separation measures, budgetary pricing has been calculated by reviewing recent costs of sewer separation measures in CBRM involving installation of new storm sewers to remove extraneous flow from existing sanitary sewers. These costs have been translated into a cost per lineal meter of sewer main. This unit rate was then applied to the overall collection system. The cost also includes an allowance of 10% on the cost of construction for engineering and 25% for contingency allowance. The opinion of probable cost in Table 8-2 for CSO Station outfall upgrades provides an allowance to connect to an existing outfall with a manhole structure and provide an extension of the outfall pipe into the marine environment. HEJV has provided an allowance of 12% on the cost of construction for engineering and 25% for contingency allowance. Harbour Engineering Joint Venture Glace Bay Collection System Pre-Design Brief 28 Estimates of costs for upgrades to and assessment of the existing collection system as outlined in Table 8-2 are considered to be Class ‘D’, accurate to within plus or minus 45%. Table 8-2 Estimated Existing Collection System Upgrade and Assessment Costs 8.4 Opinion of Annual Capital Replacement Fund Contributions The CBRM wishes to create a Capital Replacement Fund to which annual contributions would be made to prepare for replacement of the assets at the end of their useful life. The calculation of annual contributions to this fund involves consideration of such factors as the type of asset, the asset value, the expected useful life of the asset, and the corresponding annual depreciation rate for the asset. In consideration of these factors,Table 8-3 provides an estimation of the annual contributions to a capital replacement fund for the proposed new wastewater collection and interception infrastructure. Item Cost Sewage Pump Station Upgrades (for 2 stations) Pump Station Infrastructure (controls, pumps, etc.)$652,000 Backup Power Generation (required for 4 stations)$233,000 Engineering (12%)$106,000 Contingency (25%)$222,000 Total $1,213,000 Collection System Asset Condition Assessment Program Condition Assessment of Manholes based on 1482 MH’s $275,000 Condition Assessment of Sewer Mains based on 25.2km’s of infrastructure $260,000 Total $535,000 Sewer Separation Measures Separation based on 126km’s of sewer @ $45,000/km $5,670,000 Engineering (10%)$567,000 Contingency (25%)$1,418,000 Total $7,655,000 CSO Station Outfall Upgrades (for 5 existing outfalls) Extension incl. drop manhole ($248,000 per connection) Engineering (12%) Contingency (25%) $1,240,000 $149,000 $310,000 Total $1,699,000 Total Estimated Existing Collection System Upgrade and Assessment Costs $11,102,000 Harbour Engineering Joint Venture Glace Bay Collection System Pre-Design Brief 29 Table 8-3 Estimated Annual Capital Replacement Fund Contributions Description of Asset Asset Value Asset Useful Life Expectancy (Years) Annual Depreciation Rate (%) Annual Capital Replacement Fund Contribution Linear Assets (Piping, Manholes and Other) $4,858,475 75 1.3%$63,160 Pump Station Structures (Concrete Chambers, etc.)$1,158,190 50 2.0%$23,164 Pump Station Equipment (Mechanical / Electrical)$947,610 20 5.0%$47,381 Subtotal $6,964,275 --$133,704 Contingency Allowance (Subtotal x 25%):$33,426 Engineering (Subtotal x 10%):$13,370 Opinion of Probable Annual Capital Replacement Fund Contribution:$180,500 Note: Annual contribuƟons do not account for annual inflaƟon. Harbour Engineering Joint Venture Glace Bay Collection System Pre-Design Brief 30 CHAPTER 9 REFERENCES Environment Canada (2006) –Atlantic Canada Wastewater Gidelines Manual for Collection, Treatment and Disposal. Harbour Engineering Inc. (2011).Cape Breton Regional Municipality Wastewater Strategy 2009. Nova Scotia Environment (2018).Environment Act. Nova Scotia Utility and Review Board (2013).Water Utility Accounting and Reporting Handbook. UMA Engineering Ltd. (1994). Industrial Cape Breton Wastewater Characterization Programme – Phase II. Water Environment Federation (2009),Design of Wastewater and Stormwater Pumping Stations Harbour Engineering Joint Venture Glace Bay Collection System Pre-Design Brief 31 APPENDIX A Drawings LS-GB1 15441355 (HER MAJESTY THE QUEEN & PWGSC) 15441090 (HER MAJESTY THE QUEEN & PWGSC) 15437791 (HER MAJESTY THE 15437742 (HER MAJESTY THE QUEEN & PWGSC) 15437718 (CBRM) CSO-1 QUEEN & PWGSC) 15440969 (NEW ABERDEEN GARDEN TOWNHOUSES INC.) 15440936 (YOUTH FOR CHRIST CANADA) 15526668 (HER MAJESTY THE QUEEN & PWGSC) 450mmØ 200mmØ 150mmØ EXISTING OUTFALL (GB1) GB2 GB3 GB4 GB5 450mmØ 250mmØ 100m m Ø 20 0 m m Ø COO L I N G S T W A L L A C E R D KHAL S A D R WEST AV E EL E V E N T H S T S H E A ' S L A N E SIX T H S T CENTRE A V E EIG H T H S T SE V E N T H S T FI R S T S T SE C O N D S T LS-GB2 CSO-2 CSO-3 CSO-4 WA L L A C E R d . CO N N E C T I O N WA L L A C E R d . LI F T S T A T I O N PR E S S U R E S E W E R GR A V I T Y S E W E R EL E V E N T H S t . CO N N E C T I O N EL E V E N T H S t . LI F T S T A T I O N SH E A ' S L A N E CO N N E C T I O N EI G H T H S t . CO N N E C T I O N CS O - 3 SE V E N T H S t . CO N N E C T I O N FI R S T S t . CO N N E C T I O N SE C O N D S t . CO N N E C T I O N AI R R E A L E A S E CH A M B E R 1 ENVIRONMENTAL RISK ASSESSMENTS & PRELIMINARY DESIGN TGB TGB TAB JRS 18-7116 1:2500 MARCH 2019 HA R B O U R E N G I N E E R I N G J O I N T V E N T U R E , 2 7 5 C H A R L O T T E S T R E E T , S Y D N E Y , N S , B 1 P 1 C 6 A B ISSUED FOR DRAFT BRIEF ISSUED FOR FINAL BRIEF 02/27/18 03/22/19 JRS JRS WALLACE Rd. CONNECTION to FIRST St. LIFT STATION DATE DESIGN DRAWN PROJECT NO. SHEET NO. No.DATE BYISSUED FOR written permission from Dillon Consulting Limited. than those intended at the time of its preparation without prior Do not scale dimensions from drawing. Report any discrepancies to Dillon Consulting Limited. Verify elevations and/or dimensions on drawing prior to use. Conditions of Use REVIEWED BY CHECKED BY Do not modify drawing, re-use it, or use it for purposes other SCALEj o i n t v e n t u r e PLAN 1:2500 PROFILE 1:2500 (HOR.) 1:500 (VERT.) 15431122 (ANNIE LORRAINE MC DONALD) 15739113 (ROAD PARCEL OWNER UNDETERMINED) FI R S T S T SE C O N D S T UP P E R N O R T H S T ROO S T S T VI V I A N S T 15437718 (CBRM) TIM M E R M A N S T 15531023 (HER MAJESTY THE QUEEN and PUBLIC WORKS GOVERN SERVICES CANADA) 15531064 (HER MAJESTY THE QUEEN and PUBLIC WORKS GOVERN SERVICES CANADA) GB6 GB7 45 0 m m Ø 450 m m Ø LS-GB3 RO O S T S t . CO N N E C T I O N FI R S T S t . CO N N E C T I O N UP E E R N O R T H S t . LI F T S T A T I O N UP P E R N O R T H S t . CO N N E C T I O N 2 ENVIRONMENTAL RISK ASSESSMENTS & PRELIMINARY DESIGN TGB TGB TAB JRS 18-7116 1:2500 MARCH 2019 HA R B O U R E N G I N E E R I N G J O I N T V E N T U R E , 2 7 5 C H A R L O T T E S T R E E T , S Y D N E Y , N S , B 1 P 1 C 6 A B ISSUED FOR DRAFT BRIEF ISSUED FOR FINAL BRIEF 02/27/18 03/20/19 JRS JRS FIRST St. LIFT STATION to UPPER NORTH St. LIFT STATION DATE DESIGN DRAWN PROJECT NO. SHEET NO. No.DATE BYISSUED FOR written permission from Dillon Consulting Limited. than those intended at the time of its preparation without prior Do not scale dimensions from drawing. Report any discrepancies to Dillon Consulting Limited. Verify elevations and/or dimensions on drawing prior to use. Conditions of Use REVIEWED BY CHECKED BY Do not modify drawing, re-use it, or use it for purposes other SCALEj o i n t v e n t u r e PLAN 1:2500 PROFILE 1:2500 (HOR.) 1:500 (VERT.) UPPER NORTH ST O C E A N A V E ESS E X S T LOWE R N O R T H S T MA I N S T BEACH S T B E L L S T RO O S T S T VIVIAN S T 15393721 (CBRM) 15821127 (OWNER UNKNOWN) 15524481 (CBRM) 15654882 (GLACE BAY MINERS FORUM CO LTD CBRM) 15864085 (CBRM) 15408867 (HOPKINS H LTD) 300mmØ 15850555 (CAMERON'S BUILDING SUPPLIES LTD) 15524473 (PUBLIC WORKS AND 15821119 (CHARLES H RIGBY) LS-GB3 WWTP SITE proposed outfall GOVERNMENT SERVICES CANADA) AI R RE L E A S E C H A M B E R UP P E R N O R T H S t . CO N N E C T I O N PR O P O S E D WA S T E W A T E R T R E A T M E N T P L A N T 3 ENVIRONMENTAL RISK ASSESSMENTS & PRELIMINARY DESIGN TGB TGB JRS JRS 18-7116 1:2500 MARCH 2019 HA R B O U R E N G I N E E R I N G J O I N T V E N T U R E , 2 7 5 C H A R L O T T E S T R E E T , S Y D N E Y , N S , B 1 P 1 C 6 A B C ISSUED FOR DRAFT BRIEF ISSUED FOR FINAL BRIEF RE-ISSUED FOR FINAL BRIEF 02/27/18 03/20/19 06/30/20 JRS JRS JRS UPPER NORTH St. LIFT STATION to WWTP and Bell St. DATE DESIGN DRAWN PROJECT NO. SHEET NO. No.DATE BYISSUED FOR written permission from Dillon Consulting Limited. than those intended at the time of its preparation without prior Do not scale dimensions from drawing. Report any discrepancies to Dillon Consulting Limited. Verify elevations and/or dimensions on drawing prior to use. Conditions of Use REVIEWED BY CHECKED BY Do not modify drawing, re-use it, or use it for purposes other SCALEj o i n t v e n t u r e PLAN 1:2500 PROFILE 1:2500 (HOR.) 1:500 (VERT.) 1 6 ___ 1 6 ___ FLUSH MOUNT ALUMINUM HATCH C/W SAFETY GATE. CLEAR OPENING 900x1500 100Ø VENT AND 150Ø CAP FLOW METER ON VERTICAL (TYP.) AIR RELEASE VALVE (TYP.) WATER SERVICE CHECK VALVE ANDPLUG VALVE ON VERTICAL (TYP.2) CONCRETE SLAB DAVITSOCKET ELECTRICAL ROOMPROCESS ROOM GENERATOR ROOM DIESEL GENERATOR SET EXHAUST LOUVER INTAKE LOUVER 7661 281421692679 4267 800800 550 450 j o i n t v e n t u r e DATE DESIGN DRAWN PROJECT NO. SHEET NO. No.DATE BYISSUED FOR written permission from Dillon Consulting Limited. than those intended at the time of its preparation without prior Do not scale dimensions from drawing. Report any discrepancies to Dillon Consulting Limited.Verify elevations and/or dimensions on drawing prior to use. Conditions of Use REVIEWED BY CHECKED BY Do not modify drawing, re-use it, or use it for purposes other SCALE FILENAME: C:\PROJECTWISE\WORKING DIRECTORY\PROJECTS 2018\54MSR\DMS30805\PORT MORIEN PUMP STATION DRAWING BLOCK.DWG PLOTTED BY: RODGERS, MATTHEW PLOT DATE: 2018-06-25 @ 2:41:31 PM PLOT SCALE: 1:2.585 PLOT STYLE: CANRAIL - MARY RIVER.CTB NTSAISSUED FOR DRAFT DESIGN BRIEF 03/11/19 JRS 18-7116OF 7 FUTURE WASTEWATER TREATMENT SYSTEMS IN CBRM ENVIRONMENTAL RISK ASSESSMENTS & PRELIMINARY DESIGN MARCH 2019 MSR ASW 4 ASW MAB PLAN GLACE BAY DUPLEX LIFT STATIONS SCALE:SCALE: NTS WET WELL - ABOVE GRADE SCALE:SCALE: MODEL VIEW I TOP OF CONCRETE FLOW METER SWING CHECK VALVE (TYP.2) PLUG VALVE (TYP.3) FORCEMAIN AIR RELEASE VALVE (TYP.) SS PIPE FROM PUMPS 300 1505 730 ELEV. = FIN FLOOR 6.500 m ELEV. = TOP OF WALL 9.200 m FLUSH MOUNT ALUMINUM HATCH C/W SAFETY GATE. CLEAR OPENING 900x1500 PVC INLET PIPE INLET BAFFLE FORCEMAIN 100Ø VENT AND 150Ø VENT CAP j o i n t v e n t u r e DATE DESIGN DRAWN PROJECT NO. SHEET NO. No.DATE BYISSUED FOR written permission from Dillon Consulting Limited. than those intended at the time of its preparation without prior Do not scale dimensions from drawing. Report any discrepancies to Dillon Consulting Limited.Verify elevations and/or dimensions on drawing prior to use. Conditions of Use REVIEWED BY CHECKED BY Do not modify drawing, re-use it, or use it for purposes other SCALE FILENAME: C:\PROJECTWISE\WORKING DIRECTORY\PROJECTS 2018\54MSR\DMS30805\PORT MORIEN PUMP STATION DRAWING BLOCK.DWG PLOTTED BY: RODGERS, MATTHEW PLOT DATE: 2018-06-25 @ 2:41:31 PM PLOT SCALE: 1:2.585 PLOT STYLE: CANRAIL - MARY RIVER.CTB NTSAISSUED FOR DRAFT DESIGN BRIEF 03/11/19 JRS 18-7116OF 7 FUTURE WASTEWATER TREATMENT SYSTEMS IN CBRM ENVIRONMENTAL RISK ASSESSMENTS & PRELIMINARY DESIGN MARCH 2019 MSR ASW 5 ASW MAB SECTIONS GLACE BAY DUPLEX LIFT STATIONS SCALE:SCALE: NTS SECTION 1 SCALE:SCALE: NTS WET WELL - BELOW GRADE 250Ø PLUG VALVE (TYP.) 250Ø FLOW METER (TYP.) 250Ø CHECK VALVE (TYP) 1 7 ___ 1 7 ___ 2 7 ___2 7 ___ ELECTRICAL ROOM 250Ø PLUG VALVE (TYP) AIR RELEASE VALVE TO BE VENTED TO WET WELL (TYP) FORCEMAIN 1250 250Ø PROCESS PIPING 250Ø 90 DEGREE BEND 250Ø PROCESS PIPING250Øx250Øx250Ø TEE (TYP.) 500 GENERATOR ROOM 7733 2121 2705 2907 7980 54472536 2900 1 7 ___ 1 7 ___ WET WELL FOOTING 150Ø VENT AND 200Ø CAP INLET BAFFLE SEWER INLET 2400 3600 FLUSH MOUNT ALUMINUM HATCH C/W WITH SAFETY GRATE SCALE:SCALE: 1 : 25 PLAN SCALE:SCALE: 3D MODEL j o i n t v e n t u r e DATE DESIGN DRAWN PROJECT NO. SHEET NO. No.DATE BYISSUED FOR written permission from Dillon Consulting Limited. than those intended at the time of its preparation without prior Do not scale dimensions from drawing. Report any discrepancies to Dillon Consulting Limited.Verify elevations and/or dimensions on drawing prior to use. Conditions of Use REVIEWED BY CHECKED BY Do not modify drawing, re-use it, or use it for purposes other SCALE FILENAME: C:\PROJECTWISE\WORKING DIRECTORY\PROJECTS 2018\54MSR\DMS30805\PORT MORIEN PUMP STATION DRAWING BLOCK.DWG PLOTTED BY: RODGERS, MATTHEW PLOT DATE: 2018-06-25 @ 2:41:31 PM PLOT SCALE: 1:2.585 PLOT STYLE: CANRAIL - MARY RIVER.CTB A ISSUED FOR DRAFT DESIGN BRIEF 03/15/19 JRS 1 : 25 18-7116OF 7 FUTURE WASTEWATER TREATMENT SYSTEMS IN CBRM ENVIRONMENTAL RISK ASSESSMENTS & PRELIMINARY DESIGN MARCH 2019 MSR ASW 6 ASW MAB PLAN GLACE BAY LS #3 SCALE:SCALE: 1 : 25 WET WELL PLAN 250Ø PIPE PUMP GUIDE BARS (TYP.) DISCHARGE PIPE SUPPORTS (TYP.) FORCEMAIN 250Ø PLUG VALVE (TYP.) 250Ø FLOW METER (TYP.) 250Ø PLUG VALVE (TYP.3) AIR RELEASE VALVE (TYP.3) PUMP LIFTING CHAIN TO EXTEND AND ATTACH TO CHAMBER LID (TYP.3) WET WELL BENCHING CONCRETE MUD SLABCLEAR STONE BEDDING (TYP.) PRESSURE TRANSDUCER (TYP.) MULTITRODE LIQUID LEVEL SENSOR (TYP.)TIE DOWN ANCHOR SYSTEM TO RESIST BUOYANT UPLIFT PRESSURE. PRECAST CONCRETE BASE, RISERS AND COVER (TYP.) LIQUID LEVEL SENSOR SUPPORT BRACKET (TYP.) HORIZONTAL LEVEL REGULATOR HANGER BASE SLAB TO EXTEND DI PVC TRANSITION COUPLING AT 1m OUTSIDE FOUNDATION (TYP.) 250Ø CHECK VALVE (TYP3.) 250Ø AIR RELEASE VALVE FIXED FLANGED "SPOOL" PIECE (TYP.) INLET BAFFLE. SEE PLAN INLET 250Ø CHECK VALVE AND 250Ø PLUG VALVE ON HORIZONTAL. (TYP.3) SEE PLAN. 250Ø PIPE (TYP.) PRECAST CONCRETE BASE, RISERS AND COVER (TYP.) PUMP (TYP.) WET WELL BENCHING NOTE: BAFFLE WALL NOT SHOWN FOR CLARITY. SEE PLAN. AIR RELEASE VALVE (TYP.) j o i n t v e n t u r e DATE DESIGN DRAWN PROJECT NO. SHEET NO. No.DATE BYISSUED FOR written permission from Dillon Consulting Limited. than those intended at the time of its preparation without prior Do not scale dimensions from drawing. Report any discrepancies to Dillon Consulting Limited.Verify elevations and/or dimensions on drawing prior to use. Conditions of Use REVIEWED BY CHECKED BY Do not modify drawing, re-use it, or use it for purposes other SCALE FILENAME: C:\PROJECTWISE\WORKING DIRECTORY\PROJECTS 2018\54MSR\DMS30805\PORT MORIEN PUMP STATION DRAWING BLOCK.DWG PLOTTED BY: RODGERS, MATTHEW PLOT DATE: 2018-06-25 @ 2:41:31 PM PLOT SCALE: 1:2.585 PLOT STYLE: CANRAIL - MARY RIVER.CTB A ISSUED FOR DRAFT DESIGN BRIEF 03/15/19 JRS 1 : 25 18-7116OF 7 FUTURE WASTEWATER TREATMENT SYSTEMS IN CBRM ENVIRONMENTAL RISK ASSESSMENTS & PRELIMINARY DESIGN MARCH 2019 MSR ASW 7 ASW MAB SECTIONS GLACE BAY LS #3 SCALE:SCALE: 1 : 25 SECTION 1 SCALE:SCALE: 1 : 25 SECTION 2 Harbour Engineering Joint Venture Glace Bay Collection System Pre-Design Brief 32 APPENDIX B Flow Master Reports Harbour Engineering Joint Venture Glace Bay Collection System Pre-Design Brief 33 APPENDIX C Opinion of Probable Design & Construction Costs OPINION OF PROBABLE COST, CLASS 'C' Preliminary Collection Project Manager:D. McLean and Interception Infrastructure Costs Only Est. by: J. Sheppard Checked by: D.McLean Glace Bay, NS PROJECT No.:187116 (Dillon) 182402.00 (CBCL) UPDATED:June 30, 2020 NUMBER UNIT Linear Infrastructure $3,958,475.00 200 mm Diameter PVC gravity sewer 650 m $320.00 $208,000.00 250 mm Diameter PVC gravity sewer 200 m $330.00 $66,000.00 300 mm Diameter PVC gravity sewer 30 m $340.00 $10,200.00 375 mm Diameter PVC gravity sewer 70 m $360.00 $25,200.00 450 mm Diameter PVC gravity sewer 1,340 m $410.00 $549,400.00 450 mm Diameter PVC gravity sewer (Deep Installation)510 m $600.00 $306,000.00 1200 mm Diameter PVC gravity sewer (Deep Installation)150 m $1,000.00 $150,000.00 100 mm Diameter PVC forcemain 465 m $250.00 $116,250.00 150 mm Diameter PVC forcemain 265 m $285.00 $75,525.00 250 mm Diameter PVC forcemain 1,250 m $320.00 $400,000.00 Outfall 325 m $3,600.00 $1,170,000.00 Air Release Chamber 2 each $13,500.00 $27,000.00 Blow Off Connection 1 each $7,500.00 $7,500.00 Precast Manhole (1200mm dia.)36 each $5,500.00 $198,000.00 Precast Manhole (3000mm dia)3 each $45,000.00 $135,000.00 Connection to Existing Main (typ)13 each $8,000.00 $104,000.00 Connection to Existing Main (with 3000mm MH)1 each $100,000.00 $100,000.00 Closed Circuit Televsion Inspection 2,800 m $8.00 $22,400.00 Trench Excavation - Rock 3,200 m3 $60.00 $192,000.00 Trench Excavation - Unsuitable Material 3,200 m3 $10.00 $32,000.00 Replacement of Unsuitable with Site Material 1,600 m3 $10.00 $16,000.00 Replacement of Unsuitable with Pit Run Gravel 1,600 m3 $30.00 $48,000.00 Wallace Road Lift Station $586,800.00 Pump Station 1 L.S.$500,000.00 $500,000.00 Site Work 1 L.S.$85,000.00 $85,000.00 Mass Excavation - Rock 20 m3 $60.00 $1,200.00 MassExcavation - Unsuitable Material 20 m3 $10.00 $200.00 Replacement of Unsuitable with Site Material 10 m3 $10.00 $100.00 Replacement of Unsuitable with Pit Run Gravel 10 m3 $30.00 $300.00 West Ave. Lift Station $564,500.00 Pump Station 1 L.S.$500,000.00 $500,000.00 Site Work 1 L.S.$60,000.00 $60,000.00 Mass Excavation - Rock 50 m3 $60.00 $3,000.00 MassExcavation - Unsuitable Material 50 m3 $10.00 $500.00 Replacement of Unsuitable with Site Material 25 m3 $10.00 $250.00 Replacement of Unsuitable with Pit Run Gravel 25 m3 $30.00 $750.00 Upper North Street Lift Station $954,500.00 Pump Station 1 L.S.$900,000.00 $900,000.00 Site Work 1 L.S.$50,000.00 $50,000.00 Mass Excavation - Rock 50 m3 $60.00 $3,000.00 MassExcavation - Unsuitable Material 50 m3 $10.00 $500.00 Replacement of Unsuitable with Site Material 25 m3 $10.00 $250.00 Replacement of Unsuitable with Pit Run Gravel 25 m3 $30.00 $750.00 Combined Sewer Overflow $900,000.00 Combined Sewer Overflow (CS0-1 to CSO-5)5 L.S.$100,000.00 $500,000.00 Combined Sewer Overflow (CSO-6)1 L.S.$400,000.00 $400,000.00 SUBTOTAL (Construction Cost)$6,964,275.00 Contingency Allowance (Subtotal x 25 %)$1,742,000.00 Engineering (Subtotal x 10 %)$697,000.00 Land Acquisition $207,600.00 OPINION OF PROBABLE COST (Including Contingency)$9,610,875.00 THIS OPINION OF PROBABLE COSTS IS PRESENTED ON THE BASIS OF EXPERIENCE, QUALIFICATIONS, AND BEST JUDGEMENT. IT HAS BEEN PREPARED IN ACCORDANCE WITH ACCEPTABLE PRINCIPLES AND PRACTICIES, MARKET TRENDS, NON-COMPETITIVE BIDDING SITUATIONS, UNFORSEEN LABOUR AND MATERIAL ADJUSTMENTS AND THE LIKE ARE BEYOND THE CONTROL OF HEJV. AS SUCH WE CANNOT WARRANT OR GUARANTEE THAT ACTUAL COSTS WILL NOT VARY FROM THE OPINION PROVIDED. EXTENDED TOTALS QUANTITY TOTALUNIT COSTITEM DESCRIPTION PREPARED FOR: Cape Breton Regional Municipality March 27, 2020 HEJV Glace Bay Wastewater System Pre‐Design Summary Report Appendices APPENDIX B  Glace Bay Treatment System  Pre‐Design Brief     182402.00   ●   Final Brief   ●   June 2020  Environmental Risk Assessments & Preliminary  Design of Seven Future Wastewater Treatment  Systems in CBRM    Glace Bay Wastewater Treatment Plant  Preliminary Design Brief  Prepared by:      Prepared for:    March 2020                                                               Glace Bay WW Treatment System  Preliminary Design Brief – Final  June 30, 2020 Darrin McLean Mike Abbott  Dave McKenna  Holly Sampson  Glace Bay WW Treatment System  Preliminary Design Brief – Revision 1  April 16, 2020 Darrin McLean Mike Abbott  Dave McKenna  Holly Sampson  Glace Bay WW Treatment System  Preliminary Design Brief  January 29, 2019 Darrin McLean Mike Abbott  Dave McKenna  Holly Sampson  Issue or Revision Date Issued By: Reviewed By: Prepared By:  This document was prepared for the party indicated herein. The material and information in the document reflects HE’s opinion and best judgment based on the information available at the time of preparation. Any use of this document or reliance on its content by third parties is the responsibility of the third party. HE accepts no responsibility for any damages suffered as a result of third party use of this document.                             182402.00  March 27, 2020   182402.00 PRELIMINARY DESIGN GLACE BAY_JUNE30/mk  ED: 30/06/2020 14:24:00/PD: 30/06/2020 14:26:00   275 Charlotte Street    Sydney, Nova Scotia    Canada B1P 1C6        Tel:  902‐562‐9880    Fax:  902‐562‐9890  June 30, 2020      Matt Viva, P.Eng.  Manager Wastewater Operations  Cape Breton Regional Municipality (CBRM)  320 Esplanade,  Sydney, NS B1P 7B9      Dear Mr. Viva:    RE: Glace Bay Wastewater Treatment Plant Preliminary Design – Final    Enclosed, please find a copy of the Draft Preliminary Design Brief – Final for the  Glace Bay Wastewater Treatment Plant (WWTP).    The report presents an evaluation of four treatment process alternatives for the  Glace Bay WWTP.  It also presents a preliminary design based on the  recommended SBR treatment process.    If you have any questions or require clarification on the content presented in  the attached report, please do not hesitate to contact us.    Yours very truly,    Harbour Engineering Joint Venture           Prepared by: Reviewed by:  Holly Sampson, M.A.Sc., P.Eng. Mike Abbott, P.Eng., M.Eng.  Intermediate Chemical Engineer Manager Process Department  Direct:  902‐539‐1330  E‐Mail:  hsampson@cbcl.ca               Reviewed by:   Dave McKenna, P.Eng., M.Eng.   Associate/Technical Service Lead      Project No: 182402.00 (CBCL)  187116.00 (Dillon)         March 27, 2020   HEJV Glace Bay WWTP Preliminary Design Brief i Contents    CHAPTER 1 Introduction .......................................................................................................... 1  1.1 Introduction .................................................................................................................. 1  1.2 Background ................................................................................................................... 1  1.3 Objectives ..................................................................................................................... 1  Chapter 2 Existing Conditions ................................................................................................ 2  2.1 Description of Existing Infrastructure ........................................................................... 2  2.2 Wastewater Flow Characteristics ................................................................................. 2  2.2.1 Dry Weather Flows ........................................................................................... 3  2.2.3 Average Flows ................................................................................................... 4  2.2.2 Peak Day Flows ................................................................................................. 6  2.2.3  Extraneous Flow Reduction .............................................................................. 6  2.3 Wastewater Quality Characteristics ............................................................................. 6  2.4 Wastewater Loading Analysis ....................................................................................... 7  Chapter 3 Basis of Design ...................................................................................................... 9  3.1 Service Area Population ................................................................................................ 9  3.2 Design Flows and Loads ................................................................................................ 9  3.3 Effluent Requirements ................................................................................................ 13  3.4 Summary ..................................................................................................................... 13  Chapter 4 Treatment Process Alternatives ........................................................................... 15  4.1 Preliminary Treatment ................................................................................................ 15  4.1.1 Screening ........................................................................................................ 15  4.1.2 Grit Removal ................................................................................................... 16  4.2 Secondary Treatment ................................................................................................. 16  4.2.1 Site‐specific Suitability .................................................................................... 17  4.2.2 Description of Candidate Processes for Secondary Treatment ...................... 19  4.3 Disinfection ................................................................................................................. 25  4.3.1 CAS, MBBR or MBR Effluent Disinfection ....................................................... 25  4.3.2 SBR Effluent Disinfection ................................................................................ 26  4.4 Sludge Management ................................................................................................... 26  4.5 Secondary Treatment Option Evaluation ................................................................... 26  4.5.1 Capital Cost Estimate ...................................................................................... 26    HEJV Glace Bay WWTP Preliminary Design Brief ii 4.5.2 Operating and Lifecycle Cost Estimate ........................................................... 27  4.5.3 Qualitative Evaluation Factors ........................................................................ 28  4.5.4 Recommended Secondary Treatment Process ............................................... 29  Chapter 5 Preliminary Design .............................................................................................. 30  5.1 Process Description ..................................................................................................... 30  5.2 Unit Process Descriptions ........................................................................................... 30  5.2.1 Preliminary Treatment .................................................................................... 30  5.2.2 Secondary Treatment ..................................................................................... 31  5.2.3 Disinfection ..................................................................................................... 32  5.2.4 Sludge Management ....................................................................................... 33  5.3 Facilities Description ................................................................................................... 33  5.3.1 Civil and Site Work .......................................................................................... 34  5.3.2 Architectural ................................................................................................... 34  5.3.3 Mechanical ...................................................................................................... 35  5.3.4 Electrical .......................................................................................................... 35  5.3.5 Lighting ........................................................................................................... 35  5.3.6 Instrumentation .............................................................................................. 35  Chapter 6 Project Costs ....................................................................................................... 38  6.1 Opinion of Probable Capital Costs .............................................................................. 38  6.2 Opinion of Annual Operating Costs ............................................................................ 38  6.3 Opinion of Annual Capital Replacement Fund Contributions ..................................... 38      Appendices     A Flow Meter Data    B Environmental Risk Assessment      C Preliminary Design Drawings            HEJV Glace Bay WWTP Preliminary Design Brief 1 CHAPTER 1  INTRODUCTION    1.1 Introduction  Harbour Engineering Joint Venture (HEJV) was retained by the Cape Breton Regional Municipality  (CBRM) to provide engineering services associated with the preliminary design of a wastewater  treatment plant (WWTP) for the community of Glace Bay, Nova Scotia as part of the greater  Environmental Risk Assessment and Preliminary Design of 7 Future Wastewater Treatment Systems  in CBRM project.  This report will present preliminary design options for the proposed WWTP, as  well as a detailed discussion of the processes involved and their associated costs.    1.2 Background  The wastewater collection system in the community of Glace Bay (GB), as in many communities  throughout CBRM, currently discharges untreated wastewater to the Atlantic Ocean.  The evolution  of the existing wastewater collection and disposal systems in CBRM included the creation of clusters  / neighbourhoods / regions of a community which were serviced by a common wastewater  collection system tied to a local marine outfall.  Such design approaches have traditionally been the  most cost‐effective manner of providing centralized wastewater collection, and the marine  environment has long been the preferred receiving water given the available dilution.  Due to a  changing regulatory environment, CBRM is working toward intercepting and treating the  wastewater in these communities prior to discharge.    1.3 Objectives  The objectives of this report will be to:   Establish design parameters for a new WWTP;   Evaluate treatment process alternatives; and   Present a preliminary engineering design, with capital and operating cost estimates, for a  new WWTP to meet the design requirements.         HEJV Glace Bay WWTP Preliminary Design Brief 2 CHAPTER 2 EXISTING CONDITIONS    2.1 Description of Existing Infrastructure  The Glace Bay wastewater collection system includes a significant portion of the footprint of the former  Town of Glace Bay and the community of Reserve Mines.  The remainder of the Glace Bay area flows to  the Dominion system.  The system consists of approximately 118km of gravity sewer and 3.1km of force  main.  It also includes six lift stations at the following locations:   Brookside Street;   Lake Road;   South Street;   Reserve Street;   McLeods Road; and   Railway Street.    The majority of the wastewater is already directed to the main outfall at Glace Bay Harbour, with the  remainder being discharged through eight additional outfalls along the coast to the north of the main  outfall.  The outfalls are located at or near the following locations:   Glace Bay Harbour (main outfall);   Wallace Road;   Shea’s Lane;   Centre Avenue;   East Avenue (2);   Second Street; and   Upper North Street (2).    2.2 Wastewater Flow Characteristics  Flow meters were installed in various portions of the sewer system in fall of 2017, winter/spring of 2018  and/or summer of 2018 with results summarized in this section.  Data was collected from four  flowmeters installed in fall of 2017 as part of a different project.  Three flowmeters were installed in  spring 2018 to collect flow data from additional areas of the collection system.  Flow meters were  subsequently re‐installed at two of these locations in summer of 2018 to determine whether the high  flows observed during the spring metering program were seasonally influenced.  Flow meter data is  plotted on a series of Figures in Appendix A.  The dates of flow data collection at each location are  summarized in Table 2.1.                HEJV Glace Bay WWTP Preliminary Design Brief 3 Table 2.1 Flow Meter Installation Summary  Meter Dates  Park Street March 6 ‐ April 30, 2018  August 7 ‐ September 5, 2018  May Street February 15 ‐ May 8, 2018  July 27 ‐ August 7, 2018  Main Street February 15 ‐ May 8, 2018  GB2 November 23 ‐ December 21, 2017  GB6 November 29, 2017 ‐ January 4, 2018  GB7 November 30, 2017 ‐ January 4, 2018  Luke Street October 19 ‐ November 21, 2017    2.2.1 Dry Weather Flows  The average dry weather flow (ADWF) results for each of the meter locations and meter periods is  summarized in Table 2.2.  The average dry weather flow was defined as the average flow for the days  that met the following criteria:   No rain within the last 24 hours (greater than 1mm); and    No more than 5 mm in the previous 48 hours.    Table 2.2 Flow Meter Data Summary – Average Dry Weather Flows  Meter Area (ha) Population ADWF (m3/day) ADWF (L/p/d)  Fall Spring Summer Fall Spring Summer  Park Street 127 1893 ‐ 4412 1734 ‐ 2331 916  May Street 245 2790 ‐ 5683 3087 ‐ 2037 1106  Main Street 113 1868 ‐ 1924 ‐  ‐ 1030 ‐  GB2 39 504 542 ‐  ‐ 1075 ‐  ‐  GB6 46 713 508 ‐  ‐ 712 ‐  ‐  GB7 14 140 164 ‐  ‐ 1171 ‐  ‐  Luke 81 1268 762 ‐  ‐ 601 ‐  ‐  Metered Total 665 9,176   Serviced Total 1033 14,536     Flow data collected during the spring of the year was considerably higher than data collected during the  remainder of the year.  Even during periods of no rain, it is clear that extraneous flow due to high  groundwater conditions results in flow conditions that are not representative of dry weather flow.  It  was also found that surface water was entering the sewer system upstream of the Park Street meter in a  location where the sewer crossed Renwick Brook.     If the spring data for Park Street and May Street was omitted as not being representative of dry weather  conditions, the average dry weather flow for the metered catchment areas is 8,721 m3/day for 9,176  people and 665 ha (Table 2.3).  This results in a per capita ADWF of 950 L/p/d based on population or  13.1 m3/ha/d based on catchment area.  The spring meter data for Main Street was included, as there  was no summer data collected for this location.  Also, as the spring metering period for Main Street  extended from February 15 through May 8, 2019, most of the dry weather flow data from this location  was actually collected during winter months.       HEJV Glace Bay WWTP Preliminary Design Brief 4 Table 2.3 Metered ADWF  Meter Area (ha) Population ADWF (m3/day) ADWF (L/p/d) ADWF (m3/ha/d)  Park Street(1) 127 1,893 1,734 916 13.7  May Street(1) 245 2,790 3,087 1,106 12.6  Main Street(2) 113 1,868 1,924 1,030 17.0  GB2(3) 39 504 542 1,075 13.9  GB6(3) 46 713 508 712 11.0  GB7(3) 14 140 164 1,171 11.7  Luke(3) 81 1,268 762 601 9.4  Metered Total 665 9,176 8,721 950 13.1  Notes   (1) Metered during Summer 2018   (2) Metered during Winter/Spring 2018 (3) Metered during Fall 2017     In order to determine a projected total ADWF, the flow for the unmetered areas were calculated using  per capita flow rates from Table 2.3 of 950 L/p/d and 13.1 m3/ha/d (Table 2.4).  The total projected  ADWF was calculated to be 13,815 m3/d when calculating the unmetered flow based on population.   Calculating the unmetered flow based on area gave a similar result (13,547 m3/d).  The metered data  represents approximately 63% of the total population and 64% of the total catchment area.     Table 2.4 Projected ADWF  Parameter Area (ha) Population ADWF (m3/day)  Metered Flow 665 9,176 8,721  Projected Unmetered Flow (by population) ‐ 5,360 5,094  Projected Unmetered Flow (by area) 368 ‐ 4,826  Projected Total Flow (by population) 13,815  Projected Total Flow (by area) 13,547    2.2.3 Average Flows  The average daily flow (ADF) for each of the meter locations and meter periods is summarized in Table  2.5.  This incorporates all metered data, including rain events.                         HEJV Glace Bay WWTP Preliminary Design Brief 5 Table 2.5 Flow Meter Data Summary – Average Daily Flows  Meter Area (ha) Population ADF (m3/day) ADF (L/p/d)  Fall Spring Summer Fall Spring Summer  Park Street 127 1,893 ‐ 4,864 1,888 ‐ 2,569 997  May Street 245 2,790 ‐ 7,623 3,112 ‐ 2,732 1,115  Main Street 113 1,868 ‐ 2,760 ‐  ‐ 1,478 ‐  GB2 39 504 819 ‐  ‐ 1,625 ‐  ‐  GB6 46 713 873 ‐  ‐ 1,224 ‐  ‐  GB7 14 140 251 ‐  ‐ 1,793 ‐  ‐  Luke 81 1,268 828 ‐  ‐ 653 ‐  ‐  Metered Total 665 9,176   Serviced Total 1,033 14,536     If the spring data was again omitted for Park Street and May Street, the average daily flow for the  metered catchment areas is 10,531 m3/day for 9,176 people and 665 ha (Table 2.6).  This results in a per  capita ADF of 1,148 L/p/d based on population or 15.8 m3/ha/d based on catchment area.  Spring data  was omitted from the dataset as it appears to be highly influenced by both high levels of infiltration  during dry weather conditions, thought to be due to a higher groundwater table, as well as inflows.   CBRM intends to undertake a program of inflow and infiltration (I&I) reduction in the Glace Bay sewer  system in order to reduce the flows in the sewer system.     Table 2.6 Metered ADF (spring flows omitted for Park Street and May Street)  Meter Area (ha) Population ADF (m3/day) ADF (L/p/d) ADF (m3/ha/d)  Park Street(1) 127 1,893 1,888 997 14.9  May Street(1) 245 2,790 3,112 1,115 12.7  Main Street(2) 113 1,868 2,760 1,478 24.4  GB2(3) 39 504 819 1,625 21.0  GB6(3) 46 713 873 1,224 19.0  GB7(3) 14 140 251 1,793 17.9  Luke(3) 81 1,268 828 653 10.2  Metered Total 665 9,176 10,531 1,148 15.8  Notes   (1) Metered during Summer 2018   (2) Metered during Spring/Winter 2018  (3) Metered during Fall 2017     In order to determine a projected total ADF, the flow for the unmetered areas were calculated using per  capita flow rates from Table 2.9 for both population and area (Table 2.7).  The total projected ADF was  calculated to be 16,682 m3/d when calculating the unmetered flow based on population.  When  calculating the unmetered flow based on area, the result was similar (16,359 m3/day).  Note that spring  data was omitted from this analysis.  Prior to CBRM reducing the level of I&I in the sewer system, the  actual average flows reaching the WWTP are expected to be higher than indicated by this calculation.     HEJV Glace Bay WWTP Preliminary Design Brief 6 The metered data represents approximately 63% of the total population and 64% of the total catchment  area.     Table 2.7 Projected ADF (spring flows omitted)  Parameter Area (ha) Population ADF (m3/day)  Metered Flow 665 9,176 10,531  Projected Unmetered Flow (by population) ‐ 5,360 6,151  Projected Unmetered Flow (by area) 368 ‐ 5,828  Projected Total Flow (by population) 16,682  Projected Total Flow (by area) 16,359    2.2.2 Peak Day Flows  The peak day flow (PDF) for each of the meter locations and meter periods is summarized in Table 2.8.    Table 2.8 Flow Meter Data Summary – Peak Day Flow   Meter (Season) 48hr Rainfall  (mm) Area (ha) Population PDF   m3/day L/p/d m3/ha/d  Park Street (Spring) 51 127 1893 8,140 4,300 64  Park Street (Summer) 49 127 1893 4177 2,207 33  May Street (Spring) 51 245 2790 19,835 7,109 81  Main Street (Spring) 51 113 1868 6,546 3,504 58  GB2 (Fall) 36.8 39 504 3,521 6,986 90  GB6 (Fall) 36.8 46 713 5,163 7,241 112  GB7 (Fall) 36.8 14 140 1,173 8,379 84  Luke (Fall) 9.8 81 1268 1,251 987 15    2.2.3  Extraneous Flow Reduction  It is strongly recommended that additional metering should be carried out in Glace Bay to locate and  reduce sources of inflow and infiltration prior to detailed design.     Efforts to identify and prevent excessive extraneous flow are necessary to allow successful and cost‐ effective treatment of the wastewater, and are assumed to take place in order to realize the design  parameters.  If these flows are not able to be removed to the degree assumed, then the WWTP may  experience significant occurrences and/or periods of flow bypass because the design capacity of the  plant is less than the actual flows that the collection system conveys.       2.3 Wastewater Quality Characteristics  HEJV collected one untreated wastewater sample upstream of each of the outfalls in 2018, and the  results are summarized in Table 2.9.  For simplicity, only the parameters of relevance to the preliminary  design are included.  Refer to the ERA report (attached as Appendix B) for the complete analytical  results.  CBRM collected a number of untreated wastewater samples from 2015 through 2017, Dillon  Consulting collected one sample at each of the outfalls in 2014, and UMA Engineering collected a  number of samples in 1992 at the Park Street sewer (upstream of GB8).  The results of these historical  samples, combined with the samples collected by HEJV in 2018, are summarised in Table 2.10.     HEJV Glace Bay WWTP Preliminary Design Brief 7 Table 2.9 2018 Wastewater Characterization Results – General Chemistry  Parameter Outfall  GB1 GB2 GB4 GB5 GB6 GB7 GB8  CBOD5 (mg/L) 32 50 130 84 54 30 64  COD (mg/L) 53 100 200 120 130 41 120  Total NH3‐N (mg/L) 1.4 2.0 3.4 3.8 2.1 0.51 3.7  TSS (mg/L) 25 53 49 41 40 15 50  TP (mg/L) 0.69 0.99 2.2 1.6 1.0 0.3 1.8  TKN (mg/L) 6.0 6.8 16 12 9.2 2.2 13  pH 7.11 7.00 6.79 6.52 7.17 7.18 7.31  Un‐ionized NH3 (mg/L) 0.0049 0.0055 0.0058 0.0035 0.0085 0.0021 0.0207  E. coli (MPN/100mL) 77000 >240000 >240000 130000 >240000 170000 >240000  Nitrate (mg/L) 0.67 0.079 <0.050 0.08 0.79 1.0 <0.050  Nitrite (mg/L) 0.03 0.34 <0.010 0.83 0.06 0.025 <0.010  Nitrate + Nitrite (mg/L) 0.69 0.42 <0.050 0.91 0.85 1.0 <0.050    Table 2.10 Historical Wastewater Characterization Results  Outfall Pop.  TSS (mg/L) CBOD (mg/L) Total Ammonia  (mg/L) TKN (mg/L) pH  #  Samples Avg #  Samples Avg #  Samples Avg #  Samples Avg #  Samples Avg  GB1 558 2 28 2 40 2 2.35 1 6.0 2 7.26  GB2 504 2 54 2 52 2 3.10 1 6.8 2 7.18  GB3 44 1 59 1 290 1 41.0 0 ‐ 1 7.47  GB4 667 28 381 28 43 14 2.17 1 16.0 14 7.33  GB5 118 2 81 2 70 2 3.90 1 12.0 2 6.76  GB6 713 2 61 2 147 2 2.35 1 9.2 2 7.13  GB7 140 2 28 2 43 2 0.56 1 2.2 2 7.18  GB8 11,791 43 105 43 88 2 3.15 5 21.7 26 7.12  Weighted  Average   (by population)  ‐ 110 ‐ 86 ‐ 3.13 ‐ 19.5 ‐ 7.13      2.4 Wastewater Loading Analysis  The theoretical per capita loading rates listed in the Atlantic Canada Wastewater Guidelines Manual  (ACWGM) are 0.08 kg BOD/person/day and 0.09 kg TSS/person/day.  With a total service population of  14,536, this would result in a loading of 1163 kg BOD/day and 1308 kg TSS/day.  Based on an average  dry weather flow of 13,815 m3/day, this would result in average concentrations of 84 mg/L BOD and 95  mg/L TSS during dry weather conditions.     The CBOD concentrations in the wastewater samples collected by HEJV from each of the outfalls ranged  from 30 mg/L to 130 mg/L.  The TSS concentrations in the wastewater samples collected by HEJV from  each of the outfalls ranged from 15 to 53 mg/L.  The TKN concentrations in the wastewater samples  collected by HEJV ranged from 2.2 mg/L to 16 mg/L.  These samples were individual grab samples.  The    HEJV Glace Bay WWTP Preliminary Design Brief 8 average of all samples collected upstream of the main outfall (GB8) was 88 mg/L CBOD, 105 mg/L TSS,  and 21.7 mg/L TKN.  If the average sample results for each outfall location were weighted by service  population, the weighted average would be a CBOD concentration of 86 mg/L, a TSS concentration of  110 mg/L and a TKN concentration of 19.5 mg/L.     Therefore, we have utilized the data in Table 2.11 as the current loading conditions.    Table 2.11 Current Loading Conditions  Parameter Value  Population 14,536  CBOD (mg/L) 86  CBOD (kg/d) 1188  CBOD (kg/cap/d) 0.082  TSS (mg/L) 110  TSS (kg/d) 1520  TSS (kg/cap/d) 0.105  TKN (mg/L) 19.5  TKN (kg/d) 269  TKN (kg/cap/d) 0.019                                                                  HEJV Glace Bay WWTP Preliminary Design Brief 9   CHAPTER 3 BASIS OF DESIGN    3.1 Service Area Population  The primary method used to estimate future wastewater flows and loads is to project current per capita  flows and loads based on estimates of future population.  The population for the Glace Bay service area  was obtained from the 2016 Census data contained in CBRM’s GIS database using the following  procedure: Each residential unit within the service area boundary from CBRM’s structure database was  multiplied by the average household size for the census dissemination area that it falls within.  For Glace  Bay, the service area population was estimated to be 14,536 people in 7,258 residential units.     The population of the CBRM has been declining and this trend is expected to continue.  The latest  population projection study, completed in 2018 by Turner Drake & Partners Ltd., predicted a 17.8%  decrease in population in Cape Breton County between 2016 and 2036.  For this reason, no allocation  has been made for any future population growth.  For the purpose of this preliminary design study,  WWTP sizing will be based on the current population and measured flow data.  While this may seem  overly conservative, due to significant amounts of inflow and infiltration (I&I) observed in sewer systems  in the CBRM, a given population decrease will not necessarily result in a proportional decrease in  wastewater flow.  Therefore, basing the design on current conditions is considered the most reasonable  approach.    3.2 Design Flows and Loads  The projected design flows, based on the flow meter data which was summarized in Section 2.2, are:    Projected ADWF (spring data excluded) of 13,815 m3/day (950 L/p/d)   Projected ADF (spring data excluded) of 16,682 m3/day (1148 L/p/d)    For design purposes, it is assumed that average wastewater flows will approach the ADWF of 13,815  m3/day through a significant I&I reduction program. I&I reduction will be an important component of  the project in order to provide flows and loads that can reasonably be designed for. Size limitations of  the available land on which to construct the WWTP also make I&I reduction key.     Due to the size, the WWTP will be a mechanical treatment plant which cannot be efficiently designed for  too wide of a flow range.  Typical design values for peaking factors range from 2 to 3.5 for mechanical  treatment plants.  As a starting point, a peaking factor of 3 was assumed based on recommendations in  the Industrial Cape Breton Wastewater Characterization Program report by UMA, 1994.  A peaking  factor of 3 would result in a peak flow of 41,445 m3/day (2,851 L/p/d), which will be evaluated further  against current flow data to determine the impact that this peaking factor would have on overflow  events.       HEJV Glace Bay WWTP Preliminary Design Brief 10 Of the 83 days in spring 2018 for which there is meter data, 16 had an average daily flow per capita  greater than 2,851 L/p/d. Note that this involves averaging flows over a one‐day period – there may be  periods of time on other days where the flowrate exceeds these values.  A plot was prepared of the per  capita flows for the combined Main Street, Park Street, and May Street meters during Spring 2018  (Figure 3.1).  The average dry weather and peak design flows are also plotted on this figure on a per  capita basis.  Spring flows represent the worst‐case condition for overflows due to increased base flow  associated with higher groundwater tables, and snow melt.  The per capita flow rates were multiplied by  the total service population to give a projected total flow in m3/day (Figure 3.2).  However, the data was  based on spring flow data from the Main Street, Park Street, and May Street meters only and may not  accurately represent the flow from the other areas of the system.     Figure 3.1 Combined Per Capita Spring Flows for Main Street, Park Street, and May Street Meters                      0 10 20 30 40 50 600 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000 Feb‐14 Feb‐24 Mar‐06 Mar‐16 Mar‐26 Apr‐05 Apr‐15 Apr‐25 May‐05 Ra i n  (m m ) Pe r  Ca p i t a  Fl o w  (L / p / d ) Per Capita Metered Flow (L/p/d)ADWF PF Rain (mm)   HEJV Glace Bay WWTP Preliminary Design Brief 11 Figure 3.2 Projected Spring Flows based on Main Street, Park Street, and May Street Meter Data     For comparison purposes, a plot was prepared (Figure 3.3) of the per capita flows for the Park Street  meter during summer 2018.  The average dry weather and peak design flows are also plotted on this  figure on a per capita basis.  Although the Park Street meter was the only meter with data for this time  period, there was only one event where the metered flow exceeded the peak design flow for the plant  on a per capita basis, and it was associated with a 47.8mm rain event.  As above, the per capita flow  rates were multiplied by the total service population to give a projected total flow in m3/day (Figure  3.4).  However, the data was based on flow data from the Park Street meter location only and may not  accurately represent the flow from the other areas of the system.                          0 10 20 30 40 50 600 20,000 40,000 60,000 80,000 100,000 120,000 140,000 160,000 Feb‐14 Feb‐24 Mar‐06 Mar‐16 Mar‐26 Apr‐05 Apr‐15 Apr‐25 May‐05 Ra i n  (m m ) Pr o j e c t e d  Fl o w  (m 3/d ) Projected Flow ADWF PF Rain (mm)   HEJV Glace Bay WWTP Preliminary Design Brief 12 Figure 3.3 Per Capita Summer Flows for Park Street Meter    Figure 3.4 Projected Summer Flows based on Park Street Meter Data            0 10 20 30 40 50 600 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000 Aug‐06 Aug‐10 Aug‐14 Aug‐18 Aug‐22 Aug‐26 Aug‐30 Sep‐03 Sep‐07 Ra i n  (m m ) Pe r  Ca p i t a  Fl o w  (L / p / d ) Per Capita Metered Flow (L/p/d)PF ADWF Rain (mm) 0 10 20 30 40 50 600 20,000 40,000 60,000 80,000 100,000 120,000 140,000 160,000 Aug‐06 Aug‐10 Aug‐14 Aug‐18 Aug‐22 Aug‐26 Aug‐30 Sep‐03 Sep‐07 Ra i n  (m m ) Pr o j e c t e d  Fl o w  (m 3/d ) Projected Flow PF ADWF Rain (mm)   HEJV Glace Bay WWTP Preliminary Design Brief 13 Therefore, the average and peak day design flows chosen for the Glace Bay WWTP preliminary design  are 13,815 and 41,445 m3/d, respectively.  The average design flow is based on ADWF conditions.  It is  assumed that average flows will approach this value in the future through sewer separation and I&I  reduction efforts. Although design flows are not representative of current flow conditions, an I&I  reduction program and subsequent flow metering program are planned as part of the detailed design  phase of the project. It is important that flow reduction be achieved as the proposed site has limited  space and cannot accommodate a larger WWTP.       3.3 Effluent Requirements  The effluent requirements will include the federal Wastewater Systems Effluent Regulations (WSER)  limits, along with provincial effluent requirements determined by Nova Scotia Environment (NSE) and  presented in the NSE Approval to Operate for the WWTP.  An ERA was completed by HEJV in 2018 which  determined effluent discharge objectives for parameters not included in the WSER (See Appendix B).    The receiving water for the Glace Bay WWTP will be the Atlantic Ocean, adjacent to Glace Bay Harbour.   The ERA generally followed Technical Supplement 3 of the Canada‐wide Strategy for the Management of  Municipal Wastewater Effluent – Standard Method and Contracting Provisions for the Environmental  Risk Assessment.  Dilution modelling was conducted to determine the maximum 1‐day average effluent  concentration with a mixing zone boundary of 100m for all parameters of concern with the exception of  E. coli for primary contact recreation.  The E. coli concentration was analyzed at the edge of the 100m  mixing zone for secondary contact recreation, and at Big Glace Bay and Table Head beaches for primary  contact recreation.     Refer to Table 5.1 in the ERA attached in Appendix B for Effluent Discharge Objectives (EDOs) developed  during the ERA and for further information on the development of these values.      The effluent requirements resulting from the ERA are summarized in Table 3.1 along with the source of  the criteria.  As EDOs are calculated values, they are not round whole numbers that are typical of  effluent requirements; therefore, we have included both the EDOs and values that are more suited as  effluent requirements in the table.  The ERA values were obtained based on the assumption of an  extension to the existing outfall to attain additional dilution.  This assumption will be revisited and EDOs  confirmed after the final configuration of the outfall is determined.  Refer to the ERA in Appendix B for  details on the modelled conditions.      Table 3.1 Design Effluent Requirements  Parameter EDO Required By Effluent Limit  CBOD5 (mg/L) 25 WSER 25  TSS (mg/L) 25 WSER 25  Un‐ionized Ammonia (as NH3‐N) (mg/L) 1.25 WSER 1.25  Total Residual Chlorine (TRC) (mg/L) 0.02 WSER 0.02  E. coli (E. coli/ 100mL) 22,208 ERA 10,000  Total Ammonia (as N) (mg/L) 66.5 ERA 65  TKN (mg/L) 19.9 ERA 20  Phosphorus (mg/L) 1.6 ERA 1.5    3.4 Summary  The wastewater concentrations vary significantly as was shown in Sections 2.3 and 2.4.  For design  purposes, we are going to assume an average CBOD concentration of 100 mg/L and an average TSS  concentration of 110 mg/L.  During wet weather, the concentrations can decrease drastically therefore    HEJV Glace Bay WWTP Preliminary Design Brief 14 calculating peak loads by combining peak flows and average concentrations is not recommended as it  will result in an oversized facility.  However, there will be some variation in loading both throughout the  day (diurnal effect) and day to day due to activity in the community.  Allowing the peak load to be 2x the  average load results in a peak load of 2763 kg/d CBOD and 3039 kg/d which will result in concentrations  of 67 mg/L CBOD and 73 mg/L TSS during the peak period.      Table 3.2 Design Criteria Summary  Parameter Average Day Peak Day  Design Population  14,536  Flow (m3/day) 13,815 41,445  Strength       CBOD (mg/L) 100 67  TSS (mg/L) 110 73  TKN (mg/L) 19.5 13.0  Loading      CBOD (kg/day) 1381.5 2763  TSS (kg/day) 1519.7 3039  TKN (kg/day) 269 538                                                                HEJV Glace Bay WWTP Preliminary Design Brief 15   CHAPTER 4 TREATMENT PROCESS ALTERNATIVES    The effluent criteria requires the selection of a secondary treatment process.  Secondary treatment  processes are predominantly aerobic biological processes designed to convert the finely dispersed and  dissolved organic matter in the raw wastewater into flocculent settleable biological cell tissue (biomass)  which can be removed by sedimentation.  These biological processes are the most efficient in removing  organic substances that are either dissolved or in the colloidal size range (too small to settle out),  whereas primary treatment processes are the most efficient in removing larger particles of suspended  solids which can be removed by sedimentation, fine screening, or filtration.    4.1 Preliminary Treatment  A variety of secondary treatment process options will be evaluated.  However, each option will require  preliminary treatment of the wastewater.  The purpose of preliminary treatment processes is to remove  objectionable materials and inorganic particles from the wastewater prior to treatment.  These  processes may include screening or coarse solids reduction, and grit removal.    4.1.1 Screening  Screens used in preliminary treatment applications are classified based on the size of openings as either  coarse (6 to 150 mm openings) or fine (less than 6 mm openings).     Coarse screens are used to remove large objects that could damage or clog downstream equipment, so  they are typically the first unit operation in a wastewater treatment plant.  Coarse screens may be either  manually or mechanically cleaned.  There are a number of mechanical cleaning system options available,  including continuous chain driven rakes, reciprocating rake, and continuous belt.    Fine screens provide increased solids capture compared to coarse screens.  In addition to their use in  preliminary treatment, they may also substitute for clarifiers as primary treatment, or for treatment of  combined sewer overflows.  There are several options available for fine screening.  Band screens consist  of a continuous screen made of panels with punched holes that allow water to pass through and debris  to be captured.  The debris collected on the screen is removed as the screen is raised out of the water as  part of its normal rotation.  Any debris remaining on the screen will enter the water downstream of the  screen as the screen passes through the water.    Rotating perforated plate screens consist of a continuous screen made of panels with punched holes  that allow water to pass through and debris to be captured. The debris collected on the screen is  removed as the screen is raised out of the water as part of its normal rotation. Any debris remaining on  the screen will enter the water downstream of the screen as the screen passes through the water.      HEJV Glace Bay WWTP Preliminary Design Brief 16 The step screen operation is considerably different from the band screen.  It is a single piece screen that  does not rotate.  The screen is configured in steps and the solids collected on the steps of the screen are  lifted to the next step by tines.  The screen has continuous opening to allow for the tines to lift the  screenings from one step to the next and relies on the formation of a filtering mat to assist in the  screening process.  This operation results in the screenings being re‐handling on the screen several  times before it is removed which can cause the screenings to breakdown and pass through the screen  and re‐enter the water downstream of the screen.    In general, for a given aperture size, band screens have higher solids capture ratios than step screens.   Screenings should then be directed to a washer compactor to reduce the volume of screenings and  return organics to the process so they can be treated.    4.1.2 Grit Removal  Grit chambers are used to remove non‐biodegradable materials such as sand, gravel, cinders, or other  heavy solid material with specific gravities greater than those of organic solids in the wastewater.  The  purpose of grit removal is to protect mechanical equipment from abrasion and wear, and to reduce the  formation of heavy deposits in pipelines, channels, and conduits.  Typical grit chamber configurations include horizontal flow‐through, aerated, and vortex.  New  applications generally use aerated or vortex‐style grit chambers.    In aerated grit chambers, coarse bubble diffusers are installed along one side of each rectangular tank to  create a spiral flow pattern that is perpendicular to the flow through the chamber.  This spiral pattern  causes the grit to settle in the tank and helps keep organic particles in suspension, so they can pass  through the tank and be treated in downstream processes.  The performance of an aerated grit chamber  can be controlled by adjusting the quantity of air that is supplied.  If the spiral velocities are too low then  organics may settle in the chamber, causing excessive quantities of organics in the dried grit.  If the  spiral velocities are too high, then grit may not settle in the chamber.  The grit that settles in an aerated  grit chamber settles in a trough that spans the length of the chamber.    There are a number of options available for removing grit from the trough, including:  • Grab buckets mounted to monorails;  • Chain and bucket systems; and  • Spiral conveyors and grit pumps.    Vortex‐style grit chambers are common in new applications.  These systems function by inducing a  helical flow pattern in the tank, and the resulting centrifugal forces cause grit to settle in a hopper.  Grit  is then removed from the hopper using a grit pump.    Once grit is removed from the main treatment process, the slurry is then pumped or conveyed to a  classifier for separation and washing.  Classifiers may be equipped with a hydrocyclone at the inlet to  reduce slurry volumes through centrifugal separation prior to discharging to the classifier tank.  Grit that  settles in the classifier is removed by an auger or rake and discharged to a disposal bin until there are  sufficient quantities for disposal in a landfill.    4.2 Secondary Treatment  There are many types of secondary treatment processes available, most of which can be classified as  either suspended growth or attached growth systems.  Suspended growth systems use aeration and  mixing to keep microorganisms in suspension and achieve a relatively high concentration of these  microorganisms (biomass) through the recycle of biological solids.  Attached growth systems provide  surfaces (media) on which the microbial layer can grow, and expose this surface to wastewater for    HEJV Glace Bay WWTP Preliminary Design Brief 17 adsorption of organic material and to the atmosphere and/or diffused aeration for oxygen.  A listing of  specific secondary treatment processes and the category to which they belong is presented in Table 4.1.    Table 4.1:  Secondary Treatment Processes  Process Category Specific Process  Suspended Growth Activated Sludge  Extended Aeration  Pure Oxygen Activated Sludge  Sequencing Batch Reactor (SBR)  Oxidation Ditch  Membrane Bio‐Reactor (MBR)  Attached Growth Rotating Biological Contactor (RBC)  Trickling Filter  Biological Activated Filter (BAF)  Moving Bed Bio‐Reactor (MBBR)  Land‐Based Constructed Wetlands  Aerated Lagoon  Facultative Lagoon    HEJV has worked on projects using the majority of the technologies in Table 4.1 so we are able to use  our considerable practical experience to narrow down the list of available technologies to those best  satisfying the project constraints.    4.2.1 Site‐specific Suitability  The main constraints at this site that will influence which of the available options are best suited for the  Glace Bay WWTP are: effluent requirements, site conditions, cost effectiveness, and ease of operation.   Each of these is discussed below.    4.2.2.1 4.2.1.1 EFFLUENT REQUIREMENTS  The effluent requirements summarized in Section 3.3 can be met by all of the listed technologies in  Table 4.1 with the exception of the facultative lagoon, which has been eliminated from further  consideration.    4.2.1.2 SITE CONDITIONS  Figure 4.1 provides an overview of the general area that has been identified as the location of the Glace  Bay WWTP since the Report on Pollution Control Study for the Town of Glace Bay that was prepared by  C.A. Campbell in 1985.    There is a parcel owned by CBRM (PID 15864085) that is bounded by Lower North Street to the west,  the Atlantic Ocean to the north, a property owned by Public Works and Government Services Canada  (PID 15524473) to the east, and a property owned by Hopkins H Ltd. (PID 15408867) to the south.  The  property ranges from sea level along the Atlantic Ocean to 8m elevation near the southwest corner of  the property.  The CBRM property is not large enough for any of the secondary treatment processes  presented in Table 4.1 with the possible exception of a membrane bioreactor (MBR).  It appears that  construction of a WWTP will likely require either the acquisition of additional land and/or infilling of the  shoreline.      A portion of the Hopkins property to the south houses buildings associated with a fish plant.  The  existing sanitary sewer leading to the outfall currently crosses through this property.  At a minimum, this  property will likely house a pump station to feed the new WWTP with an overflow structure.   j o i n t v e n t u r e FIG 4.1   HEJV Glace Bay WWTP Preliminary Design Brief 18 West of Lower North Street, there are three privately owned properties, one owned by Charles H. Rigby  (PID 15821119 (18,725 ft2)) and two owned by Marilyn Gillard (PIDs 15833007 (11,000 ft2)) and  15395221 (28,957 ft2)) and a portion of the Bayplex Property (numerous owners) (PID 15654882).  The  topography ranges from 9m along Lower North Street to 11m to the northwest.  It appears that fill has  been disposed of on these properties.  Behind these properties is a large parcel owned by Cape Breton  Regional Housing Authority (PID 15393606 (13.42 acres)).  The topography ranges from 11m to the  southeast to 16m to the northwest.     There are a number of houses along Lower North Street that are in fairly close proximity to the general  site, along with a fish plant, Cameron’s Building Supplies, and the Bayplex.     HEJV have eliminated wetlands, aerated lagoon, oxidation ditch, extended aeration, trickling filter, and  RBC technologies from further consideration as they require additional area that is not available at this  site.  Another important consideration of the site will be elevations and the hydraulic grade line (HGL)  through the treatment process.  The tidal elevations at the site include a higher high‐water elevation at  large tide of 1.1m (CGVD28).  The estimated extreme values for 100 year and 50‐year return periods are  2.1m (CGVD28) and 2.0m (CGVD28), respectively.  In addition, a sea level rise of at least 1.0 m is likely to  occur within the coming century, even if the timeline remains uncertain (CBCL, 2018).  This will set the  minimum point for the HGL as treated effluent will have to discharge from the WWTP by gravity through  the outfall.     Available siting options include PIDs 15864085 and 15408867 which are situated to the southeast of  North Street. This site is also the location of Fisherman’s Memorial Park and sees vehicle traffic  associated with the views of the ocean. At a minimum this site would likely house the main plant lift  station due to the existing outfall crossing the site.    The area to the northwest of North Street has sufficient available land to house a WWTP.  However, the  WWTP infrastructure would be situated within 150m of residential properties as well as adjacent to the  Bayplex.  The Atlantic Canada Wastewater Guidelines Manual (ACWGM) recommends that mechanical  plants be located a minimum of 150m from residences, 30m from commercial/industrial developments,  and 30m from property lines.  However, a lesser separation distance may be adopted provided odour  control is provided at the plant.    Due to the presence of underground mine workings in the area, intrusive geotechnical investigations  were conducted at each of the general site locations mentioned above (See Appendix C). The  geotechnical investigation encountered voids, likely associated with the former Stirling Mine, to the  north of Lower North Street. No voids were encountered to the south of Lower North Street. However,  as only two boreholes were advanced to the depth of the coal seam, additional geotechnical work is  recommended as part of detailed design.    4.2.1.3 COST EFFECTIVENESS  There are a number of processes in Table 4.1 that can be eliminated based on their cost effectiveness  compared to other processes in the table.  For example, pure‐oxygen activated sludge is more costly  than conventional activated sludge due to its requirement for specific equipment to reduce the  footprint of the activated sludge process.  Utilizing similar logic, extended air, and oxidation ditches are  inherently less cost effective than SBR.  As well, other recent evaluations have identified MBBR as bring  more cost effective than other fixed film options.  Membrane bioreactors (MBR) are also not considered  a cost‐effective treatment process when the effluent discharge criteria do not necessitate their use.   However, due to the land constraints, an MBR is one option that could conceivably be constructed on  the property owned by CBRM and therefore will be evaluated as an option.       HEJV Glace Bay WWTP Preliminary Design Brief 19 4.2.1.4 EASE OF OPERATION  The remaining technologies typically require similar levels of operational expertise, which we would  classify as moderate.  However, there is an operational benefit to utilizing an SBR process as the CBRM  WWTP operations staff have experience with this type of process already.    4.2.2 Description of Candidate Processes for Secondary Treatment  Based on the preceding analysis, the following processes should be given further consideration:   Conventional Activated Sludge (CAS);   Sequencing Batch Reactor (SBR);    Moving Bed Bio‐Reactor (MBBR); and   Membrane Bio‐Reactor (MBR).    Each of these processes is described below.  Each of the secondary treatment processes will have similar  solids stream trains, so the sludge handling processes will not be evaluated at this stage.  Similarly, the  costs associated with site access, outfall, electrical service, etc. will not be evaluated as part of the  secondary treatment process comparison.    4.2.2.1 CONVENTIONAL ACTIVATED SLUDGE   The activated sludge (AS) process is a continuous‐flow, aerobic suspended‐growth biological treatment  process that has become the most common method of treatment for BOD and TSS removal.  In the  activated sludge process, organic waste material is decomposed by microorganisms such as bacteria,  fungi, protozoa and rotifers, which use the waste, or “food”, as energy in the synthesis of new cells.   Aeration is required for the cellular respiration.  Many variations of the process currently exist.     The conventional activated sludge process follows the primary treatment step.  The effluent from the  primary clarifier serves as the influent for the AS process.  The biological treatment is carried out in the  AS reactor, in which aeration is provided to keep the biomass and waste material in suspension, as well  as ensure completely mixed conditions in the reactor.  This is required to promote contact between the  microorganisms, waste material, and oxygen.  The mixture is commonly referred to as the “mixed  liquor”.  The hydraulic retention time – defined as the average amount of time a water molecule spends  in a tank – in conventional AS reactors is typically 6 to 10 hours under average flow conditions.   Somewhat larger reactors and additional aeration capacity are required if nitrification is to be achieved  in addition to carbonaceous BOD reduction.    The flocculent biomass from the AS reactor discharges to a secondary clarifier (typically circular) where  biological floc material is settled out in a similar manner to that of a primary clarifier.  In order to  maintain a sufficient concentration of activated sludge in the aeration tank, a portion of the sludge that  is collected in the secondary clarifier is recycled to the aeration tank.  This recycled portion is referred to  as return activated‐sludge (RAS).  Excess sludge, the waste activated‐sludge (WAS), is removed from the  system on a regular basis in order to control the solids retention time (SRT), which is defined as the  average amount of time the sludge has remained in the system.  WAS is typically discharged to a  thickening process.  Typical SRTs for activated sludge processes range from 4 to 15 days.    A typical conventional activated process schematic is provided in Figure 4.2. Primary clarification is not  shown in the figure; however, the influent to the process is effluent from a primary clarifier.     HEJV Glace Bay WWTP Preliminary Design Brief 20   Figure 4.2:  Typical Activated Sludge Process Schematic    A conceptual level cost estimate has been developed for this option based on the projected design flow and  loads, as well as on the design parameters listed in Table 4.2.      Table 4.2:  Conventional Activated Sludge Process Design Criteria  Parameter Proposed  Typical Design  Standard  No. of Primary Clarifiers 2 ‐  Length (m) x Width (m) 30.3 x 7.6 ‐  Depth 4.3 3 – 4.9  Primary Clarifier Average/ Peak  SOR (m3/m2/d) 30 / 90 40 / 100  Detention Time (hr) 3.4 1.5 – 2.5  Total Reactor Volume (m3) 4,605 ‐  Average HRT (hr) 8 6 ‐ 10  Peak Day HRT (hr) 2.7 3 ‐ 4  MLSS (mg/L) 1500 1500 – 4000  Average F/M Ratio 0.27 0.2 – 0.6  No. of Secondary Clarifiers 2 ‐  Diameter (m) 21 ‐  Depth (m) 4.5 3.5 ‐ 6  Secondary Clarifier Average SLR  (kg/m2hr) 1.2 4‐6   Secondary Clarifier Peak SLR  (kg/m2hr) 3.6 8  Secondary Clarifier Average SOR  (m3/m2/d) 20 16‐28  Secondary Clarifier Peak SOR  (m3/m2/d) 60  40‐64    Aeration  Tank Secondary  Clarifier RA S Secondary Effluent Blowers WA S  to   Di g e s t e r   HEJV Glace Bay WWTP Preliminary Design Brief 21 4.2.2.2 SEQUENCING BATCH REACTOR  The Sequencing Batch Reactor (SBR) process is also an aerobic suspended‐growth biological treatment  process and is essentially a modified version of the completely mixed activated sludge process, with the  main difference being the mode of operation.  The SBR process is a batch process whereby secondary  treatment, including nitrification, is achieved in one reactor.  The SBR process is a “fill and draw” type  reactor where aeration and clarification occur in the same reactor.  Settling is initiated after the aeration  cycle, and supernatant is withdrawn through a decanter mechanism.    An example of the cycles used in the SBR process is summarized below.  However, there are variations  between different manufacturers.  1. Fill – Preliminary treatment effluent enters the anoxic pre‐react zone in the SBR tank.  The anoxic  conditions favor the procreation of microorganisms with good settling characteristics.  The  wastewater then flows into the react zone of the SBR.  2. React – The microorganisms contact the substrate and a large amount of oxygen is provided to  facilitate the substrate consumption.  During this period aeration continues until complete  biodegradation of BOD and nitrogen is achieved.  During this stage some microorganisms will die  because of the lack of food and will help reduce the volume of the settling sludge.  The length of the  aeration period determines the degree of BOD consumption.  3. Settle – Aeration is discontinued at this stage and solids separation takes place leaving clear, treated  effluent above the sludge blanket.  During this clarifying period no liquids typically leave the tank to  avoid turbulence in the supernatant.  4. Decant – This period is characterized by the withdrawal of treated effluent from approximately two  feet below the surface of the mixed liquor by the floating solids excluding decanter.  This removal  must be done without disturbing the settled sludge.  5. Idle – An idle period can be provided between cycles.  Sludge wasting can also occur during this  time.     The process is generally implemented using a minimum of two (2) reactors in parallel.  It can be  conducted as a batch process where one reactor is filling while the other is settling.  Continuous‐feed  SBRs are also available which receive influent during all phases of the treatment cycle and decant  intermittently.  No RAS is required as the mixed liquor remains in the reactor at all times, with WAS  being withdrawn as necessary.  The entire process is controlled using a programmable logic controller  (PLC).  A general process schematic for the SBR system is provided in Figure 4.3.      HEJV Glace Bay WWTP Preliminary Design Brief 22 Figure 4.3:  Typical Sequencing Batch Reactor Process Schematic    SBRs are operated at long solids and hydraulic retention times, resulting in large reactor volumes;  however, the total number of tanks required is reduced, which can result in more compact site layouts.   Furthermore, since flow equalization is inherently provided in SBR systems, the process is much more  resistant to shock loadings, making it an attractive alternative for small to medium sized facilities.  Due  to the degree of control required and the large volume of tankage required in each reactor, the capital  costs are often higher than more conventional activated sludge processes for larger plants.  The  discharge for smaller systems is typically intermittent in nature, which can result in larger, more  expensive UV disinfection systems.    A conceptual level cost estimate has been developed for this option based on the projected design flow,  loads, and design parameters listed in Table 4.3.      WAS to Digester Preliminary Effluent Blower Aeration Tank 2. React Secondary Effluent Blower Aeration Tank 1. Fill Secondary Effluent Blower Aeration Tank3. Settle Secondary Effluent Blower Aeration Tank4. Draw Secondary Effluent WAS Preliminary Effluent Preliminary Effluent Preliminary Effluent   HEJV Glace Bay WWTP Preliminary Design Brief 23 Table 4.3:  Sequencing Batch Reactor Process Design Criteria  Parameter Proposed  Typical Design  Standard  No. of Reactors 3 3‐4  Basin Length (m) 45.8 ‐  Basin Width (m) 18.3 ‐  Side Water Depth (m) 5.5 ‐  Total Reactor Volume (m³) 13,829 ‐  Design HRT (hr) 24  15 ‐ 40  Cycles per Reactor per Day  (average/ peak) 6 / 8 4 – 6  React Time (min) (average/ peak) 120 / 90 60 – 120  Settling Time (min) (average/  peak) 60 / 30 30 – 60  Volumetric BOD5 Loading (kg  BOD /m³d) 0.1 0.1 – 0.3  MLSS (mg/L) 3000 2000 – 5000  F/M Ratio 0.07 0.04 – 0.1    4.2.2.3 MOVING BED BIO‐REACTOR  The patented Moving Bed Bio‐Reactor (MBBR) process was developed by the Norwegian company  Kaldnes Miløteknologi (KMT).  MBBRs are a system based on a biofilm reactor with no need for  backwashing or return sludge flow.  The MBBR contains what is termed as a “carrier” which is a  manufactured (typically plastic) media with a high specific surface area for biofilm to grow.  The specific  gravity of the carrier is slightly less than that of water so that aeration will keep the contents in  suspension and completely mixed.  The movement is normally caused by coarse‐bubble aeration.   Abrasion of the media carriers sloughs off and maintains optimal biofilm thickness.    Effluent from preliminary treatment serves as the influent to the MBBR unit.  MBBR effluent containing  suspended solids then overflows to a secondary clarifier or DAF clarifier for solids removal; however, the  carrier material remains in the reactor.  A typical MBBR process schematic is provided in Figure 4.4.          HEJV Glace Bay WWTP Preliminary Design Brief 24   Figure 4.4:  Typical Moving Bed Bio‐Reactor Process Schematic    A conceptual level cost estimated has been developed for this option based on the projected design flow,  loads, and design parameters listed in Table 4.4.      Table 4.4:  Moving Bed Bio‐Reactor Process Design Criteria  Parameter Proposed  No. of Trains 1  No. of Stages 1  Total Reactor Volume (m³) 1500  Average / Peak HRT (hr) 2.6 / 0.87  Side Water Depth (m) 5.5  Average /Peak BOD5 Loading (g/m2d)(1)  2.1 / 4.2  Specific Surface Area (m²/m³) 800  Secondary DAF Clarifier Average / Peak  SOR (m/d) 408 / 600  (1) Assumes 55% fill rate    4.2.2.4 MEMBRANE BIO‐REACTOR  The membrane bio‐reactor (MBR) process involves an aerobic suspended‐growth biological treatment  process followed by a membrane filtration system.  Benefits of an MBR system include a reduced  footprint and tertiary quality effluent without the requirements for a secondary clarifier.  However, they  are typically not cost effective if effluent discharge requirements do not require their use.  Use of the  MBR process would require additional screening (2mm perforated screen) beyond the fine screening  and grit removal required by the other options.             Aeration  Tank Secondary  Clarifier Secondary  Effluent  Blowers Carrier        WAS    HEJV Glace Bay WWTP Preliminary Design Brief 25 A conceptual level cost estimate has been developed for this option based on the projected design flow and  loads, as well as on the design parameters listed in Table 4.5.      Table 4.5:  MBR Process Design Criteria  Parameter Proposed  No. of Trains 4  No. of Cassettes per Train 7  No. of Modules 1448  Total Reactor Volume (m³) 1704  Average / Peak HRT (hr) 3 / 1    4.3 Disinfection  Disinfection at WWTPs is typically provided using either chlorination or UV disinfection.  Due to the TRC  limit in the WSER, use of chlorine disinfection requires a dechlorination system.  In addition, a UV  disinfection system is preferable from a safety perspective, and minimizes chemical handling.    UV systems are typically sized for 200 total coliform/ 100mL.  UV Disinfection is a physical disinfection  process that targets microorganisms such as viruses, bacteria, and protozoa by destroying their ability to  reproduce.  Pathogen inactivation is directly linked to UV dose, which is the product of the average UV  intensity and the duration of exposure, or retention time.  Any factor affecting light intensity or  retention time will also affect disinfection effectiveness.  Some of the key parameters that affect UV  intensity include water quality issues such as:   UV transmission;   Suspended solids;   Presence of dissolved organics, dyes, etc.;   Hardness; and   Particle size distribution.    Other factors affecting UV performance include sleeve cleanliness, age of lamps, upstream treatment  processes, flow rate and reactor design.    4.3.1 CAS, MBBR or MBR Effluent Disinfection   Flows from the CAS, MBBR or MBR system will continuously flow by gravity to the ultraviolet (UV)  disinfection unit.  Disinfection will take place in a single concrete channel located in the new WWTP  building.  The UV system will consist of two banks of UV lamps.  The lamps are oriented in a staggered  inclined array and contain fourteen lamps per bank for a total of twenty‐eight (28) lamps.  The design  parameters for the UV disinfection system are summarized in the table below.    Table 4.6:  UV Disinfection Design Parameters  Parameter Design Value  Number of Design Channels 1  Number of Banks 2  Number of Lamps per Bank 14  Total Number of Lamps 28  Peak Flow Capacity (m3/d) 45,000  Effluent TSS (mg/L) <25  Minimum Transmission (%T) 60  Effluent Fecal Coliforms (MPN/100 mL) 200  The disinfected effluent would flow by gravity to the outfall.    HEJV Glace Bay WWTP Preliminary Design Brief 26 4.3.2 SBR Effluent Disinfection   Flows from the SBR system will flow intermittently by gravity to the ultraviolet (UV) disinfection unit  during the decant cycle.  This results in a larger UV system being required than for the CAS, MBBR or  MBR process as it is sized for the peak decant rate from the SBR.  Disinfection will take place in a single  concrete channel located in the new WWTP building.  The UV system will consist of two banks of UV  lamps.  The lamps are oriented in a staggered inclined array and contain sixteen lamps per bank for a  total of thirty‐two (32) lamps.  The design parameters for the UV disinfection system are summarized in  the table below.    Table 4.7:  UV Disinfection Design Parameters  Parameter Design Value  Number of Design Channels 1  Number of Banks 2  Number of Lamps per Bank  16  Total Number of Lamps 32  Peak Flow Capacity (m3/d) 51,784  Effluent TSS (mg/L) <25  Minimum Transmission (%T) 60  Effluent Fecal Coliforms (MPN/100 mL) 200  The disinfected effluent would flow by gravity to the outfall.    4.4 Sludge Management  Each of the secondary treatment options evaluated will produce sludge which must be removed from  the treatment process on a regular basis and disposed of at an approved facility.  Regardless of which  secondary treatment option is selected, sludge management at this facility will likely involve an aerated  sludge holding tank followed by dewatering.  After the recommended secondary treatment process has  been selected, a preliminary design of the solids management train will be provided in Chapter 5.     4.5 Secondary Treatment Option Evaluation  Capital and operating costs have been developed for each of the secondary treatment options  presented in this section for the purposes of evaluating the technology options.  At this stage, only the  liquid treatment stream has been evaluated.  As each option will involve a similar solids treatment train,  it has not been included as part of the comparison.  Similarly, items such as site access, outfall, electrical  service etc. that are common to each option have not been included at this stage in the evaluation.  A  discussion has also been provided on qualitative factors associated with each of the secondary  treatment options.     4.5.1 Capital Cost Estimate  Capital cost estimates are provided in Table 4.8.  These are comparative cost estimates for secondary  process alternatives only and exclude sludge management, outfall upgrades, main lift station, and site  works that would be common to all options.  Of the four (4) options, the CAS process has the lowest  capital cost, with SBR a close second (approximately 10% higher).  This difference is within the accuracy  of a Class D cost estimate, however.                   HEJV Glace Bay WWTP Preliminary Design Brief 27 Table 4.8  Secondary Process Capital Cost Comparison  Cost CAS SBR MBR MBBR  Estimated Capital Cost $18,274,000 $20,236,000 $25,192,000 $25,296,000    4.5.2 Operating and Lifecycle Cost Estimate  The operating cost comparison is provided in Table 4.9 with a life‐cycle comparison presented in Table  4.10.  Of the four (4) options, the SBR process has the lowest operating cost while the CAS process has a  slightly lower life cycle cost.  If the life cycle cost was adjusted to account for CBRM paying 27% of the  capital cost based on the Investing in Canada Plan (Table 4.11), the SBR process would have the lowest  life cycle cost.    Table 4.9  Secondary Process Annual Operating Cost Comparison  Operation Annual Operating Cost (Secondary Process Only)  CAS SBR MBR MBBR  Power(1) $170,000 $110,000 $300,000 $100,000  Chemicals(2) $0 $0 $5,000 $27,000  Membrane Replacement(3) $0 $0 $160,000 $0  Maintenance Allowance(4) $30,000 $27,000 $40,000 $68,000  Total $200,000 $137,000 $505,000 $195,000  Notes:  (1) Power estimated based on secondary treatment equipment only.  (2) Allowance for polymer dosing for the MBBR DAFs and membrane cleaning chemicals for  the MBR.  (3) Cost of membrane replacement divided by 10‐year membrane life span.  (4) Maintenance allowance of 1% of equipment cost    Table 4.10  Secondary Process Life Cycle Cost Comparison  Cost CAS SBR MBR MBBR  Estimated Capital Cost  $  18,274,000    $20,236,000    $  25,192,000    $  25,296,000   Estimated Annual Operating Cost, $/yr  $        200,000    $      137,000    $        505,000    $        195,000   NPV Equipment Replacement (20  years, 2% interest, 8% discount rate)  $        848,069    $      768,662    $    1,959,771    $     1,642,142   NPV Operating Cost (30 years, 8%  discount rate)  $    2,251,557    $   1,542,316    $    5,685,181    $     2,195,268   Life Cycle Cost  $  21,373,626    $22,546,979    $  32,836,952    $  29,133,410                         HEJV Glace Bay WWTP Preliminary Design Brief 28 Table 4.11  Secondary Process Life Cycle Cost Comparison – 73% Capital Funding  Cost CAS SBR MBR MBBR  Estimated Capital Cost  $   4,933,980    $   5,463,720    $    6,801,840    $     6,829,920   Estimated Annual Operating Cost, $/yr  $      200,000    $      137,000    $        505,000    $        195,000   NPV Equipment Replacement (20 years,  2% interest, 8% discount rate)  $      848,069    $      768,662    $    1,959,771    $     1,642,142   NPV Operating Cost (30 years, 8%  discount rate)  $   2,251,557    $   1,542,316    $    5,685,181    $     2,195,268   Life Cycle Cost  $   7,185,537    $   7,006,036    $  12,487,021    $     9,025,188     4.5.3 Qualitative Evaluation Factors   In addition to life‐cycle cost, there are a number of other factors to consider when evaluating the  technology options that are less easily quantified.  These factors are summarized in Table 4.12, and  additional discussion is provided below the table.  Qualitative factors have been rated 1 through 4 for  each technology with 1 being the best and 4 being the worst.    Table 4.12 Secondary Process Qualitative Evaluation Factors  Factor CAS SBR MBBR MBR  Local Experience with Process 2 1 3 3  Operational Simplicity 2 1 3 4  Sludge Production 2 1 4 3  Footprint 4 3 2 1    In terms of local experience with the treatment process, CBRM operations staff have experience with  the SBR process at the Dominion WWTP.  Although the Glace Bay WWTP will be larger than the  Dominion SBR plant, the process is generally the same.  CBRM operations staff also have experience  with the primary clarification step in the CAS process at Battery Point.  The MBBR and MBR process  would be new to CBRM operations staff, and there are also limited other installations in Atlantic Canada.     When considering operational simplicity, both the SBR and CAS processes are fairly straightforward  although each has their own benefits.  The SBR process is more automated while the CAS process allows  for greater operator control.     Each of the secondary treatment processes evaluated will produce sludge that will have to be removed  from the process.  The longer HRT provided in the SBR will result in a slightly lower sludge production  than the CAS process.  As the MBBR is designed to remove soluble BOD only, with insoluble BOD being  removed as particles in the DAF clarifiers, it will have the highest sludge production.     When considering site footprint and aesthetics, the MBR process has the smallest footprint, followed by  the MBBR process.  Both the SBR and CAS processes require a fairly large amount of land.  The SBR  process is conducted in one tank (although in multiple cells) whereas the CAS process uses different  tanks that are connected via yard piping.  The headworks associated with each process has the potential  for odours, but the headworks will be enclosed in a building for all technology options.  The primary  clarifiers associated with the CAS process would be located outdoors and may have more potential for  odour generation than the SBR tanks.      HEJV Glace Bay WWTP Preliminary Design Brief 29 4.5.4 Recommended Secondary Treatment Process  Both the life‐cycle cost evaluation, and consideration of other qualitative evaluation factors result in the  SBR process being the recommended secondary treatment process for this facility.  This process will  require the acquisition of additional land.  The preliminary design has been advanced on the basis of an  SBR process.                                                                                                HEJV Glace Bay WWTP Preliminary Design Brief 30   CHAPTER 5 PRELIMINARY DESIGN    5.1 Process Description  Preliminary layouts for the proposed treatment system and locations of individual unit processes are  shown in the “Preliminary Design” drawings, found in Appendix C.  The processes depicted in these  drawings are consistent with those recommended in the previous chapter of this report.  The drawings  contained in the appendix are presented in Table 5.1, below.    Table 5.1 Preliminary Design Drawings  Drawing Number Description  C01 General Arrangement  P01 General Arrangement  P07 Hydraulic Profile and Process Schematic    5.2 Unit Process Descriptions  Drawing C01 in Appendix C includes a site plan showing the location of the proposed new structures.   Further description of the proposed treatment units follows.    5.2.1 Preliminary Treatment  The majority of the influent wastewater will be supplied from a gravity feed to the site where it will  enter a wet well.  There will be an overflow from the wet well to the proposed outfall. The influent from  the wet well will be pumped to the WWTP headworks.  A separate force main will convey wastewater  from the northeastern portion of the community directly to the WWTP headworks.    Screening  In the WWTP headworks, influent will flow through an escalator fine screen with 6mm perforations.  It is  expected that screenings will be washed and dewatered with a Screw Washer Compactor. Dewatered  screenings will be discharged into a bin.  Wash water will flow by gravity to the influent channel.  The  fine screening system will be installed directly into a channel with a width of approximately 1.6m and a  depth of approximately 2m and will consist of a solids capture screen and a washer/compactor.  The  design parameters for fine screening are summarized in the Table 5.2.                    HEJV Glace Bay WWTP Preliminary Design Brief 31 Table 5.2 Fine Screening Design Summary  Parameter Design Value  No. of Units 1  Peak Flow (m3/d) 41,445  Channel Width (mm) 1,600  Channel Depth (mm) 2,000  Screen media  6mm perforated  Dewatered Screenings (m3/d) 0.92  Solids Content of Screenings (%) 60    Grit Removal  After screening, influent will pass through a vortex grit chamber (either concrete or stainless steel).  Grit  will be pumped from the grit chamber for grit dewatering.  Excess water from dewatering will flow back  to the grit chamber inlet channel by gravity.  Dewatered grit will be discharged into a bin.  After grit  removal, influent will flow to the SBR tanks by gravity.      The grit chamber will be a circular horizontal flow through chamber with a diameter of approximately  4.2m and a depth of approximately 3.55m.  The grit well has a depth of 1.83m giving a total depth of  approximately 5.38m.  The purpose of the grit chamber is to capture solids such as sand particles with  diameters larger than 0.2 mm.  The design parameters for fine screening are summarized in the  Table 5.3.    Table 5.3 Grit Removal Design Summary  Parameter Design Value  No. of Units 1  Peak Flow (m3/d) 41,445  Diameter (m) 4.2  Depth (m) 5.4  Classified Grit Production (m3/d) 0.7  Classified Grit Solids (%) 80    5.2.2 Secondary Treatment  The secondary treatment process will consist of three continuous flow SBR tanks.  Pre‐treated  wastewater will flow from the vortex grit chamber to the SBR tanks.  Influent weirs distribute the flow  evenly between the three tanks.  Influent enters an anoxic pre‐react zone before flowing into the react  zone where aeration takes place.  Air is supplied to the SBR tanks by blowers via fine bubble diffusers on  the bottom of the tanks.  After the blowers are turned off, settling occurs.  After the settling period is  complete, decant begins.  Decanted effluent flows by gravity to a UV disinfection unit.  An air flow meter  and a dissolved oxygen (DO) probe will be provided for each SBR tank.  A pressure transducer and a level  float will also be provided for each tank.  The design parameters for secondary treatment are  summarized in the Table 5.4.                      HEJV Glace Bay WWTP Preliminary Design Brief 32 Table 5.4 Secondary Treatment Design Summary  Parameter Design Value  Average Flow (m3/d) 13,815  Peak Flow (m3/d) 41,445  No. of Tanks 3  Tank Dimensions (m) 17.5 W x 48 L x 5.5 (plus 1m freeboard)  Total Surface Area (m2) 2,520  Total Volume (m3) 13,860  Ave / Peak HRT (hr) 24 / 8  Cycles per Reactor per Day (average/ peak) 6 / 8  React Time (min) (average/ peak) 120 / 90  Settling Time (min) (average/ peak) 60 / 30  SOR (kg/d) 9,682  Design Air Flow (m3/min) 56  Air Flow per Blower (m3/hr) 3386  Volumetric BOD5 Loading  (kg BOD /m³d) 0.1  MLSS (mg/L) 3000  F/M Ratio 0.07    5.2.3 Disinfection  Flows from the SBR system will flow intermittently by gravity to the ultraviolet (UV) disinfection unit  during the decant cycle.  Disinfection will be conducted by a UV disinfection unit installed in a single  concrete channel located in the new process building.  The channel will be approximately 6.1m long,  1.22m wide, and 2.4m deep.  The UV system will consist of two banks of UV lamps.  The lamps are  oriented in a staggered inclined array and contain sixteen lamps per bank for a total of thirty‐two (32)  lamps.  In order for the decant flow from the SBRs to flow by gravity through the UV system, the UV unit  will likely be installed in the basement of the WWTP.  The specified power draw for the system is 33.7  kW.  The UV weir height will set the hydraulic grade line for the rest of the treatment process.  The  higher high‐water elevation at large tide for Glace Bay was 1.1m geodetic (CGVD28).  The estimated  extreme values for 100 year and 50‐year return periods were 2.1m CD geodetic (CGVD28) and 2.0m  geodetic (CGVD28), respectively.  In addition, a sea level rise of at least 1.0 m is likely to occur within the  coming century, even if the timeline remains uncertain (CBCL, 2018).  Therefore, the UV weir height  must be set at a minimum elevation of 3.1m plus an allowance for head loss.  The actual weir height can  be higher than this to accommodate the site grade.  The design parameters for the UV disinfection  system are summarized in the Table 5.5.    Table 5.5 UV Disinfection Design Summary  Parameter Design Value  Average Flow (m3/d) 19,958  Peak Flow Capacity (m3/d) 51,784  Number of Reactors (channels) 1  Number of Banks per Reactor 2   Number of Lamp per Bank 16  Total Number of Lamps 32  Effluent TSS (mg/L) <25  Minimum UV Transmission (%UVT) 60  Effluent Fecal Coliforms (MPN / 100 mL) 200      HEJV Glace Bay WWTP Preliminary Design Brief 33 5.2.4 Sludge Management  Sludge must be removed from the treatment system and disposed of at an approved facility.  WAS from  the SBR process will have a low solids concentration (less than 1% solids).  WAS from the SBR will be  pumped to an aerated sludge holding tank.  The aeration will provide mixing of the sludge as well as  further VSS reduction.  The sludge holding tank will be sized such that it will provide approximately 9  days of solids retention time (SRT) based on 0.85% solids.  The sludge holding tank volume will be  provided in one cell.  Supernatant from the aerated sludge tank will be decanted back to the SBRs.   However, minimal thickening of sludge is expected to occur in the sludge tanks.  Dewatering of sludge  will be provided with a centrifuge.  Design parameters for a centrifuge are provided in Table 5.6.     Table 5.6 Aerated Sludge Holding Tank Design Summary  Parameter Design Value  No. of WAS pumps 3  Daily Sludge Production (kg/d) 1,203  Solids Content (%) 0.85  Daily Sludge Production (m3/d) 141.5  Total Storage Volume (m3) 1238  No. of Cells 1  Tank Dimensions (per cell) (m) 15 x 15 x 5.5    Dewatering   Sludge from the aerated sludge holding tank will be dewatered using a centrifuge.  Design parameters  for the centrifuge are provided in Table 5.7.     Table 5.7:  Sludge Dewatering Design Summary  Parameter Design Value  Sludge Flow (m3/hr) 33.2  Solids Loading Rate (kg/hr) 281  Polymer Consumption (kg/dry tonne) 12 ‐ 15  Solids Capture (%) > 95  Cake Solids (%) 20    5.3 Facilities Description  The WWTP project will include the following tankage and facilities:   Site access and parking;   Site fencing;   Lift station;   CSO to proposed outfall;   SBR tanks (3);   Aerated sludge holding tank;   Process building;   Admin building;   Sludge building;   Biofilter; and   Yard piping.    The process building will include the following:   Preliminary treatment area with:  o Escalator fine screen with 6mm perforations and screw washer/compactor; and  o Vortex grit chamber with grit dewatering screw.    HEJV Glace Bay WWTP Preliminary Design Brief 34  UV disinfection area;   Blower Room;   Mechanical and Electrical rooms;   Generator; and   Bin room.     The sludge building will include the following:   Centrifuge room;   Electrical room;   Bin room;   Sludge pumps; and   Polymer room.    The Admin building will include the following:   Office space;   Lab;   Control room;   Mechanical room;   Locker room;   Lunch room; and   Washrooms.    5.3.1 Civil and Site Work  Civil and site work will include grading, drainage and site improvements.  An access road will be  constructed to provide vehicle access.  Security fencing will surround the WWTP.    The Environmental Risk Assessment that was carried out for this system was completed on the basis of a  discharge through an outfall in the receiving environment at a point past the existing breakwater near  the existing GB#8 outfall.  The proposed outfall has not been included in this preliminary design as it is  included in the collection system preliminary design.  We propose to work with NSE during the next  stage of the project to determine the requirements of the outfall before refining the outfall location /  configuration.    5.3.2 Architectural  The exterior wall system of buildings will be erected of masonry cavity wall construction with  polystyrene cavity insulation.  The inner walls will be reinforced concrete bearing block.  The exterior  veneer will be face brick similar to the brick of CBRM’s other WWTPs.  Interior doors and frames will be  stainless, exterior doors, windows and louvers shall be aluminium, colour anodized to match existing  features.  All new buildings will have a hollow core or double tee concrete roofing system.    All required site railings for tanks, walkways, and stairs will be two rail all welded aluminium with a clear  anodized finish.    Interior concrete walls and concrete block walls of the buildings will be painted with an industrial epoxy  coating.  Interior metal surfaces will be painted with epoxy coatings and exterior metal will be coated  with an ultraviolet resistant urethane finish.  Process area ceilings will be painted.  Process area floors  will be concrete, coated with a durable industrial floor coating.      HEJV Glace Bay WWTP Preliminary Design Brief 35 5.3.3 Mechanical  Mechanical systems will be designed in accordance with NFPA 820, 2016 edition, which describes the  hazard classification of specific areas and processes and prescribes ventilation criteria for those areas.   Table 5.8 summarizes the proposed classification for new facilities.  Table 5.8: Classification of Building Areas  Location Classification  Preliminary Treatment Room Class 1 Zone 1  Mechanical and Electrical Room Unclassified  UV Room Unclassified  Blower Room Unclassified  Solids Handling Room Class 1 Zone 2  Admin Building Unclassified    Heating will be provided by electric unit heaters and electric duct heaters in central air handling units.    5.3.4 Electrical  Three‐phase electrical service is available on Bell Street and will be extended to the site.  An emergency  generator will be located in the Process Building.    5.3.5 Lighting  Exterior lighting will consist of building mounted luminaires illuminating areas immediately adjacent the  buildings, as well as pole mounted area lighting for access roadways and parking areas.  Exterior lights  will be LED where available or to suit application.  Exterior lighting fixtures shall be vandal resistant and  outdoor rated.    New pole mounted flood lights will be installed at the process tanks for maintenance purposes.    The interior lighting system will be designed for lighting performance and illuminance levels in  accordance with the Illuminating Engineering Society (IESNA) Lighting Handbook, 10th Edition.  Interior  lights will be fluorescent, LED or metal halide to suit the application.      Emergency and exit lights will be installed along egress routing and around exit doors to meet the  requirements of the National and Provincial Building Codes.    5.3.6 Instrumentation  This section summarizes the functional requirements for the process control and instrumentation  system.  It includes a narrative description of the instrumentation and control requirements.     Most unit processes in the treatment plant will be automated.  There will be a main plant PLC that will  be used to control many of the unit processes.  In addition to the main PLC, a local hand‐off‐auto  (H‐O‐A) switch will be required for most of the equipment.  Some of the more complex unit processes  will be provided with their own individual PLCs including:   UV disinfection system;   SBRs;   Blowers;    Generator; and   Centrifuge.    Each piece of equipment that is to be provided with a dedicated controller will be capable of operating  in either a manual or automatic mode (SCADA controlled) via an H‐O‐A switch.    HEJV Glace Bay WWTP Preliminary Design Brief 36   Overview  Unit operations at the treatment plant will be monitored and controlled using a system of instruments,  equipment motors, PLCs, human machine interfaces (HMI), communications cable, and hardware that is  integrated into a SCADA software program.  The selection of Supervisory and Control Software as well as  the level one type of plant instrumentation will be made following the selection of a system integrator  and a review of options by plant operating personnel and the engineers.    The system will also be configured to allow an authorized operator to dial in and log on from a remote  location via laptop from their home.  This will permit the Supervisor or duty operator to check plant  status, respond to after‐hours alarms, and to change equipment operation where appropriate.      In addition to the aforementioned monitoring and control terminals, there will be local control panels at  key locations using “soft panel” type HMIs (human/machine interface), which will permit the operator to  view process information and to take local control action.  In some locations, where the only  requirement is to be able to stop a motor and to lock it out for maintenance, that capability will be  provided by hard‐wired controls at the motor starter.    The alarms integrated into the system will have audible and/or flashing light annunciation in the plant  during regular hours, and call‐out by telephone and/or email after hours with a user‐configurable  sequential call priority list.      Headworks  The Headworks consist of fine screening and a vortex grit chamber.  All the equipment will be controlled  by the main PLC.  Each piece of equipment will be monitored for status and faults in addition to the  alarms for high and low levels in the influent channels which will be registered on the central control  computers and monitors.      SBR System  Effluent from preliminary treatment will be split between the SBR tanks via weirs.     The SBR and sludge blowers will be installed in the Process Building.  The SBR blowers will discharge to a  common air header which will have a dedicated take off for each SBR.  Blower operation will be  controlled by the SBR control system.  The digester blower will discharge to a common air header which  will have a dedicated take off for each sludge holding tank cell.    The air headers will feed the fine bubble diffusers arranged along the bottom of the SBRs.  A separate  header will feed the fine bubble diffusers arranged along the bottom of the aerated sludge holding  tanks.  Dissolved oxygen will be monitored in the SBR tanks.     An air flow meter in the supply header will indicate, totalize, and record the air flow to the plant.  The  dissolved oxygen levels for each reactor will be indicated and recorded on the central SCADA system.   Blower operating status, header pressure and inlet valve positions as well as supply line pressure will be  indicated on the central computer system.  The blowers will also be equipped with sensors and alarms  for surge, vibration, temperature, and general faults, which will register at the central control.    Effluent will be removed from the SBR tanks via a solids excluding decanter.  Flow through the decanter  will be automatically controlled via a valve by the SBR control system.    Waste Activated Sludge     HEJV Glace Bay WWTP Preliminary Design Brief 37 The WAS will be pumped from the SBRs to the aerated sludge holding tanks automatically using WAS  pumps which will be controlled by the SBR control system.  WAS flow will be measured by magnetic flow  meters installed on the suction side of the pumps.      Effluent Disinfection  Ultraviolet Disinfection will be used to achieve disinfection limits for fecal coliform prior to discharge.   The UV manufacturer will provide a PLC to control the UV system.  The UV PLC will be compatible with  the central station.  UV dose will be controlled by plant flow and percent UVT.  Monitoring and  recording of UV intensity, general alarms, and low level, high levels alarms will be provided.  Automatic  wiping will be controlled on timer or by monitoring UV intensity.     Centrifuge   The sludge feed rate to the centrifuge equipment will be set to maintain the sludge inventory in the  holding tanks within a set band.  The centrifuge PLC communicates with the sludge feed pumps and  polymer make‐down system and adjusts sludge feed and polymer dosing pump rates to suit the  centrifuge throughput.                                                                        HEJV Glace Bay WWTP Preliminary Design Brief 38   CHAPTER 6 PROJECT COSTS    6.1 Opinion of Probable Capital Costs  An opinion of probable capital cost for the recommended treatment process option is presented in  Table 6.1, on the following page.  Please note that the costs of interception and pumping are extra and  are detailed in a separate pre‐design brief.    6.2 Opinion of Annual Operating Costs  An annual operating cost estimate for the recommended treatment process option is presented in Table  6.2.    Table 6.2: Annual Operating Cost Estimate  Category Annual Operation Cost  Staffing  $500,000  Power  $270,000  Chemicals $33,000  Sludge Disposal $220,000  Maintenance Allowance $47,000  Total  $1,070,000    6.3 Opinion of Annual Capital Replacement Fund Contributions  The CBRM wishes to create a Capital Replacement Fund to which annual contributions would be made  to prepare for replacement of the wastewater assets at the end of their useful life.  The calculation of  annual contributions to this fund involves consideration of such factors as the type of asset, the asset  value, the expected useful life of the asset, and the corresponding annual depreciation rate for the  asset, as per the accounting practices for asset depreciation and Depreciation Funds recommended in  the Water Utility Accounting and Reporting Handbook (Nova Scotia Utility and Review Board, 2013).  In  consideration of these factors, Table 6.3 provides an estimation of the annual contributions to a capital  replacement fund for the proposed new wastewater treatment system infrastructure.  This calculation  also adds the same contingency factors used in the calculation of the Opinion of Probable Capital Cost,  to provide an allowance for changes during the design and construction period of the WWTP.  The actual  Annual Capital Replacement Fund Contributions will be calculated based on the final constructed asset  value, the type of asset, the expected useful life of the asset, and the corresponding annual depreciation  rate for the asset type.            Project Manager: D. McLean Est. by: P. Gerry Checked by: A Thibault PROJECT No.: 187116 (Dillon) 182402.00 (CBCL) UPDATED: July 2, 2020 1.04 1.0 3,145,000$ allow 1 600,601$ 601,000$ allow 10%2,544,000$ 2.0 3,585,289$ m2 11,000 5$ 55,000$ m3 excavated 29,300 20$ 586,000$ m3 excavated 6,500 50$ 325,000$ m3 2,200 42$ 91,520$ tonne 465 200$ 93,000$ tonne 600 25$ 15,000$ tonne 1,100 22$ 24,200$ Armour Stone m3 1,050 100$ 105,000$ m 120 100$ 12,000$ 1200 mm dia sanitary sewer m 180 2,300$ 414,000$ 600 mm dia sanitary pipe m 120 725$ 87,000$ m 100 350$ 35,000$ m 115 725$ 83,369$ m 200 100$ 20,000$ ea.3 10,000$ 30,000$ ea.5 45,000$ 225,000$ ea.1 25,000$ 25,000$ m 410 100$ 41,000$ allow 1 14,440$ 14,440$ SSP Cofferdam m2 876 900$ 788,760$ allow 1 500,000$ 500,000$ allow 1 15,000$ 15,000$ 3.0 7,641,317$ m3 of baseslab 408 728$ 297,024$ m3 of baseslab 2,670 1,000$ 2,670,000$ m3 of concrete 1,334 1,000$ 1,334,000$ m3 of concrete 1,853 1,600$ 2,964,800$ m2 of concrete 70 174$ 12,202$ allow 5%363,291.20$ 4.0 471,204$ m2 wall area 459 226$ 103,743$ m2 wall area 794 463$ 367,460$ 5.0 705,604$ m2 building area 1,517 104$ 157,761$ m2 building area 837 450$ 376,862$ m2 building area 837 174$ 145,981$ allow 25,000$ 6.0 508,113$ m2 building area 837 118$ 99,123$ m2 building area 837 107$ 89,609$ m2 building area 837 25$ 20,937$ m2 building area 837 107$ 89,609$ m2 building area 837 30$ 25,124$ each 26 2,650$ 68,900$ each 20 1,100$ 22,000$ each 2 8,000$ 16,000$ each 4 3,500$ 14,000$ m2 building area 837 75$ 62,810$ 7.0 4,651,400$ each 1 767,000$ 767,000$ each 1 302,640$ 302,640$ each 1 404,560$ 404,560$ each 1 1,768,000$ 1,768,000$ each 1 452,400$ 452,400$ allow 1 436,800$ 436,800$ allow 1 520,000$ 520,000$ 8.0 3,865,659$ m2 building area 837 728$ 609,679$ allow 30% of equipment 1,395,420$ allow 40% of equipment 1,860,560$ 9.0 4,007,146$ allow 15% of project cost 3,214,288$ allow 3% of project cost 642,858$ allow 150,000$ 28,581,000$ A 25%7,200,000$ B 12%3,500,000$ C Inflation (Based on 2020 Dollars) - Note 3 Not included D Location Factor - Note 4 Included in Units E 200,000$ 39,481,000$ 15%5,922,000$ 45,403,000$ THIS OPINION OF PROBABLE COSTS IS PRESENTED ON THE BASIS OF EXPERIENCE, QUALIFICATIONS, AND BEST JUDGEMENT. IT HAS BEEN PREPARED IN ACCORDANCE WITH ACCEPTABLE PRINCIPLES AND PRACTICES. MARKET TRENDS, NON-COMPETITIVE BIDDING SITUATIONS, UNFORSEEN LABOUR AND MATERIAL ADJUSTMENTS AND THE LIKE ARE BEYOND THE CONTROL OF HEJV. AS SUCH WE CANNOT WARRANT OR GUARANTEE THAT ACTUAL COSTS WILL NOT VARY FROM THE OPINION PROVIDED. TOTAL CONSTRUCTION & DESIGN COST without HST Taxes (HST) TOTAL CONSTRUCTION & DESIGN COST with HST Construction ContingencyEngineering Land Purchase TOTAL DIRECT & INDIRECT CONSTRUCTION COST (Exluding Contingencies and Allowances) CONTINGENCIES and ALLOWANCES Process Installation Electrical Power Supply & Distribution Instrumentation & Control Generator Sludge Dewatering Odour Control MechanicalHVAC and Plumbing Process Mechanical Process Equipment Supply Fine Screening Grit Removal SBR Equipment UV Disinfection System Floor Finishes (Lab, Office, Admin Area) Windows (exterior - single) Doors (single swing steel) Overhead rolling door (3m wide)Double swing FRP doorsOther Interior Finishes, Misc Pump Station Equipment Finishes/Doors/Windows Carpentry, Assessories and Fixtures Louvers Painting Epoxy Coating Metal Railings, Stairs, Grating, Hatches Beams and ColumnsRoof (12" hollowcore concrete panels)Miscellaneous Metals Items Masonry Interior Masonry c/w Grout & Rebar Exterior Masonry Metals & Roofing Baseslabs (tanks) Foundation and Exterior Building Walls Foundations and Tank Walls 2nd flr hollowcore slab Miscellaneous Concrete Items Baseslabs (building) Excavation - rock General Conditions ITEM / No. DESCRIPTION UNIT EST. QUANTITY UNIT COST Total Sediment Control Dewatering Reinstatement Concrete 2400 dia Valve Chamber x 3m Deep Chainlink Fence and Gates Excavation Gravel (beneath slabs) Table 6.1 PREPARED FOR:OPINION OF PROBABLE COST, CLASS 'C' Preliminary Cape Breton Regional Municipality Wastewater Treatment System Costs Only Glace Bay, NS Manholes - 3000 mm dia sanitary Mobilization, Bonds, Insurance, P.C. Mngmt Contractor Overhead & Fees Site Works Site Preparation 150 mm dia D.I. Piping 600 mm dia Concrete Cl 65 Storm sewer DitchingManholes Asphalt Type 1 (150mm) Type 2 (300mm) Curb March 27, 2020   HEJV Glace Bay WWTP Preliminary Design Brief 39 Table 6.3: Annual Capital Replacement Fund Contributions  Description of Asset Asset Value  Asset Useful  Life Expectancy  (Years)  Annual  Depreciation  Rate (%)  Annual Capital  Replacement Fund  Contribution  Treatment Linear Assets (Yard  Piping, Manholes and Other) $3,080,366 75 1.3% $41,000  Treatment Structures (Concrete  Chambers, etc.) $11,461,000 50 2.0% $229,000  Treatment Equipment (Mechanical /  Electrical, etc.) $14,039,634 20 5.0% $702,000  Subtotal $28,581,000 ‐  ‐ $972,000  Construction Contingency (Subtotal x 25%): $243,000  Engineering (Subtotal x 12%): $117,000  Opinion of Probable Annual Capital Replacement Fund Contribution: $1,332,000    Table Notes   1 ‐ Costs do not account for annual inflation   2 ‐ Costs do not include applicable taxes.     HEJV Appendices APPENDIX A    Flow Meter Data      HEJV Appendices APPENDIX B    Environmental Risk Assessment         182402.00   ●   Report   ●   June 2020  Glace Bay Wastewater Treatment Plant  Environmental Risk Assessment  Final Report  Prepared by:      Prepared for:      March 2020                                                                   Final June 9, 2020 Darrin McLean Karen March Holly Sampson  Revised Draft – Revision 1 January 7, 2019 Darrin McLean Karen March Holly Sampson  Draft for Review August 29, 2018 Darrin McLean Karen March Holly Sampson  Issue or Revision Date Issued By: Reviewed By: Prepared By:  This document was prepared for the party indicated herein. The material and information in the document reflects HE’s opinion and best judgment based on the information available at the time of preparation. Any use of this document or reliance on its content by third parties is the responsibility of the third party. HE accepts no responsibility for any damages suffered as a result of third party use of this document.                           182402.00        March 27, 2020   182402 RE 001 DRAFT WWTP ERA GLACE BAY_FINAL.DOCX/mk  ED: 09/06/2020 12:54:00/PD: 09/06/2020 12:55:00   June 9, 2020      Matt Viva, P.Eng.  Manager Wastewater Operations  Cape Breton Regional Municipality (CBRM)  320 Esplanade,  Sydney, NS  B1P 7B9      Dear Mr. Viva:    RE: Glace Bay Wastewater Treatment Plant ERA     Enclosed, please find a copy of the Environmental Risk Assessment (ERA) Report  for the Glace Bay Wastewater Treatment Plant (WWTP).    The report outlines Environmental Quality Objectives (EQOs) for all parameters  of potential concern listed in the Standard Method for a “medium” facility that  were detected in the effluent. Environmental Discharge Objectives (EDOs) were  also calculated for all parameters of potential concern that were detected in the  effluent and for which an Environmental Quality Objective (EQO) was identified.    If you have any questions or require clarification on the content presented in  the attached report, please do not hesitate to contact us.      Yours very truly,    Harbour Engineering             Prepared by: Reviewed by:  Holly Sampson, M.A.Sc., P.Eng. Karen March, M.Sc.  Intermediate Chemical Engineer Environmental Scientist  Direct:  902‐539‐1330 Phone: 902‐450‐4000  E‐Mail:  hsampson@cbcl.ca E‐Mail: kmarch@dillon.ca     Project No: 182402.00 (CBCL)  187116.00 (Dillon)       March 27, 2020   Harbour Engineering Joint Venture Glace Bay WWTP ERA i Contents    CHAPTER 1 Background and Objectives ................................................................................... 1  1.1 Introduction .................................................................................................................. 1  1.2 Background ................................................................................................................... 1  1.3 Facility Description ........................................................................................................ 2  CHAPTER 2 Initial Effluent Characterization ............................................................................. 5  2.1 Substances of Potential Concern .................................................................................. 5  2.1.1 Whole Effluent Toxicity ..................................................................................... 7  2.2 Wastewater Characterization Results .......................................................................... 7  CHAPTER 3 Environmental Quality Objectives ....................................................................... 12  3.1 Water Uses .................................................................................................................. 12  3.2 Ambient Water Quality ............................................................................................... 13  3.3 Physical/ Chemical/ Pathogenic Approach ................................................................. 19  3.3.1 General Chemistry/ Nutrients ........................................................................ 19  3.3.2 Metals ............................................................................................................. 24  3.3.3 E. coli ............................................................................................................... 26  3.3.4 Summary ......................................................................................................... 28  CHAPTER 4 Mixing Zone Analysis ........................................................................................... 30  4.1 Methodology ............................................................................................................... 30  4.1.1 Definition of Mixing Zone ............................................................................... 30  4.1.2 Site Summary .................................................................................................. 32  4.1.3 Far‐Field Modeling Approach and Inputs ....................................................... 32  4.1.4 Modeled Effluent Dilution .............................................................................. 35  CHAPTER 5 Effluent Discharge Objectives .............................................................................. 41  5.1 The Need for EDOs ...................................................................................................... 41  5.2 Physical/ Chemical/ Pathogenic EDOs ........................................................................ 41  5.3 Effluent Discharge Objectives ..................................................................................... 42  CHAPTER 6 Compliance Monitoring ....................................................................................... 45  CHAPTER 7 References .......................................................................................................... 46    Appendices     A Laboratory Certificates    Harbour Engineering Joint Venture Glace Bay WWTP ERA 1 CHAPTER 1  BACKGROUND AND OBJECTIVES    1.1 Introduction  Harbour Engineering (HE) was engaged by the Cape Breton Regional Municipality (CBRM) to complete  an Environmental Risk Assessment (ERA) for the proposed Glace Bay Wastewater Treatment Plant  (WWTP). As this is a proposed WWTP that has not yet been designed, this ERA was completed with the  objective that it serve as a tool to establish effluent criteria for the design of a new WWTP.  For this  reason, the ERA was completed without the frequency of testing required by the Standard Method  outlined in Technical Supplement 3 of the Canada‐wide Strategy for the Management of Municipal  Wastewater Effluent (Standard Method) for initial effluent characterization. With the exception of the  initial effluent characterization sampling frequency, the ERA was otherwise completed in accordance  with the Standard Method.    1.2 Background  The Canada‐wide Strategy (CWS) for the Management of Municipal Wastewater Effluent was adopted  by the Canadian Council of Ministers of the Environment (CCME) in 2009.  The Strategy is focused on  two (2) main outcomes: Improved human health and environmental protection; and improved clarity  about the way municipal wastewater effluent is managed and regulated. The Strategy requires that all  wastewater facilities discharging effluent to surface water meet the following National Performance  Standards (NPS) as a minimum:   Carbonaceous Biochemical Oxygen Demand for five days (CBOD5) – 25 mg/L;   Total Suspended Solids (TSS) – 25 mg/L; and   Total Residual Chlorine (TRC) – 0.02 mg/L.    The Wastewater Systems Effluent Regulations (WSER) came into effect in 2012 under the Fisheries Act.  The WSER include the above NPS as well as the following criteria:   Unionized ammonia ‐ 1.25 mg/L, expressed as nitrogen (N), at 15°C ± 1°C.    The CWS requires that facilities develop site‐specific Environmental Discharge Objectives (EDOs) to  address substances not included in the NPS that are present in the effluent.  EDOs are the substance  concentrations that can be discharged in the effluent and still provide adequate protection of human  health and the environment.  They are established by conducting a site‐specific ERA. The ERA includes  characterization of the effluent to determine potential substances of concern, and characterization of  the receiving water to determine beneficial water uses, ambient water quality, assimilative capacity, and    Harbour Engineering Joint Venture Glace Bay WWTP ERA 2 available dilution. A compliance monitoring program is then developed and implemented to ensure  adherence to the established EDOs for the facility.    1.3 Facility Description  The proposed Glace Bay Wastewater Treatment Plant (WWTP) will be constructed at Lower Main  Street near Glace Bay Harbour. Treated effluent will be discharged to the Atlantic Ocean at the  location of the existing outfall near the breakwater (Figure 1.2).   Figure 1.1 Site Location                          Harbour Engineering Joint Venture Glace Bay WWTP ERA 3 Figure 1.2 WWTP Location    The service population of Glace Bay is 14,536 people in 7,258 residential units. The theoretical  domestic wastewater flow (exclusive of inflow and infiltration (I&I)) is an average of 4,942 m3/day  with a peak of 13,838 m3/day based on a per capita flow of 340 L/person/day and a peaking factor  of 2.8 calculated using the Harmon formula.     There are currently 8 existing outfalls (see Figure 3.1). These outfalls will be consolidated into one  discharge at the location of existing GB‐8 outfall. The estimated service population associated with  each outfall, based on 2016 census data, is provided in Table 1.1:    Table 1.1 Service Population by Outfall  Outfall Name Residential Units Population  GB1 253 558  GB2 231 504  GB3 21 44  GB4A 306 590  GB4B 36 77  GB5 57 118  GB6 347 713  GB7 72 140  GB8 5935 11791  Total 7258 14536    Harbour Engineering Joint Venture Glace Bay WWTP ERA 4 For the purpose of the ERA, the average daily flow was assumed to be 14,200 m3/day (215 IG/p/day  or 1m3/p/day) for modelling purposes, based on a reasonable per capita allowance for average  annual flow. The preliminary design of the proposed WWTP was subsequently completed based on  an average design flow of 13,815 m3/day. The effluent modelling will not be updated at this time.  See the WWTP preliminary design report for information on the development of design flows. The  design flows do not account for growth. CBRM has a declining population so increased flows due to  population growth are not expected. CBRM’s wastewater collection systems have significant inflow  and infiltration (I&I), and CBRM plans to implement an I&I reduction program.          Harbour Engineering Joint Venture Glace Bay WWTP ERA 5 CHAPTER 2  INITIAL EFFLUENT CHARACTERIZATION    2.1 Substances of Potential Concern  An initial characterization program covering a one‐year period is typically required by the Standard  Method to describe the treated effluent and identify substances of concern.  As there is no existing  WWTP for this system, and the ERA is being conducted for the purpose of determining effluent  objectives for the design of a new WWTP, one sample event was completed for each of the existing  8 outfalls. Sample results for some of the parameters of potential concern were also available from  three‐years of sampling conducted by CBRM from 2015 through 2017 at the GB4 outfall, one sample  collected by Dillon Consulting in 2014 at each of the outfalls, and samples collected by UMA  Engineering in 1992 at the Park Street sewer. Substances of potential concern are listed in the  Standard Method based on the size category of the facility. The proposed design capacity of the new  WWTP will be finalized during the pre‐design study, but for the purposes of the draft ERA, an  average annual flow of 14,200 m3/day will be assumed based on a per capita flow of 215 IG/p/day  (1m3/p/day). Therefore, the WWTP is classified as a “medium” facility based on an average daily  flow rate that is between 2,500 and 17,500 m3/day.    The substances of potential concern for a “medium” facility, as per the Standard Method, are  detailed in Table 2.1. There were no additional substances of concern identified to be monitored as  industrial input does not exceed 5% of total dry weather flow in the sewer shed, on an annual  average basis. There is one hospital and a fish processing plant, but the flows are expected to be  much less than 5% of the wastewater flow for the system.                                Harbour Engineering Joint Venture Glace Bay WWTP ERA 6 Table 2.1 – Substances of Potential Concern for a Medium Facility  Test Group Substances  General Chemistry  / Nutrients  Fluoride  Nitrate  Nitrate + Nitrite  Total Ammonia Nitrogen  Total Kjeldahl Nitrogen (TKN)  Total Phosphorus (TP)  Total Suspended Solids (TSS)  Carbonaceous Biochemical Oxygen Demand (CBOD5)  Total Residual Chlorine (TRC)  Chemical Oxygen Demand (COD)  Cyanide (total)  pH  Temperature  Metals  Aluminum, barium, beryllium, boron, cadmium, chromium, cobalt, copper, iron,  lead, manganese, molybdenum, nickel, silver, strontium, thallium, tin, titanium,  uranium, vanadium, zinc as well as arsenic, antimony, selenium and mercury  Pathogens E. coli (or other pathogen, as directed by the jurisdiction)  Organochlorine  Pesticides  Alpha‐BHC, endosulfin (I and II), endrin, heptachlor epoxide, lindane (gamma‐ BHC), mirex, DDT, methoxychlor, aldrin, dieldrin, heptachlor, a‐chlordane and g‐ chlordane, toxaphene  Polychlorinated  Biphenyls (PCBs) Total PCBs  Polycyclic Aromatic  Hydrocarbons  (PAHs)  Acenaphthene, acenapthylene, anthracene, benzo(a)anthracene,  benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene,  benzo(k)fluoranthene, chrysene, dibenz(a,h)anthracene, fluoranthene, fluorene,  indeno(1,2,3‐cd)pyrene, methylnaphthalene, naphthalene, phenanthrene, pyrene  Volatile Organic  Compounds (VOCs)  Benzene, bromodichloromethane, bromoform, carbon tetrachloride,  chlorobenzene, chlorodibromomethane, chloroform, 1,2‐dichlorobenzene, 1,4‐ dichlorobenzene, 1,2‐dichloroethane, 1,1‐dichloroethene, dichloromethane,  ethylbenzene, 1,1,1,2‐tetrachloroethane, 1,1,2,2‐tetrachloroethane,  tetrachloroethene, toluene, trichloroethene, vinyl chloride, m/p‐xylene, o‐xylene  Phenolic  Compounds  2,3,4,6‐tetrachlorophenol, 2,4,6‐trichlorophenol, 2,4‐dichlorophenol,  pentachlorophenol  Surfactants Non‐ionic surfactants and anionic surfactants (others may be added by the  jurisdiction)          Harbour Engineering Joint Venture Glace Bay WWTP ERA 7 2.1.1 Whole Effluent Toxicity  Wastewater effluent potentially contains a variety of unknown or unidentified substances for which  guidelines do not exist. In order to adequately protect against these unknown substances, Whole  Effluent Toxicity (WET) tests are typically conducted to evaluate acute (short‐term) and chronic (long‐ term) effects.    The Standard Method requires the following toxicity tests be conducted quarterly:   Acute toxicity – Rainbow Trout and Daphnia magna; and   Chronic Toxicity – Ceriodaphnia dubia and Fathead Minnow.    A draft for discussion Mixing Zone Assessment and Report Template, dated July 6, 2016 that was  prepared by a committee of representatives of the environment departments in Atlantic Canada noted  that only Ceriodaphnia dubia testing is required for chronic toxicity. If the test does not pass, a fathead  minnow test is required.    As the wastewater in this system is currently untreated, and the purpose of the ERA is to determine  effluent discharge objectives for the design of a new WWTP, no WET tests were conducted at this time.    2.2 Wastewater Characterization Results  The results of the initial wastewater characterization program completed by HE are summarized in  Tables 2.2 through 2.6. One sample was collected for each outfall in the system as part of the initial  wastewater characterization study. Outfall locations are shown in Section 3.     Table 2.2 – Initial Wastewater Characterization Results – General Chemistry  Parameter Outfall  GB1 GB2 GB4 GB5 GB6 GB7 GB8  CBOD5 (mg/L) 32 50 130 84 54 30 64  COD (mg/L) 53 100 200 120 130 41 120  Total NH3‐N (mg/L) 1.4 2.0 3.4 3.8 2.1 0.51 3.7  TSS (mg/L) 25 53 49 41 40 15 50  TP (mg/L) 0.69 0.99 2.2 1.6 1.0 0.3 1.8  TKN (mg/L) 6.0 6.8 16 12 9.2 2.2 13  pH 7.11 7.00 6.79 6.52 7.17 7.18 7.31  Un‐ionized NH3 (mg/L)(1) 0.0049 0.0055 0.0058 0.0035 0.0085 0.0021 0.0207  E. coli (MPN/100mL) 77000 >240000 >240000 130000 >240000 170000 >240000  Fluoride (mg/L) <0.10 <0.10 0.12 0.1 0.12 <0.10 0.11  Nitrate (mg/L) 0.67 0.079 <0.050 0.08 0.79 1.0 <0.050  Nitrite (mg/L) 0.03 0.34 <0.010 0.83 0.06 0.025 <0.010  Nitrate + Nitrite (mg/L) 0.69 0.42 <0.050 0.91 0.85 1.0 <0.050  Total Nitrogen (TN) (mg/L) 6.7 7.2 16.0 12.9 10.1 3.2 13.0  Total Cyanide (mg/L) 0.0019 0.0022 0.0028 0.0034 0.0029 0.0015 0.013  Note:  (1) The values of unionized ammonia were determined in accordance with the formula in the WSER, the  concentration of total ammonia in the sample, and the pH of the sample.      Harbour Engineering Joint Venture Glace Bay WWTP ERA 8 Table 2.3 – Initial Wastewater Characterization Results – Metals (mg/L)  Parameter Outfall  GB1 GB2 GB4 GB5 GB6 GB7 GB8  Aluminum 0.077 0.31 0.28 0.66 0.14 0.06 0.11  Antimony <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010  Arsenic <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010  Barium 0.045 0.03 0.033 0.031 0.044 0.038 0.037  Beryllium <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010  Boron <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050  Cadmium 0.000038 0.00017 0.00031 0.00036 0.00013 0.00004 0.000095  Chromium <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010  Cobalt <0.00040 0.0012 0.0011 0.0025 0.00065 <0.00040 <0.00040  Copper 0.0047 0.0068 0.01 0.015 0.009 0.0044 0.0099  Iron 0.17 1 0.42 0.58 0.19 0.3 0.49  Lead <0.00050 0.00062 0.001 0.0029 0.00051 0.00056 0.00057  Manganese 0.12 0.75 0.4 0.56 0.32 0.29 0.25  Molybdenum <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 0.0065 <0.0020  Nickel <0.0020 0.004 0.0066 0.011 0.0031 <0.0020 <0.0020  Selenium <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010  Silver <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010  Strontium 0.16 0.12 0.12 0.16 0.13 0.28 0.11  Thallium <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010  Tin <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020  Titanium 0.003 0.0052 0.0082 <0.020  <0.020  0.0032 0.0029  Uranium 0.00017 0.00011 <0.00010 <0.00010 0.00011 0.00015 <0.00010  Vanadium <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020  Zinc 0.015 0.051 0.11 0.11 0.043 0.013 0.040  Mercury <0.000013 <0.000013 <0.000013 <0.000013 0.000013 <0.000013 <0.000013                                         Harbour Engineering Joint Venture Glace Bay WWTP ERA 9 Table 2.4 – Initial Wastewater Characterization Results – VOCs (µg/L)  Parameter Outfall  GB1 GB2 GB4 GB5 GB6 GB7 GB8  1,2‐Dichlorobenzene <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50  1,4‐Dichlorobenzene <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0  Chlorobenzene <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0  1,1,2,2‐Tetrachloroethane <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50  1,1‐Dichloroethylene <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50  1,2‐Dichloroethane <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0  Benzene <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0  Bromodichloromethane <1.0 1.0 1.0 1.2 1.0 <1.0 <1.0  Bromoform <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0  Carbon Tetrachloride <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50  Chloroform 2.4 3.8 4.1 5 3.8 <1.0 3.1  Dibromochloromethane <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0  Ethylbenzene <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0  Methylene Chloride  (Dichloromethane) <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0  o‐xylene <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0  m/p‐xylene <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0  Tetrachloroethene <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0  Toluene <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 1.3  Trichloroethene  <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0  Vinyl Chloride <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50                                          Harbour Engineering Joint Venture Glace Bay WWTP ERA 10 Table 2.5 – Initial Wastewater Characterization Results – PCBs, Phenols, PAHs  Parameter Outfall  GB1 GB2 GB4 GB5 GB6 GB7 GB8  Total PCBs (µg/L) <0.05 <0.05 <0.3 <0.05 <0.05 <0.05 <0.05  Phenols (mg/L) 0.0051 0.0049 0.013 0.0081 0.017 0.0015 0.0011  1‐Methylnaphthalene (µg/L) <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050  2‐Methylnaphthalene (µg/L) <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050  Acenaphthene (µg/L) <0.010 <0.010 <0.050 0.015 <0.010 <0.010 <0.010  Acenaphthylene (µg/L) <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010  Anthracene (µg/L) <0.010 <0.010 <0.010 0.037 <0.010 <0.010 <0.010  Benzo(a)anthracene (µg/L) <0.010 <0.010 <0.010 0.09 <0.010 <0.010 <0.010  Benzo(a)pyrene (µg/L) <0.010 <0.010 <0.010 0.064 <0.010 <0.010 <0.010  Benzo(b)fluoranthene (µg/L) <0.010 <0.010 <0.010 0.054 <0.010 <0.010 <0.010  Benzo(g,h,i)perylene (µg/L) <0.010 <0.010 <0.010 0.04 <0.010 <0.010 <0.010  Benzo(k)fluoranthene (µg/L) <0.010 <0.010 <0.010 0.026 <0.010 <0.010 <0.010  Chrysene (µg/L) <0.010 <0.010 <0.010 0.073 <0.010 <0.010 <0.010  Dibenz(a,h)anthracene (µg/L) <0.010 <0.010 <0.010 0.021 <0.010 <0.010 <0.010  Fluoranthene (µg/L) 0.013 0.017 0.016 0.21 <0.010 <0.010 <0.010  Fluorene (µg/L) <0.010 <0.010 <0.010 0.02 <0.010 <0.010 <0.010  Indeno(1,2,3‐cd)pyrene (µg/L) <0.010 <0.010 <0.010 0.041 <0.010 <0.010 <0.010  Naphthalene (µg/L) <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20  Phenanthrene (µg/L) 0.016 0.031 0.031 0.12 0.016 <0.010 0.011  Pyrene (µg/L) 0.011 0.016 0.016 0.16 <0.010 <0.010 <0.010    Table 2.6 – Initial Wastewater Characterization Results – Organochlorine Pesticides (µg/L)  Parameter Outfall  GB1 GB2 GB4 GB5 GB6 GB7 GB8  Aldrin <0.005 <0.005 <0.03 <0.005 <0.005 <0.005 <0.005  Dieldrin <0.005 <0.005 <0.03 <0.005 <0.005 <0.005 <0.005  a‐Chlordane <0.005 <0.005 <0.03 <0.005 <0.005 <0.005 <0.005  g‐Chlordane <0.005 <0.005 <0.03 <0.005 <0.005 <0.005 <0.005  o,p‐DDT <0.005 <0.005 <0.03 <0.005 <0.005 <0.005 <0.005  p,p‐DDT <0.005 <0.005 <0.03 <0.005 <0.005 <0.005 <0.005  Lindane <0.003 <0.003 <0.02 <0.003 <0.003 <0.003 <0.003  Endosulfan I (alpha) <0.005 <0.005 <0.03 <0.005 <0.005 <0.005 <0.005  Endosulfan II (beta) <0.005 <0.005 <0.03 <0.005 <0.005 <0.005 <0.005  Endrin <0.005 <0.005 <0.03 <0.005 <0.005 <0.005 <0.005  Heptachlor <0.006  <0.005 <0.03 <0.02  <0.02  <0.005 <0.005  Heptachlor epoxide <0.005 <0.005 <0.03 <0.005 <0.005 <0.005 <0.005  Methoxychlor <0.01 <0.01 <0.07 <0.01 <0.01 <0.01 <0.01  alpha‐BHC <0.005 <0.005 <0.03 <0.005 <0.005 <0.005 <0.005  Mirex <0.005 <0.005 <0.03 <0.005 <0.005 <0.005 <0.005  Toxaphene <0.2 <0.2 <1 <0.2 <0.2 <0.2 <0.2  DDT+ Metabolites <0.005 <0.005 <0.03 <0.005 <0.005 <0.005 <0.005    Harbour Engineering Joint Venture Glace Bay WWTP ERA 11 Table 2.7 – Historical Wastewater Characterization Samples   Location Parameter Average Number of Samples  GB1  TSS (mg/L) 31 1  CBOD5 (mg/L) 48 1  Unionized Ammonia  (mg/L) 0.023 1  GB2  TSS (mg/L) 55 1  CBOD5 (mg/L) 53 1  Unionized Ammonia  (mg/L) 0.027 1  GB3  TSS (mg/L) 59 1  CBOD5 (mg/L) 290 1  Unionized Ammonia  (mg/L) 0.330 1  GB4  TSS (mg/L) 394 27  CBOD5 (mg/L) 40 27  Total Ammonia  (mg/L) 0.3 12  pH   7.4 12  Unionized Ammonia  (mg/L) 0.004 13  GB5  TSS (mg/L) 110 1  CBOD5 (mg/L) 56 1  Unionized Ammonia  (mg/L) 0.011 1  GB6  TSS (mg/L) 81 1  CBOD5 (mg/L) 240 1  Unionized Ammonia  (mg/L) 0.009 1  GB7  TSS (mg/L) 40 1  CBOD5 (mg/L) 55 1  Unionized Ammonia  (mg/L) 0.003 1  GB8  TSS (mg/L) 129 18  CBOD5 (mg/L) 105 18  Unionized Ammonia  (mg/L) 0.006 1  GB8A  TSS (mg/L) 90 24  CBOD5 (mg/L) 76 24  pH   7.1 24  Alkalinity (mg/L) 100 4  TKN (mg/L) 23.9 4  Total Phosphorus (mg/L) 2.40 4  Note: Location GB8A is a sample location upstream of the GB8 outfall at Park St.                 Harbour Engineering Joint Venture Glace Bay WWTP ERA 12   CHAPTER 3  ENVIRONMENTAL QUALITY OBJECTIVES  Generic Environmental Quality Objectives (EQOs) are generated from established guidelines, typically  the Wastewater Systems Effluent Regulations (WSER), the Canadian Environmental Quality Guidelines  (CEQGs) and other guidelines specified by jurisdiction. Site‐specific EQOs are established by adjusting  the generic EQOs based on site‐specific factors, particularly ambient water quality. For example, if the  background concentration of a substance is greater than the guideline value (generic EQO), the  background concentration is used as the site‐specific EQO. However, substances where the EQO is based  on the WSER are not adjusted based on ambient water quality. Furthermore, there are some guidelines  that are dependent on characteristics of the receiving water like pH or temperature.    EQOs can be determined by three different approaches:   Physical/ chemical/ pathogenic – describes the substance levels that will protect water quality;   Whole Effluent Toxicity (WET) – describes the proportion of effluent that can enter the receiving  water without causing toxicological effects (both acute and chronic); and   Biological criteria (bio‐assessment) – describes the level of ecological integrity that must be  maintained.    This assessment follows the physical/ chemical/ pathogenic approach from the Standard Method  outlined in the CCME guidelines. The bio‐assessment is not included in the Standard Method as it is still  being developed (CCME, 2008).    3.1 Water Uses  EQOs are numerical values and narrative statements established to protect the receiving water – in this  case the Atlantic Ocean near the breakwater in Glace Bay Harbour. The first step in determining EQOs is  to define the potential beneficial uses of the receiving water.    The following beneficial water uses have been identified for the Atlantic Ocean in the vicinity of Glace  Bay:   Direct contact recreational activities like swimming and wading at Table Head Beach to the  north and Big Glace Bay Beach to the south (shown on Figure 3.1, below);   Secondary contact recreational activities like boating and fishing; and   Ecosystem health for marine aquatic life.      Harbour Engineering Joint Venture Glace Bay WWTP ERA 13 There is no molluscan shellfish harvesting zone in the vicinity of the outfall. The outfall is situated in a  closure zone boundary extending from Point Aconi to Schooner Pond, situated 2500 m offshore in the  vicinity of the outfall (shown on Figure 3.1).    Figure 3.1 Location of Existing Outfalls     3.2 Ambient Water Quality  Generic EQOs are first developed based on existing guidelines and then adjusted based on site‐ specific factors, particularly background water quality. Water quality data was obtained for two  locations in the Atlantic Ocean along the coast of Cape Breton. The locations were chosen in an  attempt to be representative of ambient water quality outside the influence of the existing  untreated wastewater discharges in CBRM. Samples were collected by HE on May 11, 2018, and the  sample locations are summarized as follows and presented in Figure 3.2. A second set of samples  was collected by HE on November 18, 2018 and analyzed for metals using a different laboratory  method due to elevated detection limits in the first set of samples.                  Harbour Engineering Joint Venture Glace Bay WWTP ERA 14 BG‐1: Near Mira Gut Beach  BG‐2: Wadden’s Cove  Figure 3.2 Ambient Water Quality Sample Locations    A third sample was collected north of Port Morien but the results were not considered  representative of background conditions as sample results indicated that the sample was impacted  by wastewater. A summary of the ambient water quality data is shown in Tables 3.1 through 3.5.                                Harbour Engineering Joint Venture Glace Bay WWTP ERA 15 Table 3.1 – Ambient Water Quality Data – General Chemistry  Parameter Units BG1 BG2 AVG  Carbonaceous BOD (CBOD) mg/L <5.0 <5.0 <5.0  COD mg/L 1100 1000 1050  Hardness mg/L 4900 5200 5050  Nitrogen (Ammonia Nitrogen) mg/L <0.050 <0.050 <0.05  TSS mg/L 58 5.0 32  Total Phosphorus (TP) mg/L 0.037 0.032 0.035  Total Kjeldahl Nitrogen (TKN) mg/L 0.19 0.20 0.20  pH pH 7.73 7.68 7.71  unionized ammonia mg/L <0.0007 <0.0007 <0.0007  E. coli MPN/100mL 52 86 69  TRC mg/L NM NM NM  Fluoride mg/L 0.67 0.67 0.67  Nitrate (N) mg/L 0.051 <0.050 0.038  Nitrite (N) mg/L <0.010 <0.010 <0.010  Nitrate + Nitrite mg/L 0.051 <0.050 0.038  Total Nitrogen (TN) mg/L 0.241 0.225 0.233  Total Cyanide mg/L <0.0010 <0.0010 <0.0010  Note:       NM = Parameter not measured.     Parameters reported as < detection limit have been included in average calculation as half the  detection limit.                                                  Harbour Engineering Joint Venture Glace Bay WWTP ERA 16 Table 3.2 – Ambient Water Quality Data – Metals  Parameter Units BG1 BG2 AVG  May‐11 Nov‐18 May‐11 Nov‐18    Aluminum mg/L 0.17 0.089 0.083 0.754 0.274  Antimony mg/L <0.010(2) <0.0005 <0.010(2) <0.0005 <0.0005  Arsenic mg/L <0.010 0.00163 <0.010 0.00177 0.0017  Barium mg/L <0.010 0.0074 <0.010 0.0083 0.00785  Beryllium mg/L <0.010(2) <0.001 <0.010(2) <0.001 <0.001  Boron mg/L 3.5 3.42 3.7 3.43 3.51  Cadmium mg/L <0.00010(2) <0.00005 <0.00010(2) <0.00005 <0.00005  Chromium mg/L <0.010(2) <0.0005(1) <0.010(2) 0.00056 0.00041  Cobalt mg/L <0.0040(2) <0.0001(1) <0.0040(2) 0.00031 0.00018  Copper mg/L <0.020(2) <0.0005(1) <0.020(2) 0.00068 0.00047  Iron mg/L <0.50(2) 0.159 <0.50(2) 0.626 0.393  Lead mg/L <0.0050(2) 0.00015 <0.0050(2) 0.0003 0.000225  Manganese mg/L 0.021 0.00747 <0.020(2) 0.0165 0.01499  Molybdenum mg/L <0.020(2) 0.0095 <0.020(2) 0.0086 0.0091  Nickel mg/L <0.020(2) <0.00020 <0.020(2) <0.00020 <0.00020  Selenium mg/L <0.010(2) <0.0005 <0.010(2) <0.0005 <0.0005  Silver mg/L <0.0010(2) <0.00005 <0.0010(2) <0.00005 <0.00005  Strontium mg/L 5.9 7.27 6.3 7.32 6.70  Thallium mg/L <0.0010(2) <0.00010 <0.0010(2) <0.00010 <0.00010  Tin mg/L <0.020(2) <0.001 <0.020(2) <0.001 <0.001  Titanium mg/L <0.020(2) <0.010 <0.020(2) 0.046 0.026  Uranium mg/L 0.0026 0.00248 0.0026 0.00242 0.00253  Vanadium mg/L <0.020(2) <0.01 <0.020(2) <0.01 <0.01  Zinc mg/L <0.050(2) <0.001 <0.050(2) 0.0014 0.00095  Mercury mg/L 0.000013 ‐ 0.000013 ‐ 0.000013  Note:   (1) Value included in average calculation as half the detection limit.   (2) Value omitted from average calculation due to elevated detection limit.                       Harbour Engineering Joint Venture Glace Bay WWTP ERA 17 Table 3.3 – Ambient Water Quality Data – VOCs  Parameter Units BG1 BG2 AVG  1,2‐dichlorobenzene  µg/L <0.50 <0.50 <0.50  1,4‐dichlorobenzene  µg/L <1.0 <1.0 <1.0  Chlorobenzene  µg/L <1.0 <1.0 <1.0  1,1,2,2‐tetrachloroethane  µg/L <0.50 <0.50 <0.50  1,1‐Dichloroethylene  µg/L <0.50 <0.50 <0.50  1,2‐dichloroethane  µg/L <1.0 <1.0 <1.0  Benzene  µg/L <1.0 <1.0 <1.0  Bromodichloromethane  µg/L <1.0 <1.0 <1.0  Bromoform  µg/L <1.0 <1.0 <1.0  Carbon Tetrachloride  µg/L <0.50 <0.50 <0.50  Chloroform  µg/L <1.0 <1.0 <1.0  Dibromochloromethane  µg/L <1.0 <1.0 <1.0  Ethylbenzene  µg/L <1.0 <1.0 <1.0  Methylene Chloride  (Dichloromethane)  µg/L <3.0 <3.0 <3.0  o‐xylene  µg/L <1.0 <1.0 <1.0  m/p‐xylene  µg/L <2.0 <2.0 <2.0  Tetrachloroethene  (Tetrachloroethylene)  µg/L <1.0 <1.0 <1.0  Toluene  µg/L <1.0 <1.0 <1.0  Trichloroethene (Trichloroethylene)  µg/L <1.0 <1.0 <1.0  Vinyl Chloride  µg/L <0.50 <0.50 <0.50                                            Harbour Engineering Joint Venture Glace Bay WWTP ERA 18 Table 3.4 – Ambient Water Quality Data – PCBs, Phenols, PAHs  Parameter Units BG1 BG2 AVG  Total PCBs µg/L <0.05 <0.05 <0.05  Phenols  mg/L 0.011 <0.010  0.0305  1‐Methylnaphthalene  µg/L <0.050 <0.050 <0.050  2‐Methylnaphthalene  µg/L <0.050 <0.050 <0.050  Acenaphthene  µg/L <0.010 <0.010 <0.010  Acenaphthylene  µg/L <0.010 <0.010 <0.010  Anthracene  µg/L <0.010 <0.010 <0.010  Benzo(a)anthracene µg/L <0.010 <0.010 <0.010  Benzo(a)pyrene  µg/L <0.010 <0.010 <0.010  Benzo(b)fluoranthene  µg/L <0.010 <0.010 <0.010  Benzo(g,h,i)perylene  µg/L <0.010 <0.010 <0.010  Benzo(k)fluoranthene  µg/L <0.010 <0.010 <0.010  Chrysene  µg/L <0.010 <0.010 <0.010  Dibenz(a,h)anthracene  µg/L <0.010 <0.010 <0.010  Fluoranthene  µg/L <0.010 <0.010 <0.010  Fluorene  µg/L <0.010 <0.010 <0.010  Indeno(1,2,3‐cd)pyrene  µg/L <0.010 <0.010 <0.010  Naphthalene  µg/L <0.20 <0.20 <0.20  Phenanthrene  µg/L <0.010 <0.010 <0.010  Pyrene  µg/L <0.010 <0.010 <0.010      Table 3.5 – Ambient Water Quality Data – Organochlorine Pesticides  Parameter Units BG1 BG2 AVG  Aldrin µg/L <0.005 <0.005 <0.005  Dieldrin µg/L <0.005 <0.005 <0.005  a‐Chlordane µg/L <0.005 <0.005 <0.005  g‐Chlordane µg/L <0.005 <0.005 <0.005  o,p‐DDT µg/L <0.005 <0.005 <0.005  p,p‐DDT µg/L <0.005 <0.005 <0.005  Lindane µg/L <0.003 <0.003 <0.003  Endosulfan I (alpha) µg/L <0.005 <0.005 <0.005  Endosulfan II (beta) µg/L <0.005 <0.005 <0.005  Endrin µg/L <0.005 <0.005 <0.005  Heptachlor µg/L <0.005 <0.005 <0.005  Heptachlor epoxide µg/L <0.005 <0.005 <0.005  Methoxychlor µg/L <0.01 <0.01 <0.01  alpha‐BHC µg/L <0.005 <0.005 <0.005  Mirex µg/L <0.005 <0.005 <0.005  Toxaphene µg/L <0.2 <0.2 <0.2  DDT+ Metabolites µg/L <0.005 <0.005 <0.005      Harbour Engineering Joint Venture Glace Bay WWTP ERA 19 3.3 Physical/ Chemical/ Pathogenic Approach  The physical/ chemical/ pathogenic approach is intended to protect the receiving water by ensuring that  water quality guidelines for particular substances are being met. EQOs are established by specifying the  level of a particular substance that will protect water quality. Substance levels that will protect water  quality are taken from the CEQGs associated with the identified beneficial water uses. If more than one  guideline applies, the most stringent is used. Typically, the Canadian Water Quality Guidelines (CWQGs)  for the Protection of Aquatic Life are the most stringent and have been used for this assessment.  The  Health Canada Guidelines for Canadian Recreational Water have also been used to provide limits for  pathogens (E. coli).    The guidelines for the Protection of Aquatic Life provide recommendations for both freshwater and  marine (including estuarine) environments. Since the receiving water for the proposed Glace Bay  WWTP is a marine environment, the marine guidelines were used where available. The US EPA  National Recommended Water Quality Criteria (saltwater) were used when there were no CCME  marine criteria provided. For substances where a marine criterion was not specified by either CCME  or US EPA, the CCME freshwater guidelines were used. However, in marine environments, utilizing  freshwater water quality objectives may result in EQOs and EDOs that are overly conservative. There  were some parameters that were detected in the wastewater but for which a criterion did not exist  from either CCME or the US EPA. In those instances, an effort was made to identify an applicable  criterion from another jurisdiction, such as British Columbia Ministry of Environment (BCMOE).    Technical Supplement 3 of the Canada‐wide Strategy for the Management of Municipal Wastewater  Effluent indicates that for any one substance, if the natural concentration in the upstream location is  higher than the generic EQO equivalent, that concentration will apply as a site‐specific EQO, and the  generic EQO must be set aside. Otherwise, site‐specific EQOs are not needed.  Background water  quality samples were collected from the Atlantic Ocean by HE on May 11, 2018 and the results were  previously summarized in Section 3.2.    Site‐specific EQOs were developed for each substance that was detected in the wastewater, for  which there was a generic EQO, and for which the background concentration exceeded the generic  EQO. Site‐specific EQOs are discussed in the following sections and included in Table 3.8.  EQOs are  derived in the following sections for each substance of potential concern for a medium facility that  was detected in the wastewater.    3.3.1 General Chemistry/ Nutrients  The following general chemistry and nutrients parameters were identified as substances of potential  concern for a medium facility: CBOD, chemical oxygen demand (COD), un‐ionized ammonia, total  ammonia, total kjeldahl nitrogen (TKN), total suspended solids (TSS), total phosphorus, pH, total  residual chlorine (TRC), fluoride, nitrate, nitrite and total cyanide.  EQOs for these substances are  established in the following sections.            Harbour Engineering Joint Venture Glace Bay WWTP ERA 20 Oxygen Demand  Biochemical Oxygen Demand (BOD5) is a measure of the oxygen required to oxidize organic material  and certain inorganic materials over a given period of time (five days). It has two components:   carbonaceous oxygen demand and nitrogenous oxygen demand.    Chemical Oxygen Demand (COD) is another measure of oxygen depleting substances present in the  effluent. It is a measure of the oxygen required to chemically oxidize reduced minerals and organic  matter.     Carbonaceous Biochemical Oxygen Demand (CBOD5) measures the amount of biodegradable  carbonaceous material in the effluent that will require oxygen to break down over a given period of  time (five days). The CBOD5 discharged in wastewater effluent reduces the amount of dissolved  oxygen in the receiving water. Dissolved oxygen is an essential parameter for the protection of  aquatic life; and the higher the CBOD5 concentration, the less oxygen that is available for aquatic  life.    Traditionally performance standards have been set for BOD5; however, the WSER dictate a limit for  CBOD5. This is due to the variable effects of nitrogenous oxygen demand on the BOD5 test.    There are no CWQGs for the protection of aquatic life for CBOD5 in freshwater or in marine waters.   However, because CBOD5 affects the concentration of dissolved oxygen, the CWQG for dissolved  oxygen should be considered. The CWQG for freshwater aquatic life dictates that the dissolved  oxygen concentrations be greater than 9.5 mg/L for early life stages in cold water ecosystems. The  CWQG for marine aquatic life is a minimum of 8 mg/L.    The background dissolved oxygen concentrations were not measured in the receiving water.   However, the concentration of CBOD5 discharged in accordance with the WSER criteria should not  cause the dissolved oxygen (DO) concentration to vary outside of the normal range. Based on an  average annual temperature of 6.9 °C (from Bedford Institute of Oceanography Area 4VN), the  solubility of oxygen in seawater is approximately 9.5 mg/L. Assuming the background concentration  of DO is saturated, there can be a drop of 1.5 mg/L for the DO to be a minimum concentration of 8  mg/L. The average annual temperature was used in this calculation as if the maximum annual  temperature was used, this results in the solubility of oxygen being less than the CWQG for marine  aquatic life. For an ocean discharge, the maximum DO deficit should occur at the point source.    Assuming a deoxygenation rate of 0.23/day based on a depth of approximately 4.3 m at the  proposed discharge location (with a 100 m outfall extension), and assuming a reaeration coefficient  of 0.21/day based on a depth of approximately 4.3 m and an average tidal velocity of 0.062 m/s, the  maximum concentration of CBOD that would result in a drop in DO of 1.5 mg/L can be calculated.   The tidal dispersion coefficient has been assumed to be 150 m2/s. The concentration of CBOD  potentially affecting DO was calculated to be 11.75 mg/L. Therefore, the WSER criteria of 25 mg/L  CBOD at discharge should not cause the dissolved oxygen (DO) concentration to vary outside of the  normal range provided initial dilution is at least 2.2:1. The background level of CBOD was less than  the detection limit of 5 mg/L.    Harbour Engineering Joint Venture Glace Bay WWTP ERA 21 Total Ammonia and Un‐ionized Ammonia  The CWQG for the protection of aquatic life for total ammonia in freshwater is presented as a table  based on pH and temperature. There is no CWQG for ammonia in marine water.  Total ammonia is  comprised of un‐ionized ammonia (NH3) and ionized ammonia (NH4+, ammonium). Un‐ionized  ammonia is more toxic than ionized ammonia and the toxicity of total ammonia is related to the  concentration of un‐ionized ammonia present. The amount of un‐ionized ammonia is variable  depending on pH and temperature. The US EPA saltwater guideline for total ammonia is 2.7 mg/L  based on a temperature of 17.7 °C, a pH of 7.7 and a salinity of 30 g/kg.  The US EPA guideline of 2.7  mg/L will be used as the EQO for total ammonia. As ammonia is a component of total nitrogen (TN),  the actual effluent concentration may be limited by the TN EDO rather than the total ammonia EDO.   However, as the TN EQO is based on concern of eutrophication and not a continuous acceptable  concentration for the protection of aquatic life, both EDOs will be presented separately in the ERA.    The WSER requires that un‐ionized ammonia concentrations be less than 1.25 mg/L at the discharge  point. For the purposes of this study, the EQO for un‐ionized ammonia was chosen based on the  WSER (1.25 mg/L at discharge).    Total Suspended Solids (TSS)  The WSER specifies a limit of 25 mg/L for TSS at the end of the pipe. The CWQG for the protection of  aquatic life in marine water for total suspended solids (TSS) is as follows:   During periods of clear flow, a maximum increase of 25 mg/L from background levels for any  short‐term exposure (e.g., 24‐h period). Maximum average increase of 5 mg/L from  background levels for longer term exposures (e.g., inputs lasting between 24 h and 30 d);  and   During periods of high flow, a maximum increase of 25 mg/L from background levels at any  time when background levels are between 25 and 250 mg/L. Should not increase more than  10% of background levels when background is ≥ 250 mg/L.    The background concentration of TSS was an average of 32 mg/L. A maximum average increase of 5  mg/L from background levels would result in an EQO of 37 mg/L. As this is greater than the WSER  criteria, the WSER criteria of 25 mg/L at discharge will apply as the EDO. The background TSS  measurement is higher than would typically be expected in a marine environment, which may be  due to the near shore location of the samples. However, in a worst‐case scenario where the  background TSS concentration was 0 mg/L, application of the WSER criteria at the end of pipe would  always be the more stringent criteria provided there is greater than five times dilution.    Total Phosphorus and TKN/TN  There are no CWQGs for the protection of aquatic life for phosphorus, Total Kjeldahl Nitrogen (TKN)  or total nitrogen (TN).  However, in both freshwater and marine environments, adverse secondary  effects like eutrophication and oxygen depletion can occur. Guidance frameworks have been  established for freshwater systems and for marine systems to provide an approach for developing  site‐specific water quality guidelines. These approaches are based on determining a baseline  condition and evaluating various effects according to indicator variables. The approach is generally    Harbour Engineering Joint Venture Glace Bay WWTP ERA 22 very time and resource intensive, but can be completed on a more limited scale to establish interim  guidelines.    The Canadian Guidance Framework for the Management of Nutrients in Nearshore Marine Systems  Scientific Supporting Document (CCME, 2007) provides a framework as well as case studies for  establishing nutrient criteria for nearshore marine systems. This document provides a Trophic Index  for Marine Systems (TRIX), below in Table 3.6.    Table 3.6 ‐ Criteria for evaluating trophic status of marine systems (CCME, 2007)  Trophic Status TN  (mg/m3)  TP  (mg/m3) Chlorophyll a (μg/L) Secchi Depth  (m)  Oligotrophic <260 <10 <1 >6  Mesotrophic ≥260‐350 ≥10‐30 ≥1‐3 3‐≤6  Eutrophic ≥350‐400 ≥30‐40 ≥3‐5 1.5‐≤3  Hypereutrophic >400 >40 >5 <1.5    The background concentrations of total nitrogen (TN) and total phosphorus (TP) were measured as  0.233 mg/L and 0.035 mg/L, respectively, which corresponds to a eutrophic status based on the  phosphorus concentration.  The uppermost limit for this trophic status is a TN concentration of 0.4  mg/L and a TP concentration of 0.04 mg/L.    This document provides another index (NOAA) to determine the degree of eutrophication of the  marine system, below in Table 3.7.    Table 3.7 ‐ Trophic status classification based on nutrient and chlorophyll (CCME, 2007)  Degree of  Eutrophication  Total Dissolved N  (mg/L)  Total Dissolved P  (mg/L)  Chl a  (μg/L)  Low 0 ‐ ≤0.1 0 ‐ ≤0.01 0 ‐ ≤5  Medium >0.1 ‐ ≤1 >0.01 ‐ ≤0.1 >5 ‐ ≤20  High >1 >0.1 >20 ‐ ≤60  Hypereutrophic ‐  ‐ >60    However, the concentrations in Table 3.7 are based on dissolved nitrogen and phosphorus and the  background concentrations are for total nitrogen and total phosphorus (0.233 mg/L and 0.035 mg/L,  respectively).  For nitrogen, with a background concentration of 0.233 mg/L for TN, an assumption  that the dissolved nitrogen background concentration is anywhere between 43 and 100% of the TN  background concentration would result in classification as “medium” based on Table 3.7.  For  phosphorus, with a background concentration of 0.035 mg/L, an assumption that the dissolved  background concentration is anywhere between 29 and 100% of the total background concentration  would result in classification as “medium” based on Table 3.7.    To maintain the same degree of eutrophication, the total dissolved nitrogen and total dissolved  phosphorus in the receiving water should not exceed the upper limit of the “medium” classification  which is 1 mg/L for Total Dissolved Nitrogen and 0.1 mg/L for Total Dissolved Phosphorus. In order  to determine the upper limit of the “medium” eutrophication range based on total phosphorus and    Harbour Engineering Joint Venture Glace Bay WWTP ERA 23 TN concentrations, an assumption must be made as to the percentage of the nitrogen and  phosphorus that exists in the dissolved phase, both in the receiving water and in the effluent. As a  measure of conservatism, an assumption was made that 100% of the total nitrogen and phosphorus  exist in a dissolved phase. This allows for the upper limits of the “medium” classification to be used  directly as the EQO which results in an EQO of 1 mg/L for TN and 0.1 mg/L for total phosphorus.    The Canadian Guidance Framework for the Management of Nutrients in Nearshore Marine Systems  Scientific Supporting Document (CCME, 2007) presents both of the above criteria for assessing  trophic status and does not provide a recommendation for use of one rather than the other.   However, the framework presents a case study to establish nutrient criteria for the Atlantic  Shoreline of Nova Scotia, and the NOAA index is used. Therefore, that index will be used for the  purpose of this study.    pH  The CWQG for the protection for aquatic life for marine waters is 7.0 to 8.7. This pH range will be  applied as the EQO.    Fluoride  The CCME CWQG for the protection of aquatic life for fluoride is 0.12 mg/L for freshwater. There is  no recommended marine guideline from either CCME or US EPA. The background concentration for  fluoride is 0.67 mg/L. There is a maximum acceptable concentration of 1.5 mg/L specified by the  British Columbia Ministry of Environment (BCMOE). However, as this is a maximum acceptable  concentration and not a long term or continuous concentration, it will not be used. Therefore, the  background concentration of 0.67 mg/L will be applied as the site‐specific EQO.    Nitrate  The CCME CWQG for the protection of aquatic life for nitrate is 200 mg/L for marine waters, 45  mg/L as N. Nitrate is substantially less toxic than nitrite and ammonia, but can still yield toxic effects.  Background pH and temperature can influence the conversion of nitrate to nitrite and other forms  of nitrogen. Typically, the CCME marine water quality guideline of 45 mg/L would be used as the  EQO, however, the total nitrogen EQO determined to limit eutrophication will govern (at 1.0 mg/L).  As the TN EQO is based on a concern of eutrophication, both limits will be presented separately in  the ERA.    Nitrite  The CCME CWQG for the protection of aquatic life for nitrite is 0.06 mg/L as nitrogen for freshwater,  and there is no recommended marine guideline. Nitrite has been found to be more toxic to some  groups of fish, particularly salmonids. The freshwater guideline of 0.06 mg/L will be applied as the  EQO for this assessment. However, this generic objective may be overly conservative when applied  to the marine receiving environment.            Harbour Engineering Joint Venture Glace Bay WWTP ERA 24 Cyanide   The CCME CWQG for the protection of aquatic life for cyanide is 0.005 mg/L (free CN) for  freshwater. There is no CWQG for marine waters. The US EPA water quality criterion for saltwater is  0.001 mg/L (free CN). Both the CCME and US EPA criteria are for free cyanide, whereas the Standard  Method specifies to sample for total cyanide. Cyanide was not detected in the background samples.  The US EPA criteria of 0.001 mg/L will be applied as the EQO for cyanide. However, comparing  sample results from the wastewater characterization samples to this value will be overly  conservative as the analytical results are for total cyanide rather than free cyanide.     Total Residual Chlorine  The WSER requires that TRC concentrations be less than 0.02 mg/L. For the purposes of this study,  an EQO/EDO of 0.02 mg/L for TRC was chosen based on this regulation.    3.3.2 Metals   Of the 25 metals measured during the wastewater characterization study, 15 were detected in the  wastewater of at least one sample. The EQOs for the detected metals are described below.    Aluminum  The CCME CWQG for the protection of aquatic life for aluminum in freshwater is dependent on pH;  the guideline is 5 µg/L if the pH is less than 6.5 and 100 µg/L if the pH is 6.5 or greater. There are no  CWQG or USEPA guidelines for marine waters. The average background concentration of aluminum  was 274 µg/L. The background concentration of 274 µg/L will be used as the site‐specific EQO.     Barium  There are no CCME CWQGs for the protection of aquatic life for barium in freshwater or marine  waters. There is also no water quality guideline from the US EPA or British Columbia Ministry of  Environment (BCMOE) for salt water. As no relevant published water quality guidelines were found  for barium, an EQO will not be developed.    Cadmium  The CCME CWQG for the protection of aquatic life for cadmium in marine waters is 0.12 µg/L.  Cadmium was not detected in the background sample (at a detection limit of 0.05 µg/L). Therefore  the EQO will remain the same as the CCME marine CWQG of 0.12 µg/L.    Cobalt  There are no CCME CWQGs for the protection of aquatic life for cobalt in freshwater or marine  waters. There is also no US EPA water quality guideline. There are no water quality guidelines from  the BCMOE for marine waters. As no relevant published water quality guidelines were found for  cobalt, an EQO will not be developed.     Copper  The CCME CWQG for the protection of aquatic life for copper in freshwater is given as an equation  based on water hardness and there is no guideline specified for marine waters. The freshwater  guideline was calculated to be 4 µg/L based on the average background water hardness of 5050    Harbour Engineering Joint Venture Glace Bay WWTP ERA 25 mg/L. The US EPA salt water quality criterion is 3.7 µg/L.  The average background concentration of  copper was 0.47 µg/L. Therefore the USEPA salt water quality criterion of 3.7 µg/L will be used as  the EQO.     Iron  The CCME CWQG for the protection of aquatic life for iron in freshwater is 300 µg/L. There is no  guideline specified for marine waters. There is no US EPA or BC MOE salt water quality criterion for  iron. The average background concentration for iron was 393 µg/L. The EQO will be based on the  background concentration of 393 µg/L. However, this may be overly conservative for a marine  environment as the generic EQO is based on a freshwater guideline.    Lead  The CCME CWQG for the protection of aquatic life for lead in freshwater is given as an equation  based on water hardness and there is no guideline specified for marine waters. The freshwater  guideline was calculated to be 6 µg/L based on the average background water hardness of 5050  mg/L. The US EPA salt water quality criterion is 8.5 µg/L.  The average background concentration of  lead was 0.225 µg/L. Therefore the USEPA salt water quality criterion of 8.5 µg/L will be used as the  EQO.     Manganese  There are no CCME CWQGs for the protection of aquatic life for manganese in freshwater or marine  waters. There is also no criterion provided by US EPA. However, there is a working water quality  guideline for marine aquatic life for manganese provided by the BCMOE of 100 µg/L. The  background concentration of manganese was 15 µg/L. The guideline of 100 µg/L will be used as the  EQO for manganese.    Molybdenum  The CCME CWQG for the protection of aquatic life for molybdenum is 73 µg/L for freshwater and  there is no guideline for marine waters. There is no US EPA water quality guideline for salt water.  There is no BCMOE criteria for marine water. The average concentration of molybdenum in the  background samples was 9.1 µg/L. The CCME CWQG for freshwater of 73 µg/L will be applied as the  EQO. However, this may be overly conservative for a marine environment as the generic EQO is  based on a freshwater guideline.    Nickel  The CCME CWQG for the protection of aquatic life for nickel is 150 µg/L for freshwater based on an  average background hardness of 5050 mg/L. There is no CWQG for marine waters. The US EPA salt  water quality criterion is 8.3 µg/L. Nickel was not detected in the background samples (at a  detection limit of 0.2 µg/L). Therefore the US EPA salt water quality criterion of 8.3 µg/L will be used  as the EQO.             Harbour Engineering Joint Venture Glace Bay WWTP ERA 26 Strontium  There is no CCME CWQG for strontium for the protection of aquatic life. There is no water quality  guideline provided by US EPA or BCMOE. As no relevant published water quality guidelines were  found for strontium, an EQO will not be developed.    Titanium  There is no CCME CWQG for titanium for the protection of aquatic life. There is no water quality  guideline provided by US EPA or BCMOE. As no relevant published water quality guidelines were  found for titanium, an EQO will not be developed.    Uranium  The CCME CWQG for the protection of aquatic life for uranium is 15 µg/L for freshwater and there is  no guideline for marine waters. There is no US EPA water quality guideline for salt water. There is no  BCMOE criteria for marine water. The background concentration for uranium was 2.53 µg/L. The  CCME WQG for freshwater of 15 µg/L will be applied as the EQO. However, this may be overly  conservative for a marine environment as the generic EQO is based on a freshwater guideline.    Zinc  The CCME CWQG for the protection of aquatic life for zinc is 30 µg/L for freshwater and there is no  guideline for marine waters.  The US EPA water quality guideline for salt water is 86 µg/L. The  average background concentration of zinc was 0.95 µg/L. The US EPA criterion of 86 µg/L will be  applied as the EQO for zinc.    Mercury  The CCME WQG for the protection of aquatic life for mercury is 0.026 µg/L for freshwater and 0.016  µg/L for marine waters. The US EPA water quality guideline for salt water is 1.1 µg/L. The EQO will  be the CCME marine guideline of 0.016 µg/L.    3.3.3 E. coli  Pathogens are not included in the CCME CWQGs for the protection of aquatic life. The Health  Canada Guidelines for Canadian Recreational Water Quality specify a maximum E. coli concentration  of 200 E. coli/100 mL for freshwater for primary contact recreation and 1000 E. coli/100 mL for  secondary contact recreation. The Health Canada guideline for Canadian Recreational Water Quality  for primary and secondary contact recreation in marine water is based on enterococci rather than E.  coli. However, historically Nova Scotia Environment has set discharge limits for E. coli rather than  enterococci for marine discharges. The background concentration of E. coli was 69 E. coli/100 mL.   An EQO of 200 E. coli/ 100 mL will apply for primary contact recreation at Table Head and Big Glace  Bay beaches. An EQO of 1000 E. coli/ 100mL based on the Canadian Recreational Water Quality  guideline for secondary contact for freshwater will apply elsewhere in the receiving water.    There is currently a molluscan shellfish closure zone in the immediate vicinity of the outfall (SSN‐  2006‐007 on Figure 3.1). However, consideration will have to be given to E. coli concentrations  outside of the closure zone. It is also possible that the closure zone will be changed once the  proposed WWTPs in CBRM are operational. The Canadian Shellfish Sanitation Program (CSSP)    Harbour Engineering Joint Venture Glace Bay WWTP ERA 27 requires that the median of the samples collected in an area in one survey not exceed 14 E. coli/100  mL, and no more than 10% of the samples can exceed 43 E. coli/100 mL. However, the average  measured background concentration for E. coli was 69 E. coli/100 mL. These background samples  were collected from shore and may not be representative of the actual ambient concentration of E.  coli in the area.    3.3.3.1 ORGANOCHLORINE PESTICIDES  Of the list of organochlorine pesticides included in the Standard Method for substances of potential  concern for a medium facility, there were no detections. There were detections for one  organochlorine pesticide (endrin aldehyde). As this parameter is not included in the standard  method, an EDO was not developed. This parameter could be considered in the future development  of the compliance monitoring program.   3.3.3.2 POLYCHLORINATED BIPHENYLS (PCBS)  Total polychlorinated biphenyls (PCBs) were not detected in the wastewater and therefore an EQO  was not established.     3.3.3.3 POLYCYCLIC AROMATIC HYDROCARBONS (PAHS)  Polycyclic aromatic hydrocarbons (PAHs) were measured as part of initial wastewater  characterization. Of the list of PAHs included in the Standard Method for substances of potential  concern for a medium facility, 14 substances were detected during the initial wastewater  characterization study: acenaphthene, anthracene, benzo(a)anthracene, benzo(a)pyrene,  Benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(k)fluoranthene, chrysene,  dibenz(a,h)anthracene, fluoranthene, fluorene, indeno(1,2,3‐cd)pyrene, pyrene, and phenanthrene.      There are CCME CWQGs for the protection of aquatic life for freshwater for 8 of the 14 substances  that were detected. There were no CCME marine water quality guidelines. There are BC MOE  approved marine water quality guidelines for 3 of the 14 substances. The guidelines are as follows:   Acenaphthene – 5.8 µg/L (freshwater), 6 µg/L (BCMOE marine);   Anthracene – 0.012 µg/L (freshwater);   Benzo(a)anthracene – 0.018 µg/L (freshwater);   Benzo(a)pyrene – 0.015 µg/L (freshwater);   Chrysene – 0.1 µg/L (BCMOE marine);   Fluoranthene – 0.04 µg/L (freshwater);   Fluorene – 3 µg/L (freshwater), 12 µg/L (BCMOE marine);   Phenanthrene – 0.4 µg/L (freshwater); and    Pyrene – 0.025 µg/L (freshwater).    None of the nine (9) substances listed above were detected in the background sample. Therefore,  the above guidelines will be applied as the EQOs. However, the freshwater generic objectives may  be overly conservative when applied to the marine receiving environment.      Harbour Engineering Joint Venture Glace Bay WWTP ERA 28 3.3.3.4 VOLATILE ORGANIC COMPOUNDS (VOCS)  Of the list of Volatile organic compounds (VOCs) included in the Standard Method for substances of  potential concern for a medium facility, 3 were detected in the wastewater. There are CCME CWQGs  for the protection of aquatic life for freshwater for 2 of the 3 substances that were detected. There  is a marine guideline for one of the substances that was detected. There are no applicable guidelines  for bromodichloromethane. The guidelines are as follows:   Chloroform – 1.8 µg/L (freshwater); and   Toluene – 2 µg/L (freshwater), 215 µg/L (marine).    The above bolded guidelines will be applied as the EQOs. However, the freshwater generic  objectives may be overly conservative when applied to the marine receiving environment.    3.3.3.5 PHENOLIC COMPOUNDS  The CCME CWQG for the protection of aquatic life for phenols in freshwater is 4 µg/L. There is no  guideline specified for marine waters. There is no US EPA or BCMOE salt water quality criterion for  phenols. The background concentration was 0.0305 mg/L. The EQO will be based on the background  concentration of 0.0305 mg/L.     3.3.3.6 SURFACTANTS  Surfactants were not analyzed in the wastewater samples. This analysis was not available locally,  and there are no CWQG available from either CCME or US EPA for non‐ionic or anionic surfactants to  compare the results to if the analysis was completed.      3.3.4 Summary  Table 3.8 below gives a summary of the generic and site‐specific EQOs determined for parameters of  concern. The source of the EQO has been included in the table as follows:   WSER – wastewater systems effluent regulations   Background – Site‐specific EQO based on background concentration in receiving water   CWQG Marine – CCME Canadian Water Quality Guidelines for the Protection of Aquatic Life  Marine   USEPA Saltwater – United States Environmental Protection Agency National Recommended  Water Quality Criteria – Aquatic Life Criteria – Saltwater Criterion Continuous Concentration   CGF, Marine – Canadian Guidance Framework for the Management of Nutrients in Nearshore  Marine Systems Scientific Supporting Document   BCMOE AWQG – BCMOE Approved Water Quality Guideline   BCMOE WWQG – BCMOE Working Water Quality Guideline   CWQG Freshwater – CCME Canadian Water Quality Guidelines for the Protection of Aquatic Life  Freshwater   HC Primary Contact – Health Canada Guidelines for Canadian Recreational Water Quality –  Primary Contact Recreation   HC Secondary Contact – Health Canada Guidelines for Canadian Recreational Water Quality –  Secondary Contact Recreation   CSSP – Canadian Shellfish Sanitation Program      Harbour Engineering Joint Venture Glace Bay WWTP ERA 29 Table 3.8 – EQO Summary  Parameter Generic EQO Background Selected  EQO Source  CBOD5 (mg/L) 25 <5.0 25 WSER  Total NH3‐N (mg/L)(1) 2.7 <0.05 2.7 USEPA Saltwater  TSS (mg/L) 25 32 25 WSER  TP (mg/L) 0.1 0.035 0.1 CGF, Marine  TN (mg/L)(1) 1 0.233 1 CGF, Marine  pH 7 ‐ 8.7 7.71 7 ‐ 8.7 CWQG Marine  Un‐ionized NH3 (mg/L) 1.25 <0.0007 1.25 WSER  E. coli ‐ Primary Contact  (MPN/100mL) 200 69 200 HC Primary Contact  E. coli ‐ Secondary Contact  (MPN/100mL) 1000 69 1000 HC Secondary  Contact  E. coli ‐ Molluscan Shellfish  (MPN/100mL) 14 69 14 CSSP  Fluoride (mg/L) 0.67 0.67 0.67 Background  Nitrate (mg/L)(1) 45 0.038 45 CWQG Marine  Nitrite (mg/L) 0.06 <0.001 0.06 CWQG Freshwater  Free Cyanide (mg/L) 0.001 <0.0010 0.001 USEPA Saltwater  Aluminum (mg/L) 0.1 0.274 0.274 Background  Cadmium (mg/L) 0.00012 <0.00005 0.00012 CWQG Marine  Copper (mg/L) 0.0037 0.00047 0.0037 USEPA Saltwater  Iron (mg/L) 0.3 0.393 0.393 Background  Lead (mg/L) 0.0085 0.000225 0.0085 USEPA Saltwater  Manganese (mg/L) 0.1 0.015 0.1 BCMOE WWQG  Molybdenum (mg/L) 0.073 0.0091 0.073 CWQG Freshwater  Nickel (mg/L) 0.0083 <0.0002 0.0083 USEPA Saltwater  Uranium (mg/L) 0.015 0.00253 0.015 CWQG Freshwater  Zinc (mg/L) 0.086 0.00095 0.086 USEPA Saltwater  Mercury (mg/L) 0.000016 0.000013 0.000016 CWQG Marine  Acenaphthene (µg/L) 6 <0.010 6 BCMOE AWQG  Anthracene (µg/L) 0.012 <0.010 0.012 CWQG Freshwater  Benzo(a)anthracene (µg/L) 0.018 <0.010 0.018 CWQG Freshwater  Benzo(a)pyrene (µg/L) 0.015 <0.010 0.015 CWQG Freshwater  Chrysene (µg/L) 0.1 <0.010 0.1 BCMOE AWQG  Fluoranthene (µg/L) 0.04 <0.010 0.04 CWQG Freshwater  Fluorene (µg/L) 12 <0.010 12 BCMOE AWQG  Phenanthrene (µg/L) 0.4 <0.010 0.4 CWQG Freshwater  Pyrene (µg/L) 0.025 <0.010 0.025 CWQG Freshwater  Chloroform (µg/L) 1.8 <1.0 1.8 CWQG Freshwater  Toluene (µg/L) 215 <1.0 215 CWQG Marine  Phenols (mg/L) 0.004 0.0305 0.0305 Background  Notes: Bold indicates EQO is a WSER requirement.  (1) Although the EQOs for ammonia and nitrate have been calculated to be 2.7 mg/L and 45 mg/L, respectively, the EQO of 1 mg/L for total nitrogen  would govern. However, as the EQO for TN is based on eutrophication, EDOs will be developed for all parameters separately.   Harbour Engineering Joint Venture Glace Bay WWTP ERA 30 CHAPTER 4  MIXING ZONE ANALYSIS    4.1 Methodology    4.1.1 Definition of Mixing Zone  A mixing zone is the portion of the receiving water where effluent dilution occurs.  In general, the  receiving water as a whole will not be exposed to the immediate effluent concentration at the end‐ of‐pipe but to the effluent mixed and diluted with the receiving water.  Effluent does not  instantaneously mix with the receiving water at the point of discharge.  Depending on conditions  like ambient currents, wind speeds, tidal stage and wave action, mixing can take place over a large  area – up to the point where there is no measureable difference between the receiving water and  the effluent mixed with receiving water.    The mixing process can be characterized into two distinct phases:  near‐field and far‐field.  Near‐ field mixing occurs at the outfall and is influenced by the configuration of the outfall (e.g. pipe size,  diffusers, etc.).  Far‐field mixing is influenced by receiving water characteristics like turbulence, wave  action, and stratification of the water column.    Within the mixing zone, EQOs may be exceeded but acutely toxic conditions are not permitted  unless it is determined that un‐ionized ammonia is the cause of toxicity.  If the un‐ionized ammonia  concentration is the cause of toxicity, there may be an exception (under the WSER) if the  concentration of un‐ionized ammonia is less than or equal to 0.016 mg/L, expressed as N, at any  point that is 100 m from the discharge point.  Outside of the mixing zone, EQOs must be achieved.   The effluent is also required to be non‐chronically toxic outside of the mixing zone.  The allocation of  a mixing zone varies from one substance to another – degradable substances are allowed to mix in a  portion of the receiving water whereas toxic, persistent, and bio‐accumulative substances (such as  chlorinated dioxins and furans, PCBs, mercury and toxaphene) are not allowed a mixing zone.  A number of general criteria for allocating a mixing zone are recommended in the Strategy, including the  following:   The dimensions of a mixing zone should be restricted to avoid adverse effects on the designated  uses of the receiving water system (i.e., the mixing zone should be as small as possible);   Conditions outside of the mixing zone should be sufficient to support all of the designated uses  of the receiving water system;   A zone of passage for mobile aquatic organisms must be maintained;   Placement of mixing zones must not block migration into tributaries;    Harbour Engineering Joint Venture Glace Bay WWTP ERA 31  Changes to the nutrient status of the water body as a result of an effluent discharge should be  avoided; eutrophication or toxic blooms of algae are unacceptable impacts;   Mixing zones for adjacent wastewater discharges should not overlap; and   Adverse effects on the aesthetic qualities of the receiving water system (e.g. odour, colour,  scum, oil, floating debris) should be avoided (CCME, 2008).    The limits of the mixing zone may be defined for the following three categories of aquatic  environments based on their physical characteristics:   streams and rivers;   lakes, reservoirs and enclosed bays; and   estuarine and marine waters.    Where several limits are in place, the first one to be reached sets the maximum extent of the mixing  zone allowed for the dilution assessment.  Nutrients and fecal coliforms are not allocated any  maximum dilution.  For fecal coliforms, the location of the water use must be considered and  protected by the limits of the mixing zone.    Based on these general guidelines, mixing zone extents must be defined on a case‐by‐case basis that  account for local conditions.  It may also be based on arbitrary mixing zone limits for open water  discharges, e.g. a 100 m (Environment Canada, 2006) or 250 m (NB DOE, 2012) radius from the  outfall and/or a dilution limit.  A Draft for Discussion document “Mixing Zone Assessment and  Report Templates” dated July 7, 2016, prepared by a committee of representatives of the  environment departments in Atlantic Canada, provides guidance regarding mixing zones for ERAs in  the Atlantic Provinces.  This document recommends that for ocean and estuary receiving waters a  maximum dilution limit of 1:1000 be applied for far‐field mixing.    Finally, the assessment shall be based on ‘critical conditions’.  For example, in the case of a river  discharge (not applicable here), ‘critical conditions’ can be defined as the seven‐day average low  river flow for a given return period. For ocean discharges, we propose to use a maximum one‐day  average effluent concentration at the edge of the mixing zone. The Standard Method provides the  following guidance on EDO development:    “…reasonable and realistic but yet protective scenarios should be used. The objective is to simulate  the critical conditions of the receiving water, where critical conditions are where the risk that the  effluent will have an effect on the receiving environment is the highest – it does not mean using the  highest effluent flow, the lowest river flow and the highest background concentration  simultaneously.”    As a plausible worst‐case condition is used for the receiving water, the WWTP effluent will be  modelled based on an annual average flow, rather than a maximum daily or hourly flow, as applying  a critical high flow condition for the effluent simultaneously with a worst case condition in the  receiving water would result in overly conservative EDOs as this scenario doesn’t provide a  reasonable or realistic representation of actual conditions.    Harbour Engineering Joint Venture Glace Bay WWTP ERA 32 4.1.2 Site Summary  The WWTP was first assumed to discharge through an outfall pipe perpendicular to the shoreline in  shallow water, extended to a depth estimated at ‐1.0 m below low tide (base condition). The  modelled dilution for the base condition was significantly limited by the presence of the breakwater.  Subsequent model runs were completed with a variety of outfall extensions to obtain sufficient  dilution so that the calculated EDOs would be reasonably attainable. The selected scenario assumed  that the effluent discharged through an outfall pipe perpendicular to the shoreline in shallow water,  extended to a depth estimated at ‐3.8 m below low tide based on a 100 m outfall extension. The low  tide and depth contours were estimated based on navigation charts. The total average effluent  discharge is modeled as a continuous point source of 14,200 m3/day.    The major coastal hydrodynamic features of the area are as follows:   Along‐shore currents along the open coastline are in phase with the tide, i.e. the current  speed peaks at high and low tide; and   At the outfall site, breaking waves and associated longshore currents will contribute to  effluent dispersion during storms.  For this assessment, we have assumed calm summer  conditions (i.e. no waves), when effluent dilution would be at a minimum.    4.1.3 Far‐Field Modeling Approach and Inputs  The local mixing zone is limited by the water depth at the extended outfall of approximately ‐3.8 m  Chart Datum and by the presence of the shoreline. Since the outfall is in shallow water, the buoyant  plume will always reach the surface upon release from the outfall (Fisher et al., 1979). Far‐field  mixing will then be determined by ambient currents, which is best simulated with a hydrodynamic  and effluent dispersion model.      We implemented a full hydrodynamic model of the receiving coastal waters using the Danish  Hydraulic Institute’s MIKE21 model. MIKE21 is ideally suited to the study of outfall discharges in  shallow coastal areas where complex tidal and wind‐driven currents drive the dispersion process.  The model was developed using navigation charts, tidal elevations and wind observations for the  area. A similar model had been used by CBCL for CBRM in the past:   In 2005 for the assessment of the past wastewater contamination problem at Dominion  Beach, which led to the design of the WWTP at Dominion (CBCL, 2005); and    In 2014 for ERAs at the Dominion and Battery Point WWTPs.    The hydrodynamic model was calibrated to the following bottom current meter data:   1992 current meters (4 locations) located in 10 m‐depth for the study by ASA (ASA, 1994)   on local oceanography and effluent dispersion; and   2006 current meters (2 locations) off the Donkin peninsula for the CBCL study of mine  effluent dispersion.    Calibration consisted of adjusting the following parameters:   Bottom friction; and   Model spatial resolution in the area of the current meters.      Harbour Engineering Joint Venture Glace Bay WWTP ERA 33 Numerical model domain with locations of current meter observations and modeled outfall location  are shown in Figure 4.1. Inputs and calibrated outputs are shown in Figure 4.2. The modelled  current magnitudes at New Waterford, Glace Bay and Donkin are in relatively good agreement with  observations, which is satisfactory to assess the overall dilution patterns of effluent from the outfall.  The effect of waves was not included in the model, and therefore the modeled effluent  concentration near the outfall is expected to be conservatively high.       Figure 4.1 Numerical Model Domain with Locations of Current Meter Observations (squares)  and Modeled Outfall Location (black circle)       Harbour Engineering Joint Venture Glace Bay WWTP ERA 34   Figure 4.2 Time‐series of Hydrodynamic Model Inputs and Calibration Outputs      Harbour Engineering Joint Venture Glace Bay WWTP ERA 35 4.1.4 Modeled Effluent Dilution  Snapshots of typical modeled effluent dispersion patterns are shown on Figures 4.3 and 4.4 for the  base condition and 100 m outfall extension. Statistics on effluent concentrations were performed  over the 1‐month model run, and over a running 7‐day and 1‐day averaging period. Composite  images of maximum and average effluent concentrations are shown on Figures 4.5 and 4.6.    Effluent concentration peaks at any given location are short‐lived because the plume is changing  direction every few hours depending on tides and winds.  Therefore, a representative dilution  criteria at the mixing zone limit is best calculated using an average value. We propose to use the  one‐day average effluent concentration criteria over the one‐month modeling simulation that  includes a representative combination of site‐specific tides and winds.    The dilution of the effluent plume is dependent on the outfall extension length due to its proximity  to the breakwaters located at Glace Bay. Generally the diluted effluent plume was found to reach  the shoreline north‐west of the outfall as well as the shoreline to the east of the harbour. Large  eddies tend to form due to the circulation patterns within the region. It was noted that the effluent  would travel into the harbour. The 100 m distance from the outfall to the shoreline is within the  brackets of mixing zone radiuses defined by various guidelines.  We propose that this distance be  used as mixing zone limit.     For the first model scenario where the outfall was extended until the top of the outfall was 1 m  below low water level, the maximum 1‐day average effluent concentration 100 m away from the  outfall over the simulation period is 21.94%, corresponding to a dilution factor of 4.56:1.    Table 4.1 Modelled Dilution Values 100 and 200 m away from the Outfall (Existing Location)  Distance  away from  the outfall  Hourly maximum  effluent  concentration  Maximum 1‐day  average effluent  concentration  Maximum 7‐day  average effluent  concentration  1‐Month average  effluent  concentration  100 m 33.35 %  (3.0:1  Dilution)  21.94 %  (4.56:1  Dilution)  15.51 %  (6.45:1  Dilution)  7.36 %  (13.59:1  Dilution)   200 m 30.09 %  (3.32:1  Dilution)  13.22 %  (7.56:1  Dilution)  9.09%  (11.00:1  Dilution)  9.08 %  (11.01:1  Dilution)    Extensions to the current outfall were examined to ensure that the effluent concentration was  suitably diluted at the edge of a 100 m mixing zone, and the results are presented in Table 4.2.                      Harbour Engineering Joint Venture Glace Bay WWTP ERA 36 Table 4.2 Modelled Dilution Values 100 m away from the Outfall for Outfall Extensions of 50  to 500 m  Outfall  Extension  Distance  Hourly maximum  effluent  concentration  Maximum 1‐day  average effluent  concentration  Maximum 7‐day  average effluent  concentration  1‐Month average  effluent  concentration  50 m 18.72 % (5.34:1  Dilution)  10.33 % (9.68:1  Dilution)  6.34 % (15.77:1  Dilution)  4.88 % (20.49:1  Dilution)  100 m 15.97 % (6.26:1  Dilution)  4.06 % (24.63:1  Dilution)  3.57 % (28.01:1  Dilution)  2.55 % (39.22:1  Dilution)  150 m 22.24 % (4.50:1  Dilution)  7.4 % (13.51:1  Dilution)  3.77 % (26.53:1  Dilution)  2.77 % (36.10:1  Dilution)  200 m 26.46 % (3.78:1  Dilution)  3.83 % (26.11:1  Dilution)  2.72 % (36.76:1  Dilution)  2.60 % (38.46:1  Dilution)  300 m 31.39 % (3.19:1  Dilution)  5.07 % (19.72:1  Dilution)  2.48 % (40.32:1  Dilution)  2.00 % (50:1 Dilution)  400 m 24.40 % (4.10:1  Dilution)  2.16 % (46.30:1  Dilution)  1.08 % (92.59:1  Dilution)  0.96 % (104.17:1  Dilution)  500 m 12.51 % (7.99:1  Dilution)  1.5 % (66.67:1  Dilution)  0.83 % (120.48:1  Dilution)  0.61 % (163.93:1  Dilution)    Based on preliminary analysis, an outfall extension of 100 m has been assumed in order to obtain a  level of dilution that results in EDOs that are considered to be reasonably attainable. However, as  phosphorus is the parameter that appears to be driving the need for an outfall extension, additional  evaluation should be conducted during detailed design in conjunction with discussions with NSE to  determine what is required.     Harbour Engineering Joint Venture Glace Bay WWTP ERA 37     Figure 4.3 Snapshots of Typical Modeled Effluent Dispersion Patterns (base condition)            Harbour Engineering Joint Venture Glace Bay WWTP ERA 38 Figure 4.4 Snapshots of Typical Modeled Effluent Dispersion Patterns for 100 m Outfall  Extension            Harbour Engineering Joint Venture Glace Bay WWTP ERA 39 Figure 4.5 Composite Images of Modeled Maximum 1‐day Average (top) and Maximum 7‐ Day Average Effluent Concentrations (middle) with Concentration Time‐Series (bottom) for 100 m  outfall extension Note: 100‐m radius (black) and 200‐m radius (grey) circle shown around outfall      Harbour Engineering Joint Venture Glace Bay WWTP ERA 40                                                       Figure 4.6 Composite Images of Modeled Maximum 1‐Day Average Effluent Concentrations  at Tablehead Beach (top) and Big Glace Bay Beach (bottom), primary contact recreation areas   Note: 100‐m radius (black) and 200‐m radius (grey) circle shown around outfall. Red circle denotes primary  contact recreation areas                                Harbour Engineering Joint Venture Glace Bay WWTP ERA 41   CHAPTER 5  EFFLUENT DISCHARGE OBJECTIVES    5.1 The Need for EDOs  Effluent Discharge Objectives (EDOs) represent the effluent substance concentrations that will protect  the receiving environment and its designated water uses.  They describe the effluent quality necessary  to allow the EQOs to be met at the edge of the mixing zone.  The EQOs are established in Chapter 3; see  Table 3.8 for summary of results.    EDOs should be calculated where reasonable potential of exceeding the EQOs at the edge of the mixing  zone has been determined.  Typically, substances with reasonable potential of exceeding the EQOs have  been selected according to the simplified approach:  If a sample result measured in the effluent exceeds  the EQO, an EDO is determined. As only one sample event was collected from each outfall, rather than a  full year of effluent characterization, EDOs will be developed for all substances of potential concern that  were detected in at least one sample, and for which an EQO was identified.      5.2 Physical/ Chemical/ Pathogenic EDOs  For this assessment, EDOs were calculated using the dilution values obtained at the proposed  average design flow of 14,200 m3/day with a proposed 100 m outfall extension.  This resulted in a  dilution of 24.63:1 at the edge of a 100 m mixing zone.  The model shows a dilution of 2500:1 at Big  Glace Bay Beach and 169:1 at Table Head Beach (primary contact recreation areas) based on the  maximum 1‐day average concentration.     Parameters for which there is a WSER criteria were not allowed any dilution and therefore the EDO  equals the WSER Criteria.  The Standard Method does not allocate any maximum dilution for  nutrients and fecal coliforms.  For nutrients, it recommends a case‐by‐case analysis.  For fecal  coliforms, the location of the water use must be protected by the limits of the mixing zone.    The dilution values were used to obtain an EDO by back‐calculating from the EQOs.  When the  background concentration of a substance was less than the detection limit, the background  concentration was not included in the calculation of the EDO.        Harbour Engineering Joint Venture Glace Bay WWTP ERA 42 5.3 Effluent Discharge Objectives  Substances of concern for which an EDO was developed are listed in Tables 5.1 below with the  associated EQO, maximum measured wastewater concentration, and the associated EDO. The  effluent is also required to be non‐acutely toxic at the end of pipe, and non‐chronically toxic at the  edge of the mixing zone.                                                                                    Harbour Engineering Joint Venture Glace Bay WWTP ERA 43 Table 5.1 – Effluent Discharge Objectives at Proposed Design Conditions  Parameter Maximum  Conc. (4) Background Selected  EQO Source Dilution  Factor EDO(1)  CBOD5 (mg/L)(1) 130 <5.0 25 WSER ‐ 25  Total NH3‐N (mg/L) 3.8 <0.05 2.7 USEPA Saltwater 24.63 66.5  TSS (mg/L)(1) 53 32 25 WSER ‐ 25  TP (mg/L) 2.2 0.035 0.1 CGF, Marine 24.63 1.6  TN (mg/L) 16 0.233 1 CGF, Marine 24.63 19.1  Un‐ionized NH3 (mg/L)(1) 0.0207 <0.0007 1.25 WSER ‐ 1.25  E. coli ‐ Primary Contact  (MPN/100mL)(2) 170000 69 200 HC Primary  Contact 169 22,208  E. coli ‐ Secondary Contact  (MPN/100mL) 170000 69 1000 HC Secondary  Contact 24.63 23,000  E. coli ‐ Molluscan Shellfish  (MPN/100mL) 170000 69 14 CSSP Note (3) See  Discussion  Fluoride (mg/L) 0.12 0.67 0.67 Background 24.63 0.67  Nitrate (mg/L) 1 0.038 45 CWQG Marine 24.63 1107.5  Nitrite (mg/L) 0.83 <0.001 0.06 CWQG Freshwater 24.63 1.48  Free Cyanide (mg/L) 0.013(5) <0.0010 0.001 USEPA Saltwater 24.63 0.025  Aluminum (mg/L) 0.66 0.274 0.274 Background 24.63 0.274  Cadmium (mg/L) 0.00036 <0.00005 0.00012 CWQG Marine 24.63 0.003  Copper (mg/L) 0.015 0.00047 0.0037 USEPA Saltwater 24.63 0.080  Iron (mg/L) 1 0.393 0.393 Background 24.63 0.393  Lead (mg/L) 0.0029 0.000225 0.0085 USEPA Saltwater 24.63 0.204  Manganese (mg/L) 0.75 0.015 0.1 BCMOE WWQG 24.63 2.11  Molybdenum (mg/L) 0.0065 0.0091 0.073 CWQG Freshwater 24.63 1.58  Nickel (mg/L) 0.011 <0.0002 0.0083 USEPA Saltwater 24.63 0.204  Uranium (mg/L) 0.00017 0.00253 0.015 CWQG Freshwater 24.63 0.310  Zinc (mg/L) 0.11  0.00095 0.086 USEPA Saltwater 24.63 2.10  Mercury (mg/L) 0.000013 0.000013 0.000016 CWQG Marine ‐ 0.000016  Acenaphthene (µg/L) 0.015 <0.010 6 BCMOE AWQG 24.63 147.8  Anthracene (µg/L) 0.037 <0.010 0.012 CWQG Freshwater 24.63 0.296  Benzo(a)anthracene (µg/L) 0.09 <0.010 0.018 CWQG Freshwater 24.63 0.44  Benzo(a)pyrene (µg/L) 0.064 <0.010 0.015 CWQG Freshwater 24.63 0.369  Chrysene (µg/L) 0.073 <0.010 0.1 BCMOE AWQG 24.63 2.463  Fluoranthene (µg/L) 0.21 <0.010 0.04 CWQG Freshwater 24.63 0.99  Fluorene (µg/L) 0.02 <0.010 12 BCMOE AWQG 24.63 295.56  Phenanthrene (µg/L) 0.12 <0.010 0.4 CWQG Freshwater 24.63 9.85  Pyrene (µg/L) 0.16 <0.010 0.025 CWQG Freshwater 24.63 0.62  Chloroform (µg/L) 5 <1.0 1.8 CWQG Freshwater 24.63 44  Toluene (µg/L) 1.3 <1.0 215 CWQG Marine 24.63 5295  Phenols (mg/L) 0.017 0.0305 0.0305 Background 24.63 0.03  Notes:   (1)  For parameters where the EQO is based on the WSER, no dilution is permitted. (2) Dilution at Table Head and Big Glace Bay Beaches of 169:1 and 2500:1, respectively. (3) Existing closure zone boundary is outside the limits of the plume. (4) Maximum concentration of existing wastewater samples. (5) Maximum wastewater concentration based on total cyanide. Yellow highlight indicates the maximum measured concentration exceeds the EQO; orange highlight indicates the  maximum measured concentration exceeds the EDO    Harbour Engineering Joint Venture Glace Bay WWTP ERA 44 Based on the EDOs calculated based in the current Average Daily Flow, sample results for the  following parameters exceeded the EDO in at least one wastewater characterization sample:   CBOD;   TSS;    Total Phosphorus;    E. coli;   Aluminum, and   Iron.    Some of these parameters will be reduced through treatment.  In addition, the above list is based on  a single sample exceedance at any one of the outfall locations, which may not reflect the results  obtained when all of the individual outfalls are intercepted and combined.  Further, some of the  EQOs were based on published water quality guidelines that may be overly stringent for a marine  receiving environment, due to a lack of a more appropriate guideline.  Comments on each  parameter in the list above is provided below:    CBOD, TSS, and E. coli  These parameters will meet the EDOs at the discharge of the new WWTP through treatment.    Total Phosphorus   The total phosphorous EDO of 1.6 mg/L will likely not be consistently obtained with secondary  treatment. Options to ensure that the EDO is met would include additional treatment, or an outfall  extended into deeper water to obtain more dilution. Both of these options would come with a cost  that is not insignificant. The total phosphorous EQOs is based on the prevention of eutrophication,  which is typically not a major concern in a marine receiving environment. Consideration should be  given to the cost versus benefit of achieving these EDOs.     Aluminum  The EDO for aluminum was equal to the background concentration of 0.274 mg/L as the background  concentration was greater than the generic EQO of 0.1 mg/L. However, this EQO is likely overly  conservative as it is based on the CCME CWQG for the protection of aquatic life for freshwater.   There is no CCME CWQG for marine waters. There is no US EPA or BC MOE salt water quality  criterion for aluminum. Therefore, the CCME freshwater guideline was utilized in the absence of a  more appropriate guideline. However, use of the background value for the EDO results in no dilution  being available. In addition, some aluminum removal will likely occur during treatment.      Iron  The EDO for iron was equal to the background concentration of 0.393 mg/L as the background value  was greater than the generic EQO of 0.3 mg/L.  However, this EQO is likely overly conservative as it  is based on the CCME CWQG for the protection of aquatic life for freshwater. There is no CCME  CWQG for marine waters. There is no US EPA or BC MOE salt water quality criterion for iron.   Therefore, the CCME freshwater guideline was utilized in the absence of a more appropriate  guideline. However, use of the background value for the EDO results in no dilution being available.   In addition, some iron removal will likely occur during treatment.         Harbour Engineering Joint Venture Glace Bay WWTP ERA 45   CHAPTER 6  COMPLIANCE MONITORING    The Standard Method utilizes the results of the ERA to recommend parameters for compliance  monitoring according to the following protocol:   The WSER requirements for TSS, CBOD and unionized ammonia must be monitored to  ensure they are continuously being achieved.  Minimum monitoring frequencies are  specified in the guidelines based on the size of the facility.  Monitoring of these  substances cannot be reduced or eliminated;   Nutrients, such as phosphorus and ammonia, and pathogens for which an EDO was  developed should be included in the monitoring program with the same sampling  frequency as TSS and CBOD5;   For additional substances, the guidelines require that all substances with average effluent  values over 80% of the EDO be monitored;   If monitoring results for the additional substances are consistently below 80% of the EDO,  the monitoring frequency can be reduced;   If average monitoring results subsequently exceed 80% of the EDO, monitoring frequency  must return to the initial monitoring frequency; and   If monitoring results are below 80% of the EDO for at least 20 consecutive samples spread  over a period of at least one‐year, monitoring for that substance can be eliminated.    Although the Standard Method results in recommending parameters for compliance monitoring, the  provincial regulator ultimately stipulates the compliance monitoring requirements as part of the  Approvals to Operate.  In New Brunswick, the New Brunswick Department of Environment and Local  Government has been using the results of the ERA to update the compliance monitoring program  listed in the Approval to operate when the existing Approvals expire.  At this time, it is premature to  use the results of this ERA to provide recommendations on parameters to monitor for compliance,  as the purpose of this ERA was to provide design criteria for design of a new WWTP.            Harbour Engineering Joint Venture Glace Bay WWTP ERA 46 CHAPTER 7  REFERENCES    ASA Consulting Limited (1994). “Industrial Cape Breton Receiving Water Study, Phase II”. Prepared  for The Town of Glace Bay.    BC Ministry of Environment (2006). A Compendium of Working Water Quality Guidelines for  British Columbia. Retrieved from: http://www.env.gov.bc.ca/wat/wq/BCguidelines/working.html     CBCL Limited (2005). Dominion Beach Sewer Study. Prepared for CBRM.    CCME (2008).  Technical Supplement 3.  Canada‐wide Strategy for the Management of Municipal  Wastewater Effluent.  Standard Method and Contracting Provisions for the Environmental Risk  Assessment.    CCME (2007).  Canadian Guidance Framework for the Management of Nutrients in Nearshore  Marine Systems Scientific Supporting Document.    CCME Canadian Environmental Quality Guidelines Summary Table.  Water Quality Guidelines for the  Protection of Aquatic Life.    Environment Canada (2006). Atlantic Canada Wastewater Guidelines Manual for Collection,  Treatment, and Disposal    Environment Canada (Environment Canada) (1999).  Canadian Environmental Protection Act Priority  Substances List II – Supporting document for Ammonia in the Aquatic Environment.  DRAFT –August  31, 1999.    Fisher et al. (1979). Mixing in Inland and Coastal Waters. Academic Press, London.    Fisheries Act.  Wastewater Systems Effluent Regulations.  SOR/2012‐139.    Health Canada (2012).  Guidelines for Canadian Recreational Water Quality.  Retrieved from:  http://www.hc‐sc.gc.ca/ewh‐semt/pubs/water‐eau/guide_water‐2012‐guide_eau/index‐eng.php    Mixing Zone Assessment and Report Template Draft only – For discussion (July 7, 2016)    NB Department of Environment & Local Government, (2012). Memo.      Harbour Engineering Joint Venture Glace Bay WWTP ERA 47 Thomann, Robert V. and Mueller, John A (1987). Principles of Surface Water Quality Modeling and  Control.    UMA (1994).  Industrial Cape Breton Wastewater Characterization Program, Phase II.    USEPA. National Recommended Water Quality Criteria for Saltwater. Retrieved from:  http://water.epa.gov/scitech/swguidance/standards/criteria/current/index.cfm            Prepared by: Reviewed by:  Holly Sampson, M.A.Sc., P.Eng. Karen March, M.Sc.  Intermediate Chemical Engineer Environmental Scientist      Harbour Engineering Joint Venture Appendices APPENDIX A  Laboratory Certificates    HEJV Appendices APPENDIX C    Preliminary Design Drawings  C01 UP ,. *= ,=8 *+91 *+91 ,) ,) ,) ,) ,) ,)*+91 ,),),) *+91 *= , 3= 6:* 9* =8 (+4). 9.5=+8 25)1+89 / / / / / / UP UP UPUP SOLIDS HOLDING TANK (15m x 15m x 5.5m) SBR No.1 (48m x 17.5m x 5.5m) 4.500 m 10.000 m 11.500 m 10.000 m 11.000 m 17 5 0 0 48000 17 5 0 0 17 5 0 0 SBR No.2 (48m x 17.5m x 5.5m) SBR No.3 (48m x 17.5m x 5.5m) 9000 8.000 m 9.500 m 9.500 m 4.500 m 11.000 m 90 0 0 50750 76 2 0 55 7 0 0 49600 10 0 0 0 12000 9.500 m 9.500 m 20 0 0 4.500 m 4.500 m 15 0 0 0 11.000 m 22 5 7 0 800 (TYP.) 9.500 m P03 1 P06 1 PROCESS BUILDING CENTRIFUGE & SLUDGE PUMP BUILDING ADMINISTRATION BUILDING 11190 11.000 m PROPERTY LINE (TYP.)NORTHP02 B P02 B P02 A P02 A MHP05 1 200 DIA. AIR PIPE TO SOLIDS HOLDING TANK EFFLUENT PIPE INVERT IN ELEV.= 6.400m 200 DIA. AIR PIPE TO SOLIDS HOLDING TANK EFFLUENT PIPE 200 DIA. AIR PIPE TO SBR'S SLUDGE WASTING SUBMERSIBLE PUMP (TYP.) STAIRS 200 DIA. AIR PIPE TO SBR'S STAIRS STAIRS UNDERGROUND PIPE WEIR BOX EFFLUENT PIPE INVERT OUT ELEV.= 6.400m 800 (TYP.) DOWNWARD OPENING GATE (TYP.) 9.500 m BIOFILTER 20000 80 0 0 50 0 0 SEE STRUCTURAL DRAWINGS (TYPICAL) 10 0 0 0 12000 17000 Scale DrawnDesigned Checked Approved Stamp Sheet No Drawing No DateContract NoCBCL No of Revision or Issue C: \ N o e l m \ _ R E V I T M O D E L F I L E S \ 1 8 2 4 0 2 . 0 0 - G L A C E B A Y P R O C E S S - V 2 0 1 9 _ n o e l m a y 7 4 4 7 . r v t 01 / 0 5 / 2 0 2 0 4 : 5 0 : 2 3 P M 1 : 200 NMMA Checker APR 2019182402.00 1 113 PROCESS GENERAL ARRANGEMENT CAPE BRETON REGIONAL MUNICIPALITY GLACE BAY WASTEWATER TREATMENT PLANT PRELIMINARY 1 : 200 PLAN No Description Date By A ISSUED FOR 33% REVIEW P07 j o i n t v e n t u r e HEJV Glace Bay Wastewater System Pre‐Design Summary Report Appendices APPENDIX C  Glace Bay Environmental Risk Assessment                182402.00   ●   Report   ●   June 2020  Glace Bay Wastewater Treatment Plant  Environmental Risk Assessment  Final Report  Prepared by:      Prepared for:      March 2020                                                                   Final June 9, 2020 Darrin McLean Karen March Holly Sampson  Revised Draft – Revision 1 January 7, 2019 Darrin McLean Karen March Holly Sampson  Draft for Review August 29, 2018 Darrin McLean Karen March Holly Sampson  Issue or Revision Date Issued By: Reviewed By: Prepared By:  This document was prepared for the party indicated herein. The material and information in the document reflects HE’s opinion and best judgment based on the information available at the time of preparation. Any use of this document or reliance on its content by third parties is the responsibility of the third party. HE accepts no responsibility for any damages suffered as a result of third party use of this document.                           182402.00        March 27, 2020   182402 RE 001 DRAFT WWTP ERA GLACE BAY_FINAL.DOCX/mk  ED: 09/06/2020 12:54:00/PD: 09/06/2020 12:55:00   June 9, 2020      Matt Viva, P.Eng.  Manager Wastewater Operations  Cape Breton Regional Municipality (CBRM)  320 Esplanade,  Sydney, NS  B1P 7B9      Dear Mr. Viva:    RE: Glace Bay Wastewater Treatment Plant ERA     Enclosed, please find a copy of the Environmental Risk Assessment (ERA) Report  for the Glace Bay Wastewater Treatment Plant (WWTP).    The report outlines Environmental Quality Objectives (EQOs) for all parameters  of potential concern listed in the Standard Method for a “medium” facility that  were detected in the effluent. Environmental Discharge Objectives (EDOs) were  also calculated for all parameters of potential concern that were detected in the  effluent and for which an Environmental Quality Objective (EQO) was identified.    If you have any questions or require clarification on the content presented in  the attached report, please do not hesitate to contact us.      Yours very truly,    Harbour Engineering             Prepared by: Reviewed by:  Holly Sampson, M.A.Sc., P.Eng. Karen March, M.Sc.  Intermediate Chemical Engineer Environmental Scientist  Direct:  902‐539‐1330 Phone: 902‐450‐4000  E‐Mail:  hsampson@cbcl.ca E‐Mail: kmarch@dillon.ca     Project No: 182402.00 (CBCL)  187116.00 (Dillon)       March 27, 2020   Harbour Engineering Joint Venture Glace Bay WWTP ERA i Contents    CHAPTER 1 Background and Objectives ................................................................................... 1  1.1 Introduction .................................................................................................................. 1  1.2 Background ................................................................................................................... 1  1.3 Facility Description ........................................................................................................ 2  CHAPTER 2 Initial Effluent Characterization ............................................................................. 5  2.1 Substances of Potential Concern .................................................................................. 5  2.1.1 Whole Effluent Toxicity ..................................................................................... 7  2.2 Wastewater Characterization Results .......................................................................... 7  CHAPTER 3 Environmental Quality Objectives ....................................................................... 12  3.1 Water Uses .................................................................................................................. 12  3.2 Ambient Water Quality ............................................................................................... 13  3.3 Physical/ Chemical/ Pathogenic Approach ................................................................. 19  3.3.1 General Chemistry/ Nutrients ........................................................................ 19  3.3.2 Metals ............................................................................................................. 24  3.3.3 E. coli ............................................................................................................... 26  3.3.4 Summary ......................................................................................................... 28  CHAPTER 4 Mixing Zone Analysis ........................................................................................... 30  4.1 Methodology ............................................................................................................... 30  4.1.1 Definition of Mixing Zone ............................................................................... 30  4.1.2 Site Summary .................................................................................................. 32  4.1.3 Far‐Field Modeling Approach and Inputs ....................................................... 32  4.1.4 Modeled Effluent Dilution .............................................................................. 35  CHAPTER 5 Effluent Discharge Objectives .............................................................................. 41  5.1 The Need for EDOs ...................................................................................................... 41  5.2 Physical/ Chemical/ Pathogenic EDOs ........................................................................ 41  5.3 Effluent Discharge Objectives ..................................................................................... 42  CHAPTER 6 Compliance Monitoring ....................................................................................... 45  CHAPTER 7 References .......................................................................................................... 46    Appendices     A Laboratory Certificates    Harbour Engineering Joint Venture Glace Bay WWTP ERA 1 CHAPTER 1  BACKGROUND AND OBJECTIVES    1.1 Introduction  Harbour Engineering (HE) was engaged by the Cape Breton Regional Municipality (CBRM) to complete  an Environmental Risk Assessment (ERA) for the proposed Glace Bay Wastewater Treatment Plant  (WWTP). As this is a proposed WWTP that has not yet been designed, this ERA was completed with the  objective that it serve as a tool to establish effluent criteria for the design of a new WWTP.  For this  reason, the ERA was completed without the frequency of testing required by the Standard Method  outlined in Technical Supplement 3 of the Canada‐wide Strategy for the Management of Municipal  Wastewater Effluent (Standard Method) for initial effluent characterization. With the exception of the  initial effluent characterization sampling frequency, the ERA was otherwise completed in accordance  with the Standard Method.    1.2 Background  The Canada‐wide Strategy (CWS) for the Management of Municipal Wastewater Effluent was adopted  by the Canadian Council of Ministers of the Environment (CCME) in 2009.  The Strategy is focused on  two (2) main outcomes: Improved human health and environmental protection; and improved clarity  about the way municipal wastewater effluent is managed and regulated. The Strategy requires that all  wastewater facilities discharging effluent to surface water meet the following National Performance  Standards (NPS) as a minimum:   Carbonaceous Biochemical Oxygen Demand for five days (CBOD5) – 25 mg/L;   Total Suspended Solids (TSS) – 25 mg/L; and   Total Residual Chlorine (TRC) – 0.02 mg/L.    The Wastewater Systems Effluent Regulations (WSER) came into effect in 2012 under the Fisheries Act.  The WSER include the above NPS as well as the following criteria:   Unionized ammonia ‐ 1.25 mg/L, expressed as nitrogen (N), at 15°C ± 1°C.    The CWS requires that facilities develop site‐specific Environmental Discharge Objectives (EDOs) to  address substances not included in the NPS that are present in the effluent.  EDOs are the substance  concentrations that can be discharged in the effluent and still provide adequate protection of human  health and the environment.  They are established by conducting a site‐specific ERA. The ERA includes  characterization of the effluent to determine potential substances of concern, and characterization of  the receiving water to determine beneficial water uses, ambient water quality, assimilative capacity, and    Harbour Engineering Joint Venture Glace Bay WWTP ERA 2 available dilution. A compliance monitoring program is then developed and implemented to ensure  adherence to the established EDOs for the facility.    1.3 Facility Description  The proposed Glace Bay Wastewater Treatment Plant (WWTP) will be constructed at Lower Main  Street near Glace Bay Harbour. Treated effluent will be discharged to the Atlantic Ocean at the  location of the existing outfall near the breakwater (Figure 1.2).   Figure 1.1 Site Location                          Harbour Engineering Joint Venture Glace Bay WWTP ERA 3 Figure 1.2 WWTP Location    The service population of Glace Bay is 14,536 people in 7,258 residential units. The theoretical  domestic wastewater flow (exclusive of inflow and infiltration (I&I)) is an average of 4,942 m3/day  with a peak of 13,838 m3/day based on a per capita flow of 340 L/person/day and a peaking factor  of 2.8 calculated using the Harmon formula.     There are currently 8 existing outfalls (see Figure 3.1). These outfalls will be consolidated into one  discharge at the location of existing GB‐8 outfall. The estimated service population associated with  each outfall, based on 2016 census data, is provided in Table 1.1:    Table 1.1 Service Population by Outfall  Outfall Name Residential Units Population  GB1 253 558  GB2 231 504  GB3 21 44  GB4A 306 590  GB4B 36 77  GB5 57 118  GB6 347 713  GB7 72 140  GB8 5935 11791  Total 7258 14536    Harbour Engineering Joint Venture Glace Bay WWTP ERA 4 For the purpose of the ERA, the average daily flow was assumed to be 14,200 m3/day (215 IG/p/day  or 1m3/p/day) for modelling purposes, based on a reasonable per capita allowance for average  annual flow. The preliminary design of the proposed WWTP was subsequently completed based on  an average design flow of 13,815 m3/day. The effluent modelling will not be updated at this time.  See the WWTP preliminary design report for information on the development of design flows. The  design flows do not account for growth. CBRM has a declining population so increased flows due to  population growth are not expected. CBRM’s wastewater collection systems have significant inflow  and infiltration (I&I), and CBRM plans to implement an I&I reduction program.          Harbour Engineering Joint Venture Glace Bay WWTP ERA 5 CHAPTER 2  INITIAL EFFLUENT CHARACTERIZATION    2.1 Substances of Potential Concern  An initial characterization program covering a one‐year period is typically required by the Standard  Method to describe the treated effluent and identify substances of concern.  As there is no existing  WWTP for this system, and the ERA is being conducted for the purpose of determining effluent  objectives for the design of a new WWTP, one sample event was completed for each of the existing  8 outfalls. Sample results for some of the parameters of potential concern were also available from  three‐years of sampling conducted by CBRM from 2015 through 2017 at the GB4 outfall, one sample  collected by Dillon Consulting in 2014 at each of the outfalls, and samples collected by UMA  Engineering in 1992 at the Park Street sewer. Substances of potential concern are listed in the  Standard Method based on the size category of the facility. The proposed design capacity of the new  WWTP will be finalized during the pre‐design study, but for the purposes of the draft ERA, an  average annual flow of 14,200 m3/day will be assumed based on a per capita flow of 215 IG/p/day  (1m3/p/day). Therefore, the WWTP is classified as a “medium” facility based on an average daily  flow rate that is between 2,500 and 17,500 m3/day.    The substances of potential concern for a “medium” facility, as per the Standard Method, are  detailed in Table 2.1. There were no additional substances of concern identified to be monitored as  industrial input does not exceed 5% of total dry weather flow in the sewer shed, on an annual  average basis. There is one hospital and a fish processing plant, but the flows are expected to be  much less than 5% of the wastewater flow for the system.                                Harbour Engineering Joint Venture Glace Bay WWTP ERA 6 Table 2.1 – Substances of Potential Concern for a Medium Facility  Test Group Substances  General Chemistry  / Nutrients  Fluoride  Nitrate  Nitrate + Nitrite  Total Ammonia Nitrogen  Total Kjeldahl Nitrogen (TKN)  Total Phosphorus (TP)  Total Suspended Solids (TSS)  Carbonaceous Biochemical Oxygen Demand (CBOD5)  Total Residual Chlorine (TRC)  Chemical Oxygen Demand (COD)  Cyanide (total)  pH  Temperature  Metals  Aluminum, barium, beryllium, boron, cadmium, chromium, cobalt, copper, iron,  lead, manganese, molybdenum, nickel, silver, strontium, thallium, tin, titanium,  uranium, vanadium, zinc as well as arsenic, antimony, selenium and mercury  Pathogens E. coli (or other pathogen, as directed by the jurisdiction)  Organochlorine  Pesticides  Alpha‐BHC, endosulfin (I and II), endrin, heptachlor epoxide, lindane (gamma‐ BHC), mirex, DDT, methoxychlor, aldrin, dieldrin, heptachlor, a‐chlordane and g‐ chlordane, toxaphene  Polychlorinated  Biphenyls (PCBs) Total PCBs  Polycyclic Aromatic  Hydrocarbons  (PAHs)  Acenaphthene, acenapthylene, anthracene, benzo(a)anthracene,  benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene,  benzo(k)fluoranthene, chrysene, dibenz(a,h)anthracene, fluoranthene, fluorene,  indeno(1,2,3‐cd)pyrene, methylnaphthalene, naphthalene, phenanthrene, pyrene  Volatile Organic  Compounds (VOCs)  Benzene, bromodichloromethane, bromoform, carbon tetrachloride,  chlorobenzene, chlorodibromomethane, chloroform, 1,2‐dichlorobenzene, 1,4‐ dichlorobenzene, 1,2‐dichloroethane, 1,1‐dichloroethene, dichloromethane,  ethylbenzene, 1,1,1,2‐tetrachloroethane, 1,1,2,2‐tetrachloroethane,  tetrachloroethene, toluene, trichloroethene, vinyl chloride, m/p‐xylene, o‐xylene  Phenolic  Compounds  2,3,4,6‐tetrachlorophenol, 2,4,6‐trichlorophenol, 2,4‐dichlorophenol,  pentachlorophenol  Surfactants Non‐ionic surfactants and anionic surfactants (others may be added by the  jurisdiction)          Harbour Engineering Joint Venture Glace Bay WWTP ERA 7 2.1.1 Whole Effluent Toxicity  Wastewater effluent potentially contains a variety of unknown or unidentified substances for which  guidelines do not exist. In order to adequately protect against these unknown substances, Whole  Effluent Toxicity (WET) tests are typically conducted to evaluate acute (short‐term) and chronic (long‐ term) effects.    The Standard Method requires the following toxicity tests be conducted quarterly:   Acute toxicity – Rainbow Trout and Daphnia magna; and   Chronic Toxicity – Ceriodaphnia dubia and Fathead Minnow.    A draft for discussion Mixing Zone Assessment and Report Template, dated July 6, 2016 that was  prepared by a committee of representatives of the environment departments in Atlantic Canada noted  that only Ceriodaphnia dubia testing is required for chronic toxicity. If the test does not pass, a fathead  minnow test is required.    As the wastewater in this system is currently untreated, and the purpose of the ERA is to determine  effluent discharge objectives for the design of a new WWTP, no WET tests were conducted at this time.    2.2 Wastewater Characterization Results  The results of the initial wastewater characterization program completed by HE are summarized in  Tables 2.2 through 2.6. One sample was collected for each outfall in the system as part of the initial  wastewater characterization study. Outfall locations are shown in Section 3.     Table 2.2 – Initial Wastewater Characterization Results – General Chemistry  Parameter Outfall  GB1 GB2 GB4 GB5 GB6 GB7 GB8  CBOD5 (mg/L) 32 50 130 84 54 30 64  COD (mg/L) 53 100 200 120 130 41 120  Total NH3‐N (mg/L) 1.4 2.0 3.4 3.8 2.1 0.51 3.7  TSS (mg/L) 25 53 49 41 40 15 50  TP (mg/L) 0.69 0.99 2.2 1.6 1.0 0.3 1.8  TKN (mg/L) 6.0 6.8 16 12 9.2 2.2 13  pH 7.11 7.00 6.79 6.52 7.17 7.18 7.31  Un‐ionized NH3 (mg/L)(1) 0.0049 0.0055 0.0058 0.0035 0.0085 0.0021 0.0207  E. coli (MPN/100mL) 77000 >240000 >240000 130000 >240000 170000 >240000  Fluoride (mg/L) <0.10 <0.10 0.12 0.1 0.12 <0.10 0.11  Nitrate (mg/L) 0.67 0.079 <0.050 0.08 0.79 1.0 <0.050  Nitrite (mg/L) 0.03 0.34 <0.010 0.83 0.06 0.025 <0.010  Nitrate + Nitrite (mg/L) 0.69 0.42 <0.050 0.91 0.85 1.0 <0.050  Total Nitrogen (TN) (mg/L) 6.7 7.2 16.0 12.9 10.1 3.2 13.0  Total Cyanide (mg/L) 0.0019 0.0022 0.0028 0.0034 0.0029 0.0015 0.013  Note:  (1) The values of unionized ammonia were determined in accordance with the formula in the WSER, the  concentration of total ammonia in the sample, and the pH of the sample.      Harbour Engineering Joint Venture Glace Bay WWTP ERA 8 Table 2.3 – Initial Wastewater Characterization Results – Metals (mg/L)  Parameter Outfall  GB1 GB2 GB4 GB5 GB6 GB7 GB8  Aluminum 0.077 0.31 0.28 0.66 0.14 0.06 0.11  Antimony <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010  Arsenic <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010  Barium 0.045 0.03 0.033 0.031 0.044 0.038 0.037  Beryllium <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010  Boron <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050  Cadmium 0.000038 0.00017 0.00031 0.00036 0.00013 0.00004 0.000095  Chromium <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010  Cobalt <0.00040 0.0012 0.0011 0.0025 0.00065 <0.00040 <0.00040  Copper 0.0047 0.0068 0.01 0.015 0.009 0.0044 0.0099  Iron 0.17 1 0.42 0.58 0.19 0.3 0.49  Lead <0.00050 0.00062 0.001 0.0029 0.00051 0.00056 0.00057  Manganese 0.12 0.75 0.4 0.56 0.32 0.29 0.25  Molybdenum <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 0.0065 <0.0020  Nickel <0.0020 0.004 0.0066 0.011 0.0031 <0.0020 <0.0020  Selenium <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010  Silver <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010  Strontium 0.16 0.12 0.12 0.16 0.13 0.28 0.11  Thallium <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010  Tin <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020  Titanium 0.003 0.0052 0.0082 <0.020  <0.020  0.0032 0.0029  Uranium 0.00017 0.00011 <0.00010 <0.00010 0.00011 0.00015 <0.00010  Vanadium <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020 <0.0020  Zinc 0.015 0.051 0.11 0.11 0.043 0.013 0.040  Mercury <0.000013 <0.000013 <0.000013 <0.000013 0.000013 <0.000013 <0.000013                                         Harbour Engineering Joint Venture Glace Bay WWTP ERA 9 Table 2.4 – Initial Wastewater Characterization Results – VOCs (µg/L)  Parameter Outfall  GB1 GB2 GB4 GB5 GB6 GB7 GB8  1,2‐Dichlorobenzene <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50  1,4‐Dichlorobenzene <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0  Chlorobenzene <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0  1,1,2,2‐Tetrachloroethane <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50  1,1‐Dichloroethylene <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50  1,2‐Dichloroethane <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0  Benzene <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0  Bromodichloromethane <1.0 1.0 1.0 1.2 1.0 <1.0 <1.0  Bromoform <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0  Carbon Tetrachloride <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50  Chloroform 2.4 3.8 4.1 5 3.8 <1.0 3.1  Dibromochloromethane <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0  Ethylbenzene <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0  Methylene Chloride  (Dichloromethane) <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0  o‐xylene <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0  m/p‐xylene <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0  Tetrachloroethene <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0  Toluene <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 1.3  Trichloroethene  <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0  Vinyl Chloride <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50                                          Harbour Engineering Joint Venture Glace Bay WWTP ERA 10 Table 2.5 – Initial Wastewater Characterization Results – PCBs, Phenols, PAHs  Parameter Outfall  GB1 GB2 GB4 GB5 GB6 GB7 GB8  Total PCBs (µg/L) <0.05 <0.05 <0.3 <0.05 <0.05 <0.05 <0.05  Phenols (mg/L) 0.0051 0.0049 0.013 0.0081 0.017 0.0015 0.0011  1‐Methylnaphthalene (µg/L) <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050  2‐Methylnaphthalene (µg/L) <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050  Acenaphthene (µg/L) <0.010 <0.010 <0.050 0.015 <0.010 <0.010 <0.010  Acenaphthylene (µg/L) <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010  Anthracene (µg/L) <0.010 <0.010 <0.010 0.037 <0.010 <0.010 <0.010  Benzo(a)anthracene (µg/L) <0.010 <0.010 <0.010 0.09 <0.010 <0.010 <0.010  Benzo(a)pyrene (µg/L) <0.010 <0.010 <0.010 0.064 <0.010 <0.010 <0.010  Benzo(b)fluoranthene (µg/L) <0.010 <0.010 <0.010 0.054 <0.010 <0.010 <0.010  Benzo(g,h,i)perylene (µg/L) <0.010 <0.010 <0.010 0.04 <0.010 <0.010 <0.010  Benzo(k)fluoranthene (µg/L) <0.010 <0.010 <0.010 0.026 <0.010 <0.010 <0.010  Chrysene (µg/L) <0.010 <0.010 <0.010 0.073 <0.010 <0.010 <0.010  Dibenz(a,h)anthracene (µg/L) <0.010 <0.010 <0.010 0.021 <0.010 <0.010 <0.010  Fluoranthene (µg/L) 0.013 0.017 0.016 0.21 <0.010 <0.010 <0.010  Fluorene (µg/L) <0.010 <0.010 <0.010 0.02 <0.010 <0.010 <0.010  Indeno(1,2,3‐cd)pyrene (µg/L) <0.010 <0.010 <0.010 0.041 <0.010 <0.010 <0.010  Naphthalene (µg/L) <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20  Phenanthrene (µg/L) 0.016 0.031 0.031 0.12 0.016 <0.010 0.011  Pyrene (µg/L) 0.011 0.016 0.016 0.16 <0.010 <0.010 <0.010    Table 2.6 – Initial Wastewater Characterization Results – Organochlorine Pesticides (µg/L)  Parameter Outfall  GB1 GB2 GB4 GB5 GB6 GB7 GB8  Aldrin <0.005 <0.005 <0.03 <0.005 <0.005 <0.005 <0.005  Dieldrin <0.005 <0.005 <0.03 <0.005 <0.005 <0.005 <0.005  a‐Chlordane <0.005 <0.005 <0.03 <0.005 <0.005 <0.005 <0.005  g‐Chlordane <0.005 <0.005 <0.03 <0.005 <0.005 <0.005 <0.005  o,p‐DDT <0.005 <0.005 <0.03 <0.005 <0.005 <0.005 <0.005  p,p‐DDT <0.005 <0.005 <0.03 <0.005 <0.005 <0.005 <0.005  Lindane <0.003 <0.003 <0.02 <0.003 <0.003 <0.003 <0.003  Endosulfan I (alpha) <0.005 <0.005 <0.03 <0.005 <0.005 <0.005 <0.005  Endosulfan II (beta) <0.005 <0.005 <0.03 <0.005 <0.005 <0.005 <0.005  Endrin <0.005 <0.005 <0.03 <0.005 <0.005 <0.005 <0.005  Heptachlor <0.006  <0.005 <0.03 <0.02  <0.02  <0.005 <0.005  Heptachlor epoxide <0.005 <0.005 <0.03 <0.005 <0.005 <0.005 <0.005  Methoxychlor <0.01 <0.01 <0.07 <0.01 <0.01 <0.01 <0.01  alpha‐BHC <0.005 <0.005 <0.03 <0.005 <0.005 <0.005 <0.005  Mirex <0.005 <0.005 <0.03 <0.005 <0.005 <0.005 <0.005  Toxaphene <0.2 <0.2 <1 <0.2 <0.2 <0.2 <0.2  DDT+ Metabolites <0.005 <0.005 <0.03 <0.005 <0.005 <0.005 <0.005    Harbour Engineering Joint Venture Glace Bay WWTP ERA 11 Table 2.7 – Historical Wastewater Characterization Samples   Location Parameter Average Number of Samples  GB1  TSS (mg/L) 31 1  CBOD5 (mg/L) 48 1  Unionized Ammonia  (mg/L) 0.023 1  GB2  TSS (mg/L) 55 1  CBOD5 (mg/L) 53 1  Unionized Ammonia  (mg/L) 0.027 1  GB3  TSS (mg/L) 59 1  CBOD5 (mg/L) 290 1  Unionized Ammonia  (mg/L) 0.330 1  GB4  TSS (mg/L) 394 27  CBOD5 (mg/L) 40 27  Total Ammonia  (mg/L) 0.3 12  pH   7.4 12  Unionized Ammonia  (mg/L) 0.004 13  GB5  TSS (mg/L) 110 1  CBOD5 (mg/L) 56 1  Unionized Ammonia  (mg/L) 0.011 1  GB6  TSS (mg/L) 81 1  CBOD5 (mg/L) 240 1  Unionized Ammonia  (mg/L) 0.009 1  GB7  TSS (mg/L) 40 1  CBOD5 (mg/L) 55 1  Unionized Ammonia  (mg/L) 0.003 1  GB8  TSS (mg/L) 129 18  CBOD5 (mg/L) 105 18  Unionized Ammonia  (mg/L) 0.006 1  GB8A  TSS (mg/L) 90 24  CBOD5 (mg/L) 76 24  pH   7.1 24  Alkalinity (mg/L) 100 4  TKN (mg/L) 23.9 4  Total Phosphorus (mg/L) 2.40 4  Note: Location GB8A is a sample location upstream of the GB8 outfall at Park St.                 Harbour Engineering Joint Venture Glace Bay WWTP ERA 12   CHAPTER 3  ENVIRONMENTAL QUALITY OBJECTIVES  Generic Environmental Quality Objectives (EQOs) are generated from established guidelines, typically  the Wastewater Systems Effluent Regulations (WSER), the Canadian Environmental Quality Guidelines  (CEQGs) and other guidelines specified by jurisdiction. Site‐specific EQOs are established by adjusting  the generic EQOs based on site‐specific factors, particularly ambient water quality. For example, if the  background concentration of a substance is greater than the guideline value (generic EQO), the  background concentration is used as the site‐specific EQO. However, substances where the EQO is based  on the WSER are not adjusted based on ambient water quality. Furthermore, there are some guidelines  that are dependent on characteristics of the receiving water like pH or temperature.    EQOs can be determined by three different approaches:   Physical/ chemical/ pathogenic – describes the substance levels that will protect water quality;   Whole Effluent Toxicity (WET) – describes the proportion of effluent that can enter the receiving  water without causing toxicological effects (both acute and chronic); and   Biological criteria (bio‐assessment) – describes the level of ecological integrity that must be  maintained.    This assessment follows the physical/ chemical/ pathogenic approach from the Standard Method  outlined in the CCME guidelines. The bio‐assessment is not included in the Standard Method as it is still  being developed (CCME, 2008).    3.1 Water Uses  EQOs are numerical values and narrative statements established to protect the receiving water – in this  case the Atlantic Ocean near the breakwater in Glace Bay Harbour. The first step in determining EQOs is  to define the potential beneficial uses of the receiving water.    The following beneficial water uses have been identified for the Atlantic Ocean in the vicinity of Glace  Bay:   Direct contact recreational activities like swimming and wading at Table Head Beach to the  north and Big Glace Bay Beach to the south (shown on Figure 3.1, below);   Secondary contact recreational activities like boating and fishing; and   Ecosystem health for marine aquatic life.      Harbour Engineering Joint Venture Glace Bay WWTP ERA 13 There is no molluscan shellfish harvesting zone in the vicinity of the outfall. The outfall is situated in a  closure zone boundary extending from Point Aconi to Schooner Pond, situated 2500 m offshore in the  vicinity of the outfall (shown on Figure 3.1).    Figure 3.1 Location of Existing Outfalls     3.2 Ambient Water Quality  Generic EQOs are first developed based on existing guidelines and then adjusted based on site‐ specific factors, particularly background water quality. Water quality data was obtained for two  locations in the Atlantic Ocean along the coast of Cape Breton. The locations were chosen in an  attempt to be representative of ambient water quality outside the influence of the existing  untreated wastewater discharges in CBRM. Samples were collected by HE on May 11, 2018, and the  sample locations are summarized as follows and presented in Figure 3.2. A second set of samples  was collected by HE on November 18, 2018 and analyzed for metals using a different laboratory  method due to elevated detection limits in the first set of samples.                  Harbour Engineering Joint Venture Glace Bay WWTP ERA 14 BG‐1: Near Mira Gut Beach  BG‐2: Wadden’s Cove  Figure 3.2 Ambient Water Quality Sample Locations    A third sample was collected north of Port Morien but the results were not considered  representative of background conditions as sample results indicated that the sample was impacted  by wastewater. A summary of the ambient water quality data is shown in Tables 3.1 through 3.5.                                Harbour Engineering Joint Venture Glace Bay WWTP ERA 15 Table 3.1 – Ambient Water Quality Data – General Chemistry  Parameter Units BG1 BG2 AVG  Carbonaceous BOD (CBOD) mg/L <5.0 <5.0 <5.0  COD mg/L 1100 1000 1050  Hardness mg/L 4900 5200 5050  Nitrogen (Ammonia Nitrogen) mg/L <0.050 <0.050 <0.05  TSS mg/L 58 5.0 32  Total Phosphorus (TP) mg/L 0.037 0.032 0.035  Total Kjeldahl Nitrogen (TKN) mg/L 0.19 0.20 0.20  pH pH 7.73 7.68 7.71  unionized ammonia mg/L <0.0007 <0.0007 <0.0007  E. coli MPN/100mL 52 86 69  TRC mg/L NM NM NM  Fluoride mg/L 0.67 0.67 0.67  Nitrate (N) mg/L 0.051 <0.050 0.038  Nitrite (N) mg/L <0.010 <0.010 <0.010  Nitrate + Nitrite mg/L 0.051 <0.050 0.038  Total Nitrogen (TN) mg/L 0.241 0.225 0.233  Total Cyanide mg/L <0.0010 <0.0010 <0.0010  Note:       NM = Parameter not measured.     Parameters reported as < detection limit have been included in average calculation as half the  detection limit.                                                  Harbour Engineering Joint Venture Glace Bay WWTP ERA 16 Table 3.2 – Ambient Water Quality Data – Metals  Parameter Units BG1 BG2 AVG  May‐11 Nov‐18 May‐11 Nov‐18    Aluminum mg/L 0.17 0.089 0.083 0.754 0.274  Antimony mg/L <0.010(2) <0.0005 <0.010(2) <0.0005 <0.0005  Arsenic mg/L <0.010 0.00163 <0.010 0.00177 0.0017  Barium mg/L <0.010 0.0074 <0.010 0.0083 0.00785  Beryllium mg/L <0.010(2) <0.001 <0.010(2) <0.001 <0.001  Boron mg/L 3.5 3.42 3.7 3.43 3.51  Cadmium mg/L <0.00010(2) <0.00005 <0.00010(2) <0.00005 <0.00005  Chromium mg/L <0.010(2) <0.0005(1) <0.010(2) 0.00056 0.00041  Cobalt mg/L <0.0040(2) <0.0001(1) <0.0040(2) 0.00031 0.00018  Copper mg/L <0.020(2) <0.0005(1) <0.020(2) 0.00068 0.00047  Iron mg/L <0.50(2) 0.159 <0.50(2) 0.626 0.393  Lead mg/L <0.0050(2) 0.00015 <0.0050(2) 0.0003 0.000225  Manganese mg/L 0.021 0.00747 <0.020(2) 0.0165 0.01499  Molybdenum mg/L <0.020(2) 0.0095 <0.020(2) 0.0086 0.0091  Nickel mg/L <0.020(2) <0.00020 <0.020(2) <0.00020 <0.00020  Selenium mg/L <0.010(2) <0.0005 <0.010(2) <0.0005 <0.0005  Silver mg/L <0.0010(2) <0.00005 <0.0010(2) <0.00005 <0.00005  Strontium mg/L 5.9 7.27 6.3 7.32 6.70  Thallium mg/L <0.0010(2) <0.00010 <0.0010(2) <0.00010 <0.00010  Tin mg/L <0.020(2) <0.001 <0.020(2) <0.001 <0.001  Titanium mg/L <0.020(2) <0.010 <0.020(2) 0.046 0.026  Uranium mg/L 0.0026 0.00248 0.0026 0.00242 0.00253  Vanadium mg/L <0.020(2) <0.01 <0.020(2) <0.01 <0.01  Zinc mg/L <0.050(2) <0.001 <0.050(2) 0.0014 0.00095  Mercury mg/L 0.000013 ‐ 0.000013 ‐ 0.000013  Note:   (1) Value included in average calculation as half the detection limit.   (2) Value omitted from average calculation due to elevated detection limit.                       Harbour Engineering Joint Venture Glace Bay WWTP ERA 17 Table 3.3 – Ambient Water Quality Data – VOCs  Parameter Units BG1 BG2 AVG  1,2‐dichlorobenzene  µg/L <0.50 <0.50 <0.50  1,4‐dichlorobenzene  µg/L <1.0 <1.0 <1.0  Chlorobenzene  µg/L <1.0 <1.0 <1.0  1,1,2,2‐tetrachloroethane  µg/L <0.50 <0.50 <0.50  1,1‐Dichloroethylene  µg/L <0.50 <0.50 <0.50  1,2‐dichloroethane  µg/L <1.0 <1.0 <1.0  Benzene  µg/L <1.0 <1.0 <1.0  Bromodichloromethane  µg/L <1.0 <1.0 <1.0  Bromoform  µg/L <1.0 <1.0 <1.0  Carbon Tetrachloride  µg/L <0.50 <0.50 <0.50  Chloroform  µg/L <1.0 <1.0 <1.0  Dibromochloromethane  µg/L <1.0 <1.0 <1.0  Ethylbenzene  µg/L <1.0 <1.0 <1.0  Methylene Chloride  (Dichloromethane)  µg/L <3.0 <3.0 <3.0  o‐xylene  µg/L <1.0 <1.0 <1.0  m/p‐xylene  µg/L <2.0 <2.0 <2.0  Tetrachloroethene  (Tetrachloroethylene)  µg/L <1.0 <1.0 <1.0  Toluene  µg/L <1.0 <1.0 <1.0  Trichloroethene (Trichloroethylene)  µg/L <1.0 <1.0 <1.0  Vinyl Chloride  µg/L <0.50 <0.50 <0.50                                            Harbour Engineering Joint Venture Glace Bay WWTP ERA 18 Table 3.4 – Ambient Water Quality Data – PCBs, Phenols, PAHs  Parameter Units BG1 BG2 AVG  Total PCBs µg/L <0.05 <0.05 <0.05  Phenols  mg/L 0.011 <0.010  0.0305  1‐Methylnaphthalene  µg/L <0.050 <0.050 <0.050  2‐Methylnaphthalene  µg/L <0.050 <0.050 <0.050  Acenaphthene  µg/L <0.010 <0.010 <0.010  Acenaphthylene  µg/L <0.010 <0.010 <0.010  Anthracene  µg/L <0.010 <0.010 <0.010  Benzo(a)anthracene µg/L <0.010 <0.010 <0.010  Benzo(a)pyrene  µg/L <0.010 <0.010 <0.010  Benzo(b)fluoranthene  µg/L <0.010 <0.010 <0.010  Benzo(g,h,i)perylene  µg/L <0.010 <0.010 <0.010  Benzo(k)fluoranthene  µg/L <0.010 <0.010 <0.010  Chrysene  µg/L <0.010 <0.010 <0.010  Dibenz(a,h)anthracene  µg/L <0.010 <0.010 <0.010  Fluoranthene  µg/L <0.010 <0.010 <0.010  Fluorene  µg/L <0.010 <0.010 <0.010  Indeno(1,2,3‐cd)pyrene  µg/L <0.010 <0.010 <0.010  Naphthalene  µg/L <0.20 <0.20 <0.20  Phenanthrene  µg/L <0.010 <0.010 <0.010  Pyrene  µg/L <0.010 <0.010 <0.010      Table 3.5 – Ambient Water Quality Data – Organochlorine Pesticides  Parameter Units BG1 BG2 AVG  Aldrin µg/L <0.005 <0.005 <0.005  Dieldrin µg/L <0.005 <0.005 <0.005  a‐Chlordane µg/L <0.005 <0.005 <0.005  g‐Chlordane µg/L <0.005 <0.005 <0.005  o,p‐DDT µg/L <0.005 <0.005 <0.005  p,p‐DDT µg/L <0.005 <0.005 <0.005  Lindane µg/L <0.003 <0.003 <0.003  Endosulfan I (alpha) µg/L <0.005 <0.005 <0.005  Endosulfan II (beta) µg/L <0.005 <0.005 <0.005  Endrin µg/L <0.005 <0.005 <0.005  Heptachlor µg/L <0.005 <0.005 <0.005  Heptachlor epoxide µg/L <0.005 <0.005 <0.005  Methoxychlor µg/L <0.01 <0.01 <0.01  alpha‐BHC µg/L <0.005 <0.005 <0.005  Mirex µg/L <0.005 <0.005 <0.005  Toxaphene µg/L <0.2 <0.2 <0.2  DDT+ Metabolites µg/L <0.005 <0.005 <0.005      Harbour Engineering Joint Venture Glace Bay WWTP ERA 19 3.3 Physical/ Chemical/ Pathogenic Approach  The physical/ chemical/ pathogenic approach is intended to protect the receiving water by ensuring that  water quality guidelines for particular substances are being met. EQOs are established by specifying the  level of a particular substance that will protect water quality. Substance levels that will protect water  quality are taken from the CEQGs associated with the identified beneficial water uses. If more than one  guideline applies, the most stringent is used. Typically, the Canadian Water Quality Guidelines (CWQGs)  for the Protection of Aquatic Life are the most stringent and have been used for this assessment.  The  Health Canada Guidelines for Canadian Recreational Water have also been used to provide limits for  pathogens (E. coli).    The guidelines for the Protection of Aquatic Life provide recommendations for both freshwater and  marine (including estuarine) environments. Since the receiving water for the proposed Glace Bay  WWTP is a marine environment, the marine guidelines were used where available. The US EPA  National Recommended Water Quality Criteria (saltwater) were used when there were no CCME  marine criteria provided. For substances where a marine criterion was not specified by either CCME  or US EPA, the CCME freshwater guidelines were used. However, in marine environments, utilizing  freshwater water quality objectives may result in EQOs and EDOs that are overly conservative. There  were some parameters that were detected in the wastewater but for which a criterion did not exist  from either CCME or the US EPA. In those instances, an effort was made to identify an applicable  criterion from another jurisdiction, such as British Columbia Ministry of Environment (BCMOE).    Technical Supplement 3 of the Canada‐wide Strategy for the Management of Municipal Wastewater  Effluent indicates that for any one substance, if the natural concentration in the upstream location is  higher than the generic EQO equivalent, that concentration will apply as a site‐specific EQO, and the  generic EQO must be set aside. Otherwise, site‐specific EQOs are not needed.  Background water  quality samples were collected from the Atlantic Ocean by HE on May 11, 2018 and the results were  previously summarized in Section 3.2.    Site‐specific EQOs were developed for each substance that was detected in the wastewater, for  which there was a generic EQO, and for which the background concentration exceeded the generic  EQO. Site‐specific EQOs are discussed in the following sections and included in Table 3.8.  EQOs are  derived in the following sections for each substance of potential concern for a medium facility that  was detected in the wastewater.    3.3.1 General Chemistry/ Nutrients  The following general chemistry and nutrients parameters were identified as substances of potential  concern for a medium facility: CBOD, chemical oxygen demand (COD), un‐ionized ammonia, total  ammonia, total kjeldahl nitrogen (TKN), total suspended solids (TSS), total phosphorus, pH, total  residual chlorine (TRC), fluoride, nitrate, nitrite and total cyanide.  EQOs for these substances are  established in the following sections.            Harbour Engineering Joint Venture Glace Bay WWTP ERA 20 Oxygen Demand  Biochemical Oxygen Demand (BOD5) is a measure of the oxygen required to oxidize organic material  and certain inorganic materials over a given period of time (five days). It has two components:   carbonaceous oxygen demand and nitrogenous oxygen demand.    Chemical Oxygen Demand (COD) is another measure of oxygen depleting substances present in the  effluent. It is a measure of the oxygen required to chemically oxidize reduced minerals and organic  matter.     Carbonaceous Biochemical Oxygen Demand (CBOD5) measures the amount of biodegradable  carbonaceous material in the effluent that will require oxygen to break down over a given period of  time (five days). The CBOD5 discharged in wastewater effluent reduces the amount of dissolved  oxygen in the receiving water. Dissolved oxygen is an essential parameter for the protection of  aquatic life; and the higher the CBOD5 concentration, the less oxygen that is available for aquatic  life.    Traditionally performance standards have been set for BOD5; however, the WSER dictate a limit for  CBOD5. This is due to the variable effects of nitrogenous oxygen demand on the BOD5 test.    There are no CWQGs for the protection of aquatic life for CBOD5 in freshwater or in marine waters.   However, because CBOD5 affects the concentration of dissolved oxygen, the CWQG for dissolved  oxygen should be considered. The CWQG for freshwater aquatic life dictates that the dissolved  oxygen concentrations be greater than 9.5 mg/L for early life stages in cold water ecosystems. The  CWQG for marine aquatic life is a minimum of 8 mg/L.    The background dissolved oxygen concentrations were not measured in the receiving water.   However, the concentration of CBOD5 discharged in accordance with the WSER criteria should not  cause the dissolved oxygen (DO) concentration to vary outside of the normal range. Based on an  average annual temperature of 6.9 °C (from Bedford Institute of Oceanography Area 4VN), the  solubility of oxygen in seawater is approximately 9.5 mg/L. Assuming the background concentration  of DO is saturated, there can be a drop of 1.5 mg/L for the DO to be a minimum concentration of 8  mg/L. The average annual temperature was used in this calculation as if the maximum annual  temperature was used, this results in the solubility of oxygen being less than the CWQG for marine  aquatic life. For an ocean discharge, the maximum DO deficit should occur at the point source.    Assuming a deoxygenation rate of 0.23/day based on a depth of approximately 4.3 m at the  proposed discharge location (with a 100 m outfall extension), and assuming a reaeration coefficient  of 0.21/day based on a depth of approximately 4.3 m and an average tidal velocity of 0.062 m/s, the  maximum concentration of CBOD that would result in a drop in DO of 1.5 mg/L can be calculated.   The tidal dispersion coefficient has been assumed to be 150 m2/s. The concentration of CBOD  potentially affecting DO was calculated to be 11.75 mg/L. Therefore, the WSER criteria of 25 mg/L  CBOD at discharge should not cause the dissolved oxygen (DO) concentration to vary outside of the  normal range provided initial dilution is at least 2.2:1. The background level of CBOD was less than  the detection limit of 5 mg/L.    Harbour Engineering Joint Venture Glace Bay WWTP ERA 21 Total Ammonia and Un‐ionized Ammonia  The CWQG for the protection of aquatic life for total ammonia in freshwater is presented as a table  based on pH and temperature. There is no CWQG for ammonia in marine water.  Total ammonia is  comprised of un‐ionized ammonia (NH3) and ionized ammonia (NH4+, ammonium). Un‐ionized  ammonia is more toxic than ionized ammonia and the toxicity of total ammonia is related to the  concentration of un‐ionized ammonia present. The amount of un‐ionized ammonia is variable  depending on pH and temperature. The US EPA saltwater guideline for total ammonia is 2.7 mg/L  based on a temperature of 17.7 °C, a pH of 7.7 and a salinity of 30 g/kg.  The US EPA guideline of 2.7  mg/L will be used as the EQO for total ammonia. As ammonia is a component of total nitrogen (TN),  the actual effluent concentration may be limited by the TN EDO rather than the total ammonia EDO.   However, as the TN EQO is based on concern of eutrophication and not a continuous acceptable  concentration for the protection of aquatic life, both EDOs will be presented separately in the ERA.    The WSER requires that un‐ionized ammonia concentrations be less than 1.25 mg/L at the discharge  point. For the purposes of this study, the EQO for un‐ionized ammonia was chosen based on the  WSER (1.25 mg/L at discharge).    Total Suspended Solids (TSS)  The WSER specifies a limit of 25 mg/L for TSS at the end of the pipe. The CWQG for the protection of  aquatic life in marine water for total suspended solids (TSS) is as follows:   During periods of clear flow, a maximum increase of 25 mg/L from background levels for any  short‐term exposure (e.g., 24‐h period). Maximum average increase of 5 mg/L from  background levels for longer term exposures (e.g., inputs lasting between 24 h and 30 d);  and   During periods of high flow, a maximum increase of 25 mg/L from background levels at any  time when background levels are between 25 and 250 mg/L. Should not increase more than  10% of background levels when background is ≥ 250 mg/L.    The background concentration of TSS was an average of 32 mg/L. A maximum average increase of 5  mg/L from background levels would result in an EQO of 37 mg/L. As this is greater than the WSER  criteria, the WSER criteria of 25 mg/L at discharge will apply as the EDO. The background TSS  measurement is higher than would typically be expected in a marine environment, which may be  due to the near shore location of the samples. However, in a worst‐case scenario where the  background TSS concentration was 0 mg/L, application of the WSER criteria at the end of pipe would  always be the more stringent criteria provided there is greater than five times dilution.    Total Phosphorus and TKN/TN  There are no CWQGs for the protection of aquatic life for phosphorus, Total Kjeldahl Nitrogen (TKN)  or total nitrogen (TN).  However, in both freshwater and marine environments, adverse secondary  effects like eutrophication and oxygen depletion can occur. Guidance frameworks have been  established for freshwater systems and for marine systems to provide an approach for developing  site‐specific water quality guidelines. These approaches are based on determining a baseline  condition and evaluating various effects according to indicator variables. The approach is generally    Harbour Engineering Joint Venture Glace Bay WWTP ERA 22 very time and resource intensive, but can be completed on a more limited scale to establish interim  guidelines.    The Canadian Guidance Framework for the Management of Nutrients in Nearshore Marine Systems  Scientific Supporting Document (CCME, 2007) provides a framework as well as case studies for  establishing nutrient criteria for nearshore marine systems. This document provides a Trophic Index  for Marine Systems (TRIX), below in Table 3.6.    Table 3.6 ‐ Criteria for evaluating trophic status of marine systems (CCME, 2007)  Trophic Status TN  (mg/m3)  TP  (mg/m3) Chlorophyll a (μg/L) Secchi Depth  (m)  Oligotrophic <260 <10 <1 >6  Mesotrophic ≥260‐350 ≥10‐30 ≥1‐3 3‐≤6  Eutrophic ≥350‐400 ≥30‐40 ≥3‐5 1.5‐≤3  Hypereutrophic >400 >40 >5 <1.5    The background concentrations of total nitrogen (TN) and total phosphorus (TP) were measured as  0.233 mg/L and 0.035 mg/L, respectively, which corresponds to a eutrophic status based on the  phosphorus concentration.  The uppermost limit for this trophic status is a TN concentration of 0.4  mg/L and a TP concentration of 0.04 mg/L.    This document provides another index (NOAA) to determine the degree of eutrophication of the  marine system, below in Table 3.7.    Table 3.7 ‐ Trophic status classification based on nutrient and chlorophyll (CCME, 2007)  Degree of  Eutrophication  Total Dissolved N  (mg/L)  Total Dissolved P  (mg/L)  Chl a  (μg/L)  Low 0 ‐ ≤0.1 0 ‐ ≤0.01 0 ‐ ≤5  Medium >0.1 ‐ ≤1 >0.01 ‐ ≤0.1 >5 ‐ ≤20  High >1 >0.1 >20 ‐ ≤60  Hypereutrophic ‐  ‐ >60    However, the concentrations in Table 3.7 are based on dissolved nitrogen and phosphorus and the  background concentrations are for total nitrogen and total phosphorus (0.233 mg/L and 0.035 mg/L,  respectively).  For nitrogen, with a background concentration of 0.233 mg/L for TN, an assumption  that the dissolved nitrogen background concentration is anywhere between 43 and 100% of the TN  background concentration would result in classification as “medium” based on Table 3.7.  For  phosphorus, with a background concentration of 0.035 mg/L, an assumption that the dissolved  background concentration is anywhere between 29 and 100% of the total background concentration  would result in classification as “medium” based on Table 3.7.    To maintain the same degree of eutrophication, the total dissolved nitrogen and total dissolved  phosphorus in the receiving water should not exceed the upper limit of the “medium” classification  which is 1 mg/L for Total Dissolved Nitrogen and 0.1 mg/L for Total Dissolved Phosphorus. In order  to determine the upper limit of the “medium” eutrophication range based on total phosphorus and    Harbour Engineering Joint Venture Glace Bay WWTP ERA 23 TN concentrations, an assumption must be made as to the percentage of the nitrogen and  phosphorus that exists in the dissolved phase, both in the receiving water and in the effluent. As a  measure of conservatism, an assumption was made that 100% of the total nitrogen and phosphorus  exist in a dissolved phase. This allows for the upper limits of the “medium” classification to be used  directly as the EQO which results in an EQO of 1 mg/L for TN and 0.1 mg/L for total phosphorus.    The Canadian Guidance Framework for the Management of Nutrients in Nearshore Marine Systems  Scientific Supporting Document (CCME, 2007) presents both of the above criteria for assessing  trophic status and does not provide a recommendation for use of one rather than the other.   However, the framework presents a case study to establish nutrient criteria for the Atlantic  Shoreline of Nova Scotia, and the NOAA index is used. Therefore, that index will be used for the  purpose of this study.    pH  The CWQG for the protection for aquatic life for marine waters is 7.0 to 8.7. This pH range will be  applied as the EQO.    Fluoride  The CCME CWQG for the protection of aquatic life for fluoride is 0.12 mg/L for freshwater. There is  no recommended marine guideline from either CCME or US EPA. The background concentration for  fluoride is 0.67 mg/L. There is a maximum acceptable concentration of 1.5 mg/L specified by the  British Columbia Ministry of Environment (BCMOE). However, as this is a maximum acceptable  concentration and not a long term or continuous concentration, it will not be used. Therefore, the  background concentration of 0.67 mg/L will be applied as the site‐specific EQO.    Nitrate  The CCME CWQG for the protection of aquatic life for nitrate is 200 mg/L for marine waters, 45  mg/L as N. Nitrate is substantially less toxic than nitrite and ammonia, but can still yield toxic effects.  Background pH and temperature can influence the conversion of nitrate to nitrite and other forms  of nitrogen. Typically, the CCME marine water quality guideline of 45 mg/L would be used as the  EQO, however, the total nitrogen EQO determined to limit eutrophication will govern (at 1.0 mg/L).  As the TN EQO is based on a concern of eutrophication, both limits will be presented separately in  the ERA.    Nitrite  The CCME CWQG for the protection of aquatic life for nitrite is 0.06 mg/L as nitrogen for freshwater,  and there is no recommended marine guideline. Nitrite has been found to be more toxic to some  groups of fish, particularly salmonids. The freshwater guideline of 0.06 mg/L will be applied as the  EQO for this assessment. However, this generic objective may be overly conservative when applied  to the marine receiving environment.            Harbour Engineering Joint Venture Glace Bay WWTP ERA 24 Cyanide   The CCME CWQG for the protection of aquatic life for cyanide is 0.005 mg/L (free CN) for  freshwater. There is no CWQG for marine waters. The US EPA water quality criterion for saltwater is  0.001 mg/L (free CN). Both the CCME and US EPA criteria are for free cyanide, whereas the Standard  Method specifies to sample for total cyanide. Cyanide was not detected in the background samples.  The US EPA criteria of 0.001 mg/L will be applied as the EQO for cyanide. However, comparing  sample results from the wastewater characterization samples to this value will be overly  conservative as the analytical results are for total cyanide rather than free cyanide.     Total Residual Chlorine  The WSER requires that TRC concentrations be less than 0.02 mg/L. For the purposes of this study,  an EQO/EDO of 0.02 mg/L for TRC was chosen based on this regulation.    3.3.2 Metals   Of the 25 metals measured during the wastewater characterization study, 15 were detected in the  wastewater of at least one sample. The EQOs for the detected metals are described below.    Aluminum  The CCME CWQG for the protection of aquatic life for aluminum in freshwater is dependent on pH;  the guideline is 5 µg/L if the pH is less than 6.5 and 100 µg/L if the pH is 6.5 or greater. There are no  CWQG or USEPA guidelines for marine waters. The average background concentration of aluminum  was 274 µg/L. The background concentration of 274 µg/L will be used as the site‐specific EQO.     Barium  There are no CCME CWQGs for the protection of aquatic life for barium in freshwater or marine  waters. There is also no water quality guideline from the US EPA or British Columbia Ministry of  Environment (BCMOE) for salt water. As no relevant published water quality guidelines were found  for barium, an EQO will not be developed.    Cadmium  The CCME CWQG for the protection of aquatic life for cadmium in marine waters is 0.12 µg/L.  Cadmium was not detected in the background sample (at a detection limit of 0.05 µg/L). Therefore  the EQO will remain the same as the CCME marine CWQG of 0.12 µg/L.    Cobalt  There are no CCME CWQGs for the protection of aquatic life for cobalt in freshwater or marine  waters. There is also no US EPA water quality guideline. There are no water quality guidelines from  the BCMOE for marine waters. As no relevant published water quality guidelines were found for  cobalt, an EQO will not be developed.     Copper  The CCME CWQG for the protection of aquatic life for copper in freshwater is given as an equation  based on water hardness and there is no guideline specified for marine waters. The freshwater  guideline was calculated to be 4 µg/L based on the average background water hardness of 5050    Harbour Engineering Joint Venture Glace Bay WWTP ERA 25 mg/L. The US EPA salt water quality criterion is 3.7 µg/L.  The average background concentration of  copper was 0.47 µg/L. Therefore the USEPA salt water quality criterion of 3.7 µg/L will be used as  the EQO.     Iron  The CCME CWQG for the protection of aquatic life for iron in freshwater is 300 µg/L. There is no  guideline specified for marine waters. There is no US EPA or BC MOE salt water quality criterion for  iron. The average background concentration for iron was 393 µg/L. The EQO will be based on the  background concentration of 393 µg/L. However, this may be overly conservative for a marine  environment as the generic EQO is based on a freshwater guideline.    Lead  The CCME CWQG for the protection of aquatic life for lead in freshwater is given as an equation  based on water hardness and there is no guideline specified for marine waters. The freshwater  guideline was calculated to be 6 µg/L based on the average background water hardness of 5050  mg/L. The US EPA salt water quality criterion is 8.5 µg/L.  The average background concentration of  lead was 0.225 µg/L. Therefore the USEPA salt water quality criterion of 8.5 µg/L will be used as the  EQO.     Manganese  There are no CCME CWQGs for the protection of aquatic life for manganese in freshwater or marine  waters. There is also no criterion provided by US EPA. However, there is a working water quality  guideline for marine aquatic life for manganese provided by the BCMOE of 100 µg/L. The  background concentration of manganese was 15 µg/L. The guideline of 100 µg/L will be used as the  EQO for manganese.    Molybdenum  The CCME CWQG for the protection of aquatic life for molybdenum is 73 µg/L for freshwater and  there is no guideline for marine waters. There is no US EPA water quality guideline for salt water.  There is no BCMOE criteria for marine water. The average concentration of molybdenum in the  background samples was 9.1 µg/L. The CCME CWQG for freshwater of 73 µg/L will be applied as the  EQO. However, this may be overly conservative for a marine environment as the generic EQO is  based on a freshwater guideline.    Nickel  The CCME CWQG for the protection of aquatic life for nickel is 150 µg/L for freshwater based on an  average background hardness of 5050 mg/L. There is no CWQG for marine waters. The US EPA salt  water quality criterion is 8.3 µg/L. Nickel was not detected in the background samples (at a  detection limit of 0.2 µg/L). Therefore the US EPA salt water quality criterion of 8.3 µg/L will be used  as the EQO.             Harbour Engineering Joint Venture Glace Bay WWTP ERA 26 Strontium  There is no CCME CWQG for strontium for the protection of aquatic life. There is no water quality  guideline provided by US EPA or BCMOE. As no relevant published water quality guidelines were  found for strontium, an EQO will not be developed.    Titanium  There is no CCME CWQG for titanium for the protection of aquatic life. There is no water quality  guideline provided by US EPA or BCMOE. As no relevant published water quality guidelines were  found for titanium, an EQO will not be developed.    Uranium  The CCME CWQG for the protection of aquatic life for uranium is 15 µg/L for freshwater and there is  no guideline for marine waters. There is no US EPA water quality guideline for salt water. There is no  BCMOE criteria for marine water. The background concentration for uranium was 2.53 µg/L. The  CCME WQG for freshwater of 15 µg/L will be applied as the EQO. However, this may be overly  conservative for a marine environment as the generic EQO is based on a freshwater guideline.    Zinc  The CCME CWQG for the protection of aquatic life for zinc is 30 µg/L for freshwater and there is no  guideline for marine waters.  The US EPA water quality guideline for salt water is 86 µg/L. The  average background concentration of zinc was 0.95 µg/L. The US EPA criterion of 86 µg/L will be  applied as the EQO for zinc.    Mercury  The CCME WQG for the protection of aquatic life for mercury is 0.026 µg/L for freshwater and 0.016  µg/L for marine waters. The US EPA water quality guideline for salt water is 1.1 µg/L. The EQO will  be the CCME marine guideline of 0.016 µg/L.    3.3.3 E. coli  Pathogens are not included in the CCME CWQGs for the protection of aquatic life. The Health  Canada Guidelines for Canadian Recreational Water Quality specify a maximum E. coli concentration  of 200 E. coli/100 mL for freshwater for primary contact recreation and 1000 E. coli/100 mL for  secondary contact recreation. The Health Canada guideline for Canadian Recreational Water Quality  for primary and secondary contact recreation in marine water is based on enterococci rather than E.  coli. However, historically Nova Scotia Environment has set discharge limits for E. coli rather than  enterococci for marine discharges. The background concentration of E. coli was 69 E. coli/100 mL.   An EQO of 200 E. coli/ 100 mL will apply for primary contact recreation at Table Head and Big Glace  Bay beaches. An EQO of 1000 E. coli/ 100mL based on the Canadian Recreational Water Quality  guideline for secondary contact for freshwater will apply elsewhere in the receiving water.    There is currently a molluscan shellfish closure zone in the immediate vicinity of the outfall (SSN‐  2006‐007 on Figure 3.1). However, consideration will have to be given to E. coli concentrations  outside of the closure zone. It is also possible that the closure zone will be changed once the  proposed WWTPs in CBRM are operational. The Canadian Shellfish Sanitation Program (CSSP)    Harbour Engineering Joint Venture Glace Bay WWTP ERA 27 requires that the median of the samples collected in an area in one survey not exceed 14 E. coli/100  mL, and no more than 10% of the samples can exceed 43 E. coli/100 mL. However, the average  measured background concentration for E. coli was 69 E. coli/100 mL. These background samples  were collected from shore and may not be representative of the actual ambient concentration of E.  coli in the area.    3.3.3.1 ORGANOCHLORINE PESTICIDES  Of the list of organochlorine pesticides included in the Standard Method for substances of potential  concern for a medium facility, there were no detections. There were detections for one  organochlorine pesticide (endrin aldehyde). As this parameter is not included in the standard  method, an EDO was not developed. This parameter could be considered in the future development  of the compliance monitoring program.   3.3.3.2 POLYCHLORINATED BIPHENYLS (PCBS)  Total polychlorinated biphenyls (PCBs) were not detected in the wastewater and therefore an EQO  was not established.     3.3.3.3 POLYCYCLIC AROMATIC HYDROCARBONS (PAHS)  Polycyclic aromatic hydrocarbons (PAHs) were measured as part of initial wastewater  characterization. Of the list of PAHs included in the Standard Method for substances of potential  concern for a medium facility, 14 substances were detected during the initial wastewater  characterization study: acenaphthene, anthracene, benzo(a)anthracene, benzo(a)pyrene,  Benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(k)fluoranthene, chrysene,  dibenz(a,h)anthracene, fluoranthene, fluorene, indeno(1,2,3‐cd)pyrene, pyrene, and phenanthrene.      There are CCME CWQGs for the protection of aquatic life for freshwater for 8 of the 14 substances  that were detected. There were no CCME marine water quality guidelines. There are BC MOE  approved marine water quality guidelines for 3 of the 14 substances. The guidelines are as follows:   Acenaphthene – 5.8 µg/L (freshwater), 6 µg/L (BCMOE marine);   Anthracene – 0.012 µg/L (freshwater);   Benzo(a)anthracene – 0.018 µg/L (freshwater);   Benzo(a)pyrene – 0.015 µg/L (freshwater);   Chrysene – 0.1 µg/L (BCMOE marine);   Fluoranthene – 0.04 µg/L (freshwater);   Fluorene – 3 µg/L (freshwater), 12 µg/L (BCMOE marine);   Phenanthrene – 0.4 µg/L (freshwater); and    Pyrene – 0.025 µg/L (freshwater).    None of the nine (9) substances listed above were detected in the background sample. Therefore,  the above guidelines will be applied as the EQOs. However, the freshwater generic objectives may  be overly conservative when applied to the marine receiving environment.      Harbour Engineering Joint Venture Glace Bay WWTP ERA 28 3.3.3.4 VOLATILE ORGANIC COMPOUNDS (VOCS)  Of the list of Volatile organic compounds (VOCs) included in the Standard Method for substances of  potential concern for a medium facility, 3 were detected in the wastewater. There are CCME CWQGs  for the protection of aquatic life for freshwater for 2 of the 3 substances that were detected. There  is a marine guideline for one of the substances that was detected. There are no applicable guidelines  for bromodichloromethane. The guidelines are as follows:   Chloroform – 1.8 µg/L (freshwater); and   Toluene – 2 µg/L (freshwater), 215 µg/L (marine).    The above bolded guidelines will be applied as the EQOs. However, the freshwater generic  objectives may be overly conservative when applied to the marine receiving environment.    3.3.3.5 PHENOLIC COMPOUNDS  The CCME CWQG for the protection of aquatic life for phenols in freshwater is 4 µg/L. There is no  guideline specified for marine waters. There is no US EPA or BCMOE salt water quality criterion for  phenols. The background concentration was 0.0305 mg/L. The EQO will be based on the background  concentration of 0.0305 mg/L.     3.3.3.6 SURFACTANTS  Surfactants were not analyzed in the wastewater samples. This analysis was not available locally,  and there are no CWQG available from either CCME or US EPA for non‐ionic or anionic surfactants to  compare the results to if the analysis was completed.      3.3.4 Summary  Table 3.8 below gives a summary of the generic and site‐specific EQOs determined for parameters of  concern. The source of the EQO has been included in the table as follows:   WSER – wastewater systems effluent regulations   Background – Site‐specific EQO based on background concentration in receiving water   CWQG Marine – CCME Canadian Water Quality Guidelines for the Protection of Aquatic Life  Marine   USEPA Saltwater – United States Environmental Protection Agency National Recommended  Water Quality Criteria – Aquatic Life Criteria – Saltwater Criterion Continuous Concentration   CGF, Marine – Canadian Guidance Framework for the Management of Nutrients in Nearshore  Marine Systems Scientific Supporting Document   BCMOE AWQG – BCMOE Approved Water Quality Guideline   BCMOE WWQG – BCMOE Working Water Quality Guideline   CWQG Freshwater – CCME Canadian Water Quality Guidelines for the Protection of Aquatic Life  Freshwater   HC Primary Contact – Health Canada Guidelines for Canadian Recreational Water Quality –  Primary Contact Recreation   HC Secondary Contact – Health Canada Guidelines for Canadian Recreational Water Quality –  Secondary Contact Recreation   CSSP – Canadian Shellfish Sanitation Program      Harbour Engineering Joint Venture Glace Bay WWTP ERA 29 Table 3.8 – EQO Summary  Parameter Generic EQO Background Selected  EQO Source  CBOD5 (mg/L) 25 <5.0 25 WSER  Total NH3‐N (mg/L)(1) 2.7 <0.05 2.7 USEPA Saltwater  TSS (mg/L) 25 32 25 WSER  TP (mg/L) 0.1 0.035 0.1 CGF, Marine  TN (mg/L)(1) 1 0.233 1 CGF, Marine  pH 7 ‐ 8.7 7.71 7 ‐ 8.7 CWQG Marine  Un‐ionized NH3 (mg/L) 1.25 <0.0007 1.25 WSER  E. coli ‐ Primary Contact  (MPN/100mL) 200 69 200 HC Primary Contact  E. coli ‐ Secondary Contact  (MPN/100mL) 1000 69 1000 HC Secondary  Contact  E. coli ‐ Molluscan Shellfish  (MPN/100mL) 14 69 14 CSSP  Fluoride (mg/L) 0.67 0.67 0.67 Background  Nitrate (mg/L)(1) 45 0.038 45 CWQG Marine  Nitrite (mg/L) 0.06 <0.001 0.06 CWQG Freshwater  Free Cyanide (mg/L) 0.001 <0.0010 0.001 USEPA Saltwater  Aluminum (mg/L) 0.1 0.274 0.274 Background  Cadmium (mg/L) 0.00012 <0.00005 0.00012 CWQG Marine  Copper (mg/L) 0.0037 0.00047 0.0037 USEPA Saltwater  Iron (mg/L) 0.3 0.393 0.393 Background  Lead (mg/L) 0.0085 0.000225 0.0085 USEPA Saltwater  Manganese (mg/L) 0.1 0.015 0.1 BCMOE WWQG  Molybdenum (mg/L) 0.073 0.0091 0.073 CWQG Freshwater  Nickel (mg/L) 0.0083 <0.0002 0.0083 USEPA Saltwater  Uranium (mg/L) 0.015 0.00253 0.015 CWQG Freshwater  Zinc (mg/L) 0.086 0.00095 0.086 USEPA Saltwater  Mercury (mg/L) 0.000016 0.000013 0.000016 CWQG Marine  Acenaphthene (µg/L) 6 <0.010 6 BCMOE AWQG  Anthracene (µg/L) 0.012 <0.010 0.012 CWQG Freshwater  Benzo(a)anthracene (µg/L) 0.018 <0.010 0.018 CWQG Freshwater  Benzo(a)pyrene (µg/L) 0.015 <0.010 0.015 CWQG Freshwater  Chrysene (µg/L) 0.1 <0.010 0.1 BCMOE AWQG  Fluoranthene (µg/L) 0.04 <0.010 0.04 CWQG Freshwater  Fluorene (µg/L) 12 <0.010 12 BCMOE AWQG  Phenanthrene (µg/L) 0.4 <0.010 0.4 CWQG Freshwater  Pyrene (µg/L) 0.025 <0.010 0.025 CWQG Freshwater  Chloroform (µg/L) 1.8 <1.0 1.8 CWQG Freshwater  Toluene (µg/L) 215 <1.0 215 CWQG Marine  Phenols (mg/L) 0.004 0.0305 0.0305 Background  Notes: Bold indicates EQO is a WSER requirement.  (1) Although the EQOs for ammonia and nitrate have been calculated to be 2.7 mg/L and 45 mg/L, respectively, the EQO of 1 mg/L for total nitrogen  would govern. However, as the EQO for TN is based on eutrophication, EDOs will be developed for all parameters separately.   Harbour Engineering Joint Venture Glace Bay WWTP ERA 30 CHAPTER 4  MIXING ZONE ANALYSIS    4.1 Methodology    4.1.1 Definition of Mixing Zone  A mixing zone is the portion of the receiving water where effluent dilution occurs.  In general, the  receiving water as a whole will not be exposed to the immediate effluent concentration at the end‐ of‐pipe but to the effluent mixed and diluted with the receiving water.  Effluent does not  instantaneously mix with the receiving water at the point of discharge.  Depending on conditions  like ambient currents, wind speeds, tidal stage and wave action, mixing can take place over a large  area – up to the point where there is no measureable difference between the receiving water and  the effluent mixed with receiving water.    The mixing process can be characterized into two distinct phases:  near‐field and far‐field.  Near‐ field mixing occurs at the outfall and is influenced by the configuration of the outfall (e.g. pipe size,  diffusers, etc.).  Far‐field mixing is influenced by receiving water characteristics like turbulence, wave  action, and stratification of the water column.    Within the mixing zone, EQOs may be exceeded but acutely toxic conditions are not permitted  unless it is determined that un‐ionized ammonia is the cause of toxicity.  If the un‐ionized ammonia  concentration is the cause of toxicity, there may be an exception (under the WSER) if the  concentration of un‐ionized ammonia is less than or equal to 0.016 mg/L, expressed as N, at any  point that is 100 m from the discharge point.  Outside of the mixing zone, EQOs must be achieved.   The effluent is also required to be non‐chronically toxic outside of the mixing zone.  The allocation of  a mixing zone varies from one substance to another – degradable substances are allowed to mix in a  portion of the receiving water whereas toxic, persistent, and bio‐accumulative substances (such as  chlorinated dioxins and furans, PCBs, mercury and toxaphene) are not allowed a mixing zone.  A number of general criteria for allocating a mixing zone are recommended in the Strategy, including the  following:   The dimensions of a mixing zone should be restricted to avoid adverse effects on the designated  uses of the receiving water system (i.e., the mixing zone should be as small as possible);   Conditions outside of the mixing zone should be sufficient to support all of the designated uses  of the receiving water system;   A zone of passage for mobile aquatic organisms must be maintained;   Placement of mixing zones must not block migration into tributaries;    Harbour Engineering Joint Venture Glace Bay WWTP ERA 31  Changes to the nutrient status of the water body as a result of an effluent discharge should be  avoided; eutrophication or toxic blooms of algae are unacceptable impacts;   Mixing zones for adjacent wastewater discharges should not overlap; and   Adverse effects on the aesthetic qualities of the receiving water system (e.g. odour, colour,  scum, oil, floating debris) should be avoided (CCME, 2008).    The limits of the mixing zone may be defined for the following three categories of aquatic  environments based on their physical characteristics:   streams and rivers;   lakes, reservoirs and enclosed bays; and   estuarine and marine waters.    Where several limits are in place, the first one to be reached sets the maximum extent of the mixing  zone allowed for the dilution assessment.  Nutrients and fecal coliforms are not allocated any  maximum dilution.  For fecal coliforms, the location of the water use must be considered and  protected by the limits of the mixing zone.    Based on these general guidelines, mixing zone extents must be defined on a case‐by‐case basis that  account for local conditions.  It may also be based on arbitrary mixing zone limits for open water  discharges, e.g. a 100 m (Environment Canada, 2006) or 250 m (NB DOE, 2012) radius from the  outfall and/or a dilution limit.  A Draft for Discussion document “Mixing Zone Assessment and  Report Templates” dated July 7, 2016, prepared by a committee of representatives of the  environment departments in Atlantic Canada, provides guidance regarding mixing zones for ERAs in  the Atlantic Provinces.  This document recommends that for ocean and estuary receiving waters a  maximum dilution limit of 1:1000 be applied for far‐field mixing.    Finally, the assessment shall be based on ‘critical conditions’.  For example, in the case of a river  discharge (not applicable here), ‘critical conditions’ can be defined as the seven‐day average low  river flow for a given return period. For ocean discharges, we propose to use a maximum one‐day  average effluent concentration at the edge of the mixing zone. The Standard Method provides the  following guidance on EDO development:    “…reasonable and realistic but yet protective scenarios should be used. The objective is to simulate  the critical conditions of the receiving water, where critical conditions are where the risk that the  effluent will have an effect on the receiving environment is the highest – it does not mean using the  highest effluent flow, the lowest river flow and the highest background concentration  simultaneously.”    As a plausible worst‐case condition is used for the receiving water, the WWTP effluent will be  modelled based on an annual average flow, rather than a maximum daily or hourly flow, as applying  a critical high flow condition for the effluent simultaneously with a worst case condition in the  receiving water would result in overly conservative EDOs as this scenario doesn’t provide a  reasonable or realistic representation of actual conditions.    Harbour Engineering Joint Venture Glace Bay WWTP ERA 32 4.1.2 Site Summary  The WWTP was first assumed to discharge through an outfall pipe perpendicular to the shoreline in  shallow water, extended to a depth estimated at ‐1.0 m below low tide (base condition). The  modelled dilution for the base condition was significantly limited by the presence of the breakwater.  Subsequent model runs were completed with a variety of outfall extensions to obtain sufficient  dilution so that the calculated EDOs would be reasonably attainable. The selected scenario assumed  that the effluent discharged through an outfall pipe perpendicular to the shoreline in shallow water,  extended to a depth estimated at ‐3.8 m below low tide based on a 100 m outfall extension. The low  tide and depth contours were estimated based on navigation charts. The total average effluent  discharge is modeled as a continuous point source of 14,200 m3/day.    The major coastal hydrodynamic features of the area are as follows:   Along‐shore currents along the open coastline are in phase with the tide, i.e. the current  speed peaks at high and low tide; and   At the outfall site, breaking waves and associated longshore currents will contribute to  effluent dispersion during storms.  For this assessment, we have assumed calm summer  conditions (i.e. no waves), when effluent dilution would be at a minimum.    4.1.3 Far‐Field Modeling Approach and Inputs  The local mixing zone is limited by the water depth at the extended outfall of approximately ‐3.8 m  Chart Datum and by the presence of the shoreline. Since the outfall is in shallow water, the buoyant  plume will always reach the surface upon release from the outfall (Fisher et al., 1979). Far‐field  mixing will then be determined by ambient currents, which is best simulated with a hydrodynamic  and effluent dispersion model.      We implemented a full hydrodynamic model of the receiving coastal waters using the Danish  Hydraulic Institute’s MIKE21 model. MIKE21 is ideally suited to the study of outfall discharges in  shallow coastal areas where complex tidal and wind‐driven currents drive the dispersion process.  The model was developed using navigation charts, tidal elevations and wind observations for the  area. A similar model had been used by CBCL for CBRM in the past:   In 2005 for the assessment of the past wastewater contamination problem at Dominion  Beach, which led to the design of the WWTP at Dominion (CBCL, 2005); and    In 2014 for ERAs at the Dominion and Battery Point WWTPs.    The hydrodynamic model was calibrated to the following bottom current meter data:   1992 current meters (4 locations) located in 10 m‐depth for the study by ASA (ASA, 1994)   on local oceanography and effluent dispersion; and   2006 current meters (2 locations) off the Donkin peninsula for the CBCL study of mine  effluent dispersion.    Calibration consisted of adjusting the following parameters:   Bottom friction; and   Model spatial resolution in the area of the current meters.      Harbour Engineering Joint Venture Glace Bay WWTP ERA 33 Numerical model domain with locations of current meter observations and modeled outfall location  are shown in Figure 4.1. Inputs and calibrated outputs are shown in Figure 4.2. The modelled  current magnitudes at New Waterford, Glace Bay and Donkin are in relatively good agreement with  observations, which is satisfactory to assess the overall dilution patterns of effluent from the outfall.  The effect of waves was not included in the model, and therefore the modeled effluent  concentration near the outfall is expected to be conservatively high.       Figure 4.1 Numerical Model Domain with Locations of Current Meter Observations (squares)  and Modeled Outfall Location (black circle)       Harbour Engineering Joint Venture Glace Bay WWTP ERA 34   Figure 4.2 Time‐series of Hydrodynamic Model Inputs and Calibration Outputs      Harbour Engineering Joint Venture Glace Bay WWTP ERA 35 4.1.4 Modeled Effluent Dilution  Snapshots of typical modeled effluent dispersion patterns are shown on Figures 4.3 and 4.4 for the  base condition and 100 m outfall extension. Statistics on effluent concentrations were performed  over the 1‐month model run, and over a running 7‐day and 1‐day averaging period. Composite  images of maximum and average effluent concentrations are shown on Figures 4.5 and 4.6.    Effluent concentration peaks at any given location are short‐lived because the plume is changing  direction every few hours depending on tides and winds.  Therefore, a representative dilution  criteria at the mixing zone limit is best calculated using an average value. We propose to use the  one‐day average effluent concentration criteria over the one‐month modeling simulation that  includes a representative combination of site‐specific tides and winds.    The dilution of the effluent plume is dependent on the outfall extension length due to its proximity  to the breakwaters located at Glace Bay. Generally the diluted effluent plume was found to reach  the shoreline north‐west of the outfall as well as the shoreline to the east of the harbour. Large  eddies tend to form due to the circulation patterns within the region. It was noted that the effluent  would travel into the harbour. The 100 m distance from the outfall to the shoreline is within the  brackets of mixing zone radiuses defined by various guidelines.  We propose that this distance be  used as mixing zone limit.     For the first model scenario where the outfall was extended until the top of the outfall was 1 m  below low water level, the maximum 1‐day average effluent concentration 100 m away from the  outfall over the simulation period is 21.94%, corresponding to a dilution factor of 4.56:1.    Table 4.1 Modelled Dilution Values 100 and 200 m away from the Outfall (Existing Location)  Distance  away from  the outfall  Hourly maximum  effluent  concentration  Maximum 1‐day  average effluent  concentration  Maximum 7‐day  average effluent  concentration  1‐Month average  effluent  concentration  100 m 33.35 %  (3.0:1  Dilution)  21.94 %  (4.56:1  Dilution)  15.51 %  (6.45:1  Dilution)  7.36 %  (13.59:1  Dilution)   200 m 30.09 %  (3.32:1  Dilution)  13.22 %  (7.56:1  Dilution)  9.09%  (11.00:1  Dilution)  9.08 %  (11.01:1  Dilution)    Extensions to the current outfall were examined to ensure that the effluent concentration was  suitably diluted at the edge of a 100 m mixing zone, and the results are presented in Table 4.2.                      Harbour Engineering Joint Venture Glace Bay WWTP ERA 36 Table 4.2 Modelled Dilution Values 100 m away from the Outfall for Outfall Extensions of 50  to 500 m  Outfall  Extension  Distance  Hourly maximum  effluent  concentration  Maximum 1‐day  average effluent  concentration  Maximum 7‐day  average effluent  concentration  1‐Month average  effluent  concentration  50 m 18.72 % (5.34:1  Dilution)  10.33 % (9.68:1  Dilution)  6.34 % (15.77:1  Dilution)  4.88 % (20.49:1  Dilution)  100 m 15.97 % (6.26:1  Dilution)  4.06 % (24.63:1  Dilution)  3.57 % (28.01:1  Dilution)  2.55 % (39.22:1  Dilution)  150 m 22.24 % (4.50:1  Dilution)  7.4 % (13.51:1  Dilution)  3.77 % (26.53:1  Dilution)  2.77 % (36.10:1  Dilution)  200 m 26.46 % (3.78:1  Dilution)  3.83 % (26.11:1  Dilution)  2.72 % (36.76:1  Dilution)  2.60 % (38.46:1  Dilution)  300 m 31.39 % (3.19:1  Dilution)  5.07 % (19.72:1  Dilution)  2.48 % (40.32:1  Dilution)  2.00 % (50:1 Dilution)  400 m 24.40 % (4.10:1  Dilution)  2.16 % (46.30:1  Dilution)  1.08 % (92.59:1  Dilution)  0.96 % (104.17:1  Dilution)  500 m 12.51 % (7.99:1  Dilution)  1.5 % (66.67:1  Dilution)  0.83 % (120.48:1  Dilution)  0.61 % (163.93:1  Dilution)    Based on preliminary analysis, an outfall extension of 100 m has been assumed in order to obtain a  level of dilution that results in EDOs that are considered to be reasonably attainable. However, as  phosphorus is the parameter that appears to be driving the need for an outfall extension, additional  evaluation should be conducted during detailed design in conjunction with discussions with NSE to  determine what is required.     Harbour Engineering Joint Venture Glace Bay WWTP ERA 37     Figure 4.3 Snapshots of Typical Modeled Effluent Dispersion Patterns (base condition)            Harbour Engineering Joint Venture Glace Bay WWTP ERA 38 Figure 4.4 Snapshots of Typical Modeled Effluent Dispersion Patterns for 100 m Outfall  Extension            Harbour Engineering Joint Venture Glace Bay WWTP ERA 39 Figure 4.5 Composite Images of Modeled Maximum 1‐day Average (top) and Maximum 7‐ Day Average Effluent Concentrations (middle) with Concentration Time‐Series (bottom) for 100 m  outfall extension Note: 100‐m radius (black) and 200‐m radius (grey) circle shown around outfall      Harbour Engineering Joint Venture Glace Bay WWTP ERA 40                                                       Figure 4.6 Composite Images of Modeled Maximum 1‐Day Average Effluent Concentrations  at Tablehead Beach (top) and Big Glace Bay Beach (bottom), primary contact recreation areas   Note: 100‐m radius (black) and 200‐m radius (grey) circle shown around outfall. Red circle denotes primary  contact recreation areas                                Harbour Engineering Joint Venture Glace Bay WWTP ERA 41   CHAPTER 5  EFFLUENT DISCHARGE OBJECTIVES    5.1 The Need for EDOs  Effluent Discharge Objectives (EDOs) represent the effluent substance concentrations that will protect  the receiving environment and its designated water uses.  They describe the effluent quality necessary  to allow the EQOs to be met at the edge of the mixing zone.  The EQOs are established in Chapter 3; see  Table 3.8 for summary of results.    EDOs should be calculated where reasonable potential of exceeding the EQOs at the edge of the mixing  zone has been determined.  Typically, substances with reasonable potential of exceeding the EQOs have  been selected according to the simplified approach:  If a sample result measured in the effluent exceeds  the EQO, an EDO is determined. As only one sample event was collected from each outfall, rather than a  full year of effluent characterization, EDOs will be developed for all substances of potential concern that  were detected in at least one sample, and for which an EQO was identified.      5.2 Physical/ Chemical/ Pathogenic EDOs  For this assessment, EDOs were calculated using the dilution values obtained at the proposed  average design flow of 14,200 m3/day with a proposed 100 m outfall extension.  This resulted in a  dilution of 24.63:1 at the edge of a 100 m mixing zone.  The model shows a dilution of 2500:1 at Big  Glace Bay Beach and 169:1 at Table Head Beach (primary contact recreation areas) based on the  maximum 1‐day average concentration.     Parameters for which there is a WSER criteria were not allowed any dilution and therefore the EDO  equals the WSER Criteria.  The Standard Method does not allocate any maximum dilution for  nutrients and fecal coliforms.  For nutrients, it recommends a case‐by‐case analysis.  For fecal  coliforms, the location of the water use must be protected by the limits of the mixing zone.    The dilution values were used to obtain an EDO by back‐calculating from the EQOs.  When the  background concentration of a substance was less than the detection limit, the background  concentration was not included in the calculation of the EDO.        Harbour Engineering Joint Venture Glace Bay WWTP ERA 42 5.3 Effluent Discharge Objectives  Substances of concern for which an EDO was developed are listed in Tables 5.1 below with the  associated EQO, maximum measured wastewater concentration, and the associated EDO. The  effluent is also required to be non‐acutely toxic at the end of pipe, and non‐chronically toxic at the  edge of the mixing zone.                                                                                    Harbour Engineering Joint Venture Glace Bay WWTP ERA 43 Table 5.1 – Effluent Discharge Objectives at Proposed Design Conditions  Parameter Maximum  Conc. (4) Background Selected  EQO Source Dilution  Factor EDO(1)  CBOD5 (mg/L)(1) 130 <5.0 25 WSER ‐ 25  Total NH3‐N (mg/L) 3.8 <0.05 2.7 USEPA Saltwater 24.63 66.5  TSS (mg/L)(1) 53 32 25 WSER ‐ 25  TP (mg/L) 2.2 0.035 0.1 CGF, Marine 24.63 1.6  TN (mg/L) 16 0.233 1 CGF, Marine 24.63 19.1  Un‐ionized NH3 (mg/L)(1) 0.0207 <0.0007 1.25 WSER ‐ 1.25  E. coli ‐ Primary Contact  (MPN/100mL)(2) 170000 69 200 HC Primary  Contact 169 22,208  E. coli ‐ Secondary Contact  (MPN/100mL) 170000 69 1000 HC Secondary  Contact 24.63 23,000  E. coli ‐ Molluscan Shellfish  (MPN/100mL) 170000 69 14 CSSP Note (3) See  Discussion  Fluoride (mg/L) 0.12 0.67 0.67 Background 24.63 0.67  Nitrate (mg/L) 1 0.038 45 CWQG Marine 24.63 1107.5  Nitrite (mg/L) 0.83 <0.001 0.06 CWQG Freshwater 24.63 1.48  Free Cyanide (mg/L) 0.013(5) <0.0010 0.001 USEPA Saltwater 24.63 0.025  Aluminum (mg/L) 0.66 0.274 0.274 Background 24.63 0.274  Cadmium (mg/L) 0.00036 <0.00005 0.00012 CWQG Marine 24.63 0.003  Copper (mg/L) 0.015 0.00047 0.0037 USEPA Saltwater 24.63 0.080  Iron (mg/L) 1 0.393 0.393 Background 24.63 0.393  Lead (mg/L) 0.0029 0.000225 0.0085 USEPA Saltwater 24.63 0.204  Manganese (mg/L) 0.75 0.015 0.1 BCMOE WWQG 24.63 2.11  Molybdenum (mg/L) 0.0065 0.0091 0.073 CWQG Freshwater 24.63 1.58  Nickel (mg/L) 0.011 <0.0002 0.0083 USEPA Saltwater 24.63 0.204  Uranium (mg/L) 0.00017 0.00253 0.015 CWQG Freshwater 24.63 0.310  Zinc (mg/L) 0.11  0.00095 0.086 USEPA Saltwater 24.63 2.10  Mercury (mg/L) 0.000013 0.000013 0.000016 CWQG Marine ‐ 0.000016  Acenaphthene (µg/L) 0.015 <0.010 6 BCMOE AWQG 24.63 147.8  Anthracene (µg/L) 0.037 <0.010 0.012 CWQG Freshwater 24.63 0.296  Benzo(a)anthracene (µg/L) 0.09 <0.010 0.018 CWQG Freshwater 24.63 0.44  Benzo(a)pyrene (µg/L) 0.064 <0.010 0.015 CWQG Freshwater 24.63 0.369  Chrysene (µg/L) 0.073 <0.010 0.1 BCMOE AWQG 24.63 2.463  Fluoranthene (µg/L) 0.21 <0.010 0.04 CWQG Freshwater 24.63 0.99  Fluorene (µg/L) 0.02 <0.010 12 BCMOE AWQG 24.63 295.56  Phenanthrene (µg/L) 0.12 <0.010 0.4 CWQG Freshwater 24.63 9.85  Pyrene (µg/L) 0.16 <0.010 0.025 CWQG Freshwater 24.63 0.62  Chloroform (µg/L) 5 <1.0 1.8 CWQG Freshwater 24.63 44  Toluene (µg/L) 1.3 <1.0 215 CWQG Marine 24.63 5295  Phenols (mg/L) 0.017 0.0305 0.0305 Background 24.63 0.03  Notes:   (1)  For parameters where the EQO is based on the WSER, no dilution is permitted. (2) Dilution at Table Head and Big Glace Bay Beaches of 169:1 and 2500:1, respectively. (3) Existing closure zone boundary is outside the limits of the plume. (4) Maximum concentration of existing wastewater samples. (5) Maximum wastewater concentration based on total cyanide. Yellow highlight indicates the maximum measured concentration exceeds the EQO; orange highlight indicates the  maximum measured concentration exceeds the EDO    Harbour Engineering Joint Venture Glace Bay WWTP ERA 44 Based on the EDOs calculated based in the current Average Daily Flow, sample results for the  following parameters exceeded the EDO in at least one wastewater characterization sample:   CBOD;   TSS;    Total Phosphorus;    E. coli;   Aluminum, and   Iron.    Some of these parameters will be reduced through treatment.  In addition, the above list is based on  a single sample exceedance at any one of the outfall locations, which may not reflect the results  obtained when all of the individual outfalls are intercepted and combined.  Further, some of the  EQOs were based on published water quality guidelines that may be overly stringent for a marine  receiving environment, due to a lack of a more appropriate guideline.  Comments on each  parameter in the list above is provided below:    CBOD, TSS, and E. coli  These parameters will meet the EDOs at the discharge of the new WWTP through treatment.    Total Phosphorus   The total phosphorous EDO of 1.6 mg/L will likely not be consistently obtained with secondary  treatment. Options to ensure that the EDO is met would include additional treatment, or an outfall  extended into deeper water to obtain more dilution. Both of these options would come with a cost  that is not insignificant. The total phosphorous EQOs is based on the prevention of eutrophication,  which is typically not a major concern in a marine receiving environment. Consideration should be  given to the cost versus benefit of achieving these EDOs.     Aluminum  The EDO for aluminum was equal to the background concentration of 0.274 mg/L as the background  concentration was greater than the generic EQO of 0.1 mg/L. However, this EQO is likely overly  conservative as it is based on the CCME CWQG for the protection of aquatic life for freshwater.   There is no CCME CWQG for marine waters. There is no US EPA or BC MOE salt water quality  criterion for aluminum. Therefore, the CCME freshwater guideline was utilized in the absence of a  more appropriate guideline. However, use of the background value for the EDO results in no dilution  being available. In addition, some aluminum removal will likely occur during treatment.      Iron  The EDO for iron was equal to the background concentration of 0.393 mg/L as the background value  was greater than the generic EQO of 0.3 mg/L.  However, this EQO is likely overly conservative as it  is based on the CCME CWQG for the protection of aquatic life for freshwater. There is no CCME  CWQG for marine waters. There is no US EPA or BC MOE salt water quality criterion for iron.   Therefore, the CCME freshwater guideline was utilized in the absence of a more appropriate  guideline. However, use of the background value for the EDO results in no dilution being available.   In addition, some iron removal will likely occur during treatment.         Harbour Engineering Joint Venture Glace Bay WWTP ERA 45   CHAPTER 6  COMPLIANCE MONITORING    The Standard Method utilizes the results of the ERA to recommend parameters for compliance  monitoring according to the following protocol:   The WSER requirements for TSS, CBOD and unionized ammonia must be monitored to  ensure they are continuously being achieved.  Minimum monitoring frequencies are  specified in the guidelines based on the size of the facility.  Monitoring of these  substances cannot be reduced or eliminated;   Nutrients, such as phosphorus and ammonia, and pathogens for which an EDO was  developed should be included in the monitoring program with the same sampling  frequency as TSS and CBOD5;   For additional substances, the guidelines require that all substances with average effluent  values over 80% of the EDO be monitored;   If monitoring results for the additional substances are consistently below 80% of the EDO,  the monitoring frequency can be reduced;   If average monitoring results subsequently exceed 80% of the EDO, monitoring frequency  must return to the initial monitoring frequency; and   If monitoring results are below 80% of the EDO for at least 20 consecutive samples spread  over a period of at least one‐year, monitoring for that substance can be eliminated.    Although the Standard Method results in recommending parameters for compliance monitoring, the  provincial regulator ultimately stipulates the compliance monitoring requirements as part of the  Approvals to Operate.  In New Brunswick, the New Brunswick Department of Environment and Local  Government has been using the results of the ERA to update the compliance monitoring program  listed in the Approval to operate when the existing Approvals expire.  At this time, it is premature to  use the results of this ERA to provide recommendations on parameters to monitor for compliance,  as the purpose of this ERA was to provide design criteria for design of a new WWTP.            Harbour Engineering Joint Venture Glace Bay WWTP ERA 46 CHAPTER 7  REFERENCES    ASA Consulting Limited (1994). “Industrial Cape Breton Receiving Water Study, Phase II”. Prepared  for The Town of Glace Bay.    BC Ministry of Environment (2006). A Compendium of Working Water Quality Guidelines for  British Columbia. Retrieved from: http://www.env.gov.bc.ca/wat/wq/BCguidelines/working.html     CBCL Limited (2005). Dominion Beach Sewer Study. Prepared for CBRM.    CCME (2008).  Technical Supplement 3.  Canada‐wide Strategy for the Management of Municipal  Wastewater Effluent.  Standard Method and Contracting Provisions for the Environmental Risk  Assessment.    CCME (2007).  Canadian Guidance Framework for the Management of Nutrients in Nearshore  Marine Systems Scientific Supporting Document.    CCME Canadian Environmental Quality Guidelines Summary Table.  Water Quality Guidelines for the  Protection of Aquatic Life.    Environment Canada (2006). Atlantic Canada Wastewater Guidelines Manual for Collection,  Treatment, and Disposal    Environment Canada (Environment Canada) (1999).  Canadian Environmental Protection Act Priority  Substances List II – Supporting document for Ammonia in the Aquatic Environment.  DRAFT –August  31, 1999.    Fisher et al. (1979). Mixing in Inland and Coastal Waters. Academic Press, London.    Fisheries Act.  Wastewater Systems Effluent Regulations.  SOR/2012‐139.    Health Canada (2012).  Guidelines for Canadian Recreational Water Quality.  Retrieved from:  http://www.hc‐sc.gc.ca/ewh‐semt/pubs/water‐eau/guide_water‐2012‐guide_eau/index‐eng.php    Mixing Zone Assessment and Report Template Draft only – For discussion (July 7, 2016)    NB Department of Environment & Local Government, (2012). Memo.      Harbour Engineering Joint Venture Glace Bay WWTP ERA 47 Thomann, Robert V. and Mueller, John A (1987). Principles of Surface Water Quality Modeling and  Control.    UMA (1994).  Industrial Cape Breton Wastewater Characterization Program, Phase II.    USEPA. National Recommended Water Quality Criteria for Saltwater. Retrieved from:  http://water.epa.gov/scitech/swguidance/standards/criteria/current/index.cfm            Prepared by: Reviewed by:  Holly Sampson, M.A.Sc., P.Eng. Karen March, M.Sc.  Intermediate Chemical Engineer Environmental Scientist      Harbour Engineering Joint Venture Appendices APPENDIX A  Laboratory Certificates    HEJV Glace Bay Wastewater System Pre‐Design Summary Report Appendices APPENDIX D  Glace Bay Wastewater Treatment Facility  Site Geotechnical Reports     GLACE BAY WWTP GEOTECHNICAL SUMMARY LETTER - 02 MAR 2020.DOCX/WD ED: 3/2/2020 3:59:00 PM/PD: 3/2/2020 3:59:00 PM March 2, 2020 Matthew D. Viva, P.Eng. Manager of Wastewater Operations Cape Breton Regional Municipality (CBRM) 320 Esplanade, Sydney, NS B1P 7B9 Dear Mr. Viva: RE: Environmental Risk Assessments & Preliminary Design of Seven Future Wastewater Treatment Systems in CBRM - Glace Bay WWTP Site Location Geotechnical Summary Harbour Engineering Joint Venture (HEJV) is pleased to provide the following summary of geotechnical investigation work at the proposed site of the Glace Bay Wastewater Treatment Plant (WWTP) as part of the Environmental Risk Assessments & Preliminary Design of Seven Future Wastewater Treatment Systems in CBRM Project. Background HEJV’s proposal for the geotechnical component of this assignment was originally based on the requirements contained in the related Request for Proposal (RFP) document P17-2017 and associated Addendums issued by the CBRM, which had specified the inclusion of a desktop geotechnical review. In addition, HEJV’s proposal contained some unique and innovative approaches that were believed to be helpful to CBRM in meeting its overall schedule for implementing wastewater collection and treatment system upgrades. One of these innovative and optional items was the inclusion of an intrusive geotechnical investigation of treatment plant sites for the Glace Bay and Port Morien systems. HEJV is aware that the Town of Glace Bay has been extensively undermined through former coal mining operations. Two coal seams in particular underlie the Glace Bay WWTP site - the Harbour Seam and the Phalen Seam. The Harbour Seam was actively mined between 1872 and 1896, while Phalen Seam was actively mined from 1900 to 1949. Both seams have the potential to impact the development of the Glace Bay WWTP as voids could be present in either seam below the proposed development. Desktop Geotechnical Review The initial geotechnical work carried out by HEJV at the Glace Bay site was a desktop geotechnical investigation. The related report laid out the groundwork for the intrusive geotechnical program that would follow. The report entitled “Wastewater Treatment Plant Geotechnical Desktop Study Glace Bay Site’, dated October 15, 2018 is attached to this document in Appendix A. The report provides background on the WWTP site, including general topography, published geological mapping, existing ground conditions, geotechnical problems and parameters and provides a proposed supplemental ground investigation method. Matthew D. Viva, P.Eng. March 2, 2020 Page 2 of 4 GLACE BAY WWTP GEOTECHNICAL SUMMARY LETTER - 02 MAR 2020.DOCX/WD ED: 3/2/2020 3:59:00 PM/PD: 3/2/2020 3:59:00 PM Intrusive Geotechnical Investigation Program #1 Next, an intrusive geotechnical program was undertaken following the above noted desktop geotechnical study. The report entitled “Geotechnical Investigation – WWTP Glace Bay Sites” was completed by exp Services Inc. on February 4, 2019 and is attached in Appendix B to this document. The intrusive geotechnical program reviewed surface and sub-surface conditions and provided discussion and recommendations on site development, excavations and geotechnical parameters. The program included drilling six boreholes on two potential Glace Bay WWTP sites. Three boreholes (BHs 1-3) were drilled on the site north of Beach Street (Site #1). The second set of three boreholes (BHs 4-6) were drilled on Site #2, northeast of the existing Bayplex (Site #2). The boreholes for the initial intrusive investigation were advanced to a depth of 15.5 to 31.5m to confirm sub-surface conditions. As these boreholes were not advanced far enough to reach the coal seam, HEJV commissioned exp Services Inc. to re-drill two boreholes to confirm sub-surface conditions to the depth of the underlying Harbour seam. BHs 4A and 6A were completed to a depth of 55-60m from surface. The results from the initial drilling program indicated a void was present in BH 6A at a depth of 50.5m from surface, while BH 4A did not encounter a void. Exp Services Inc. updated their original intrusive investigation report noted above with a supplemental report contained in Appendix C entitled “Wastewater Treatment Plant Geotechnical Evaluation Glace Bay Site”, dated April 15, 2018. This supplemental report added further evaluation of the underlying soil mechanics and ramifications of underground voids beneath the site. The report provided risk of subsidence levels for each site. For Site #1 the report considered the area to have a low to moderate risk of subsidence while Site #2 was classified as high risk. To mitigate the risks at Site #2, the following methods were suggested for construction of the WWTP: → Design the proposed structure to be able to withstand signification ground movements (a thick concrete slab below the structure sitting on a layer of compacted sand). → Support the facility on drilled steel pipe piles filled with concrete or piles socketed into the floor of the Harbour Seam. → Form concrete pillars in historical mine workings (Harbour Seam) on a grid system below the facility. → Re-orientating the WWTP buildings on the site to lessen the potential of being positioned over the Harbour Mine workings. Re-orientation was recommended to be followed by further intrusive investigation. Some of the above noted mitigation measures are deemed to carry significant capital costs, particularly the options involving drilling steel pipe piles or forming concrete pillars into the floor of the underlying coal seam. Intrusive Geotechnical Investigation Program #2 (Rock Mechanics Analysis) HEJV then recommended another intrusive geotechnical investigation program intended to determine whether the rock layers between the proposed WWTP and existing voids could effectively bridge the weight of the WWTP structures, such that the level of risk to develop the site would be reduced. CBRM provided authorization to proceed with this program and Matthew D. Viva, P.Eng. March 2, 2020 Page 3 of 4 GLACE BAY WWTP GEOTECHNICAL SUMMARY LETTER - 02 MAR 2020.DOCX/WD ED: 3/2/2020 3:59:00 PM/PD: 3/2/2020 3:59:00 PM subsequently, another drilling program was undertaken involving four new boreholes advanced to coal seam depths (2 boreholes were drilled on each of the two proposed sites). The report related to this investigation entitled “Rock Mechanics Investigation Proposed Waste Water Treatment Plants Glace Bay, Nova Scotia”, dated January 29, 2019 is provided in Appendix D. The analysis involved a rock-mass assessment and failure mechanisms for the project site. The analysis also provided a subsidence analysis and recommendations on foundation design for the proposed structures. During the associated borehole program, a borehole advanced on Site #2 indicated another sub-surface void. Borehole RMS2 encountered a void approximately 53.5m from surface. The remaining three boreholes were advanced through the coal seam and indicated the seam was still intact (no voids were encountered). The rock mechanics analysis resulted in a lower characterisation of the level of subsidence risk for each of the prospective sites as compared to previous assessments. For Site #1 the report considered the site to carry a very low risk, while Site #2 was denoted as low risk. The level of risk at Site #1 was lowered due to the fact that voids had not been encountered on the site by any of the intrusive field programs. Site #2 was considered to be riskier than Site #1 due to the fact that voids have been found during two different intrusive field programs. The risk classification process used takes into account the bridging ability of the underlying rock below the future WWTP. The report also discusses that the risk level for Site #2 could be lessened by a re-orientation of the WWTP, but this would need to be confirmed with additional intrusive investigation. The rock mechanics analysis provided recommendations for foundation design for each site, which varied in consideration of the level of risk at each of the sites. For Site #1, it was suggested that foundations be designed to withstand a potential differential settlement of 25mm while for Site #2, a design value for differential settlement of 75mm was recommended. HEJV reviewed foundation design recommendations and decided that foundations could not be reasonably designed to withstand a differential settlement of 75mm without pile foundations. HEJV posed a number of questions about the rock mechanics analysis to exp Services Inc. to further define some of the statements in the report. The corresponding answers from exp Services Inc. are provided in Appendix E. Recommendations At this time HEJV is recommending that the Glace Bay WWTP structures be placed on Site #1 based on the above “very low” risk subsidence classification. Generally, it is recommended that structures be placed east of a zone 25 metres from Borehole 6A as suggested by exp Services Inc. in the documents in Appendix E. HEJV cautions that there is still uncertainty with regard to the presence or absence of underground mine workings and corresponding voids beneath Site #1. In particular, a document containing notes from Louis Frost describing coal mining in the area states the following: “This was a shaft mine opened in 1872 by the Glace Bay Mining Company in the location now known as the Sterling Yard, to work the extension of the Harbour Seam originally worked by the old Harbour Mine located in the vicinity of Glace Bay Brook. Matthew D. Viva, P.Eng. March 2, 2020 Page 4 of 4 GLACE BAY WWTP GEOTECHNICAL SUMMARY LETTER - 02 MAR 2020.DOCX/WD ED: 3/2/2020 3:59:00 PM/PD: 3/2/2020 3:59:00 PM The Sterling Mine was operating at the time it was acquired by the Company, but was permanently closed in 1896 after working all the recoverable coal within the Town area, a large proportion of which underlay the present business section of the town. The coal was mined by a room and pillar system. The smallness of the pillars left to support the surface has been a large factor in the heavy surface subsidence within the town area.” HEJV cautions that the above description from Frost indicates that all recoverable coal within the Town area had been worked or recovered, suggesting that voids under Site #1 are a possibility, despite the absence of voids encountered in any of the boreholes advanced on the site. Therefore, HEJV recommends completing an additional borehole program during the detailed design of the Glace Bay WWTP to further explore the site further to assess if subsurface voids are present beneath the footprint of proposed structures. If you have any questions or require clarification on the content presented in the attached report, please do not hesitate to contact us. Yours very truly, Harbour Engineering Joint Venture Prepared by: Prepared by: James Sheppard, P.Eng. Darrin McLean, MBA, FEC, P.Eng. Civil Infrastructure Engineer Senior Municipal Engineer Direct: 902-562-9880 Direct: Direct: 902-539-1330 (Ext. 3138) E-Mail: jsheppard@dillon.ca E-Mail: dmclean@cbcl.ca Dillon Project No: 187116.00 CBCL Project No: 182402.00 This document was prepared for the party indicated herein. The material and information in the document reflects HEJV’s opinion and best judgment based on the information available at the time of preparation. Any use of this document or reliance on its content by third parties is the responsibility of the third party. HEJV accepts no responsibility for any damages suffered as a result of third party use of this document.               Appendix A – Wastewater Treatment Plant Geotechnical Desktop Study  Glace Bay Site  October 15, 2018 SYD-00245234-A0/60.2 Mr. Terry Boutilier Dillon Consulting Limited 275 Charlotte Street Sydney, NS B1P 1C6 Re: Wastewater Treatment Plant Geotechnical Desktop Study Glace Bay Site Dear Mr. Boutilier: It is the pleasure of EXP Services Inc. (EXP) to provide Dillon Consulting Limited (Dillon) with this letter summarizing the preliminary review completed by EXP on the potential site for the construction of a wastewater treatment facility in Glace Bay, Nova Scotia. Background A geotechnical desktop study is an essential tool used by engineers to identify and gather as much information as possible pertaining to the probable ground conditions at a proposed construction site without commissioning an intrusive ground investigation. The information obtained from the desktop study will identify potential problems, hazards and/or constraints associated with the probable ground conditions in the proposed area of construction, as well as provide geotechnical recommendations for new construction activities. When a walkover survey is completed in conjunction with the desktop study it will allow engineers to refine and enhance their understanding of each of the sites in relation to the topography, earth exposures, drainage conditions, etc. When completed together (the desktop study and the walkover survey), the findings will provide invaluable information in the early stages of the design at a negligible cost. It is the intent of the desktop study and walkover survey not only to look at the site, but also at its surroundings. Noted below are the key findings to be reported in any desktop study and walkover assessment: • site topography; • geology (surficial ground cover, probable overburden soil and bedrock type); • geotechnical problems and parameters; • previous land use (aerial photographs); Dillon Consulting Limited Wastewater Treatment Plant Geotechnical Desktop Study - Glace Bay Site SYD-00245234-A0 October 15, 2018 2 M:\SYD-00245234-A0\60 Project Execution\60.2 Reports\Glace Bay\Glace_Bay_Site - Rev1.docx • underground/surface mining activities; and • proposed supplemental ground investigation methods (test pits and/or boreholes). Subject Site Description and Topography The proposed site for the new wastewater treatment plant (WWTP) is located at Fishermans’ Memorial Park off of Lower North Street in Glace Bay, Nova Scotia and is identified by PID Number 15864085. The subject property is relatively level, but drops off at the eastern (steeply along coastline), southern (steeply adjacent to the fish plant) and western (gently adjacent to Beech Street) edges of the property. The property is bound by the Atlantic coastline along the eastern portion of the site; commercial buildings, Bell Street and Glace Bay Harbour along the southern portion of the site; Beech Street along the western portion of the site; and Lower North Street along the northern portion of the site. Figure 1 depicted below outlines the proposed location of the site. Figure 1: Proposed location of the new WWTP at Fishermans’ Memorial Park. Published Geological Mapping (Surficial and Bedrock) Review of the surficial geological mapping of the study area indicated that the subsurface geology consists of a Stony Till Plain. This type of till is generally comprised of a stony, sandy matrix material with varying amounts of cobbles and boulders and can vary in thickness from 2 to 20 metres thick. Typically, these materials were released from the base of ice sheets during the melting process of the ice sheet. A review of the existing bedrock mapping for the area indicates that the site is underlain by materials from the late carboniferous period, which are identified in this area as material from the Sydney Mines Dillon Consulting Limited Wastewater Treatment Plant Geotechnical Desktop Study - Glace Bay Site SYD-00245234-A0 October 15, 2018 3 M:\SYD-00245234-A0\60 Project Execution\60.2 Reports\Glace Bay\Glace_Bay_Site - Rev1.docx Formations of the Morien Group. These formations are comprised of fluvial and lacustrine mudstone, shale, siltstone, limestone and coal. A review of historical mapping and online reference documents indicated that mining activities have been carried out extensively in the area proposed for construction. These workings were the standard room and pillar coal extraction process. It should be noted that pillars may have been mined at some point during mining activities. Mapping indicates that the site is just north and east of the Harbour Seam and southeast of the Hub Seam outcroppings. Existing Ground Conditions At the time of the investigation, the site was primarily covered in either a mechanically crushed aggregate (used as roadway around the perimeter of the site, as well as for access) and manicured grassed areas (which would suggest that the surface of the site would have been reworked at some point). The overburden soil (fill/glacial till) exposure was observed along the cliffside. The thickness of the overburden appears to be in the range of 0.3 to 1.8 metres thick. The glacial till was visually described as being a silty SAND with gravel and varying amounts of cobbles. The till mixture is in a compact state of relative density. The till should provide satisfactory bearing stratum for the support of shallow foundations with bearing capacities between 150 and 200 kPa. The underlying bedrock would provide a higher capacity for allowable bearing. The bedrock underlying the till was also observed along the cliffside. The exposed bedrock consisted of alternating layers of shale, mudstone, sandstone and/or siltstone. The formations are consistent with the material identified in the regional mapping. The exposed bedrock along the Atlantic coastline is showing evidence of erosion. Geotechnical Problems and Parameters Summarized below are the key geotechnical problems of the site. • Erodibility of subsurface soils and exposed bedrock along the Atlantic coastline. • The area under the site was undermined due to historical coal mining activities and there is a potential for undocumented bootleg pits/mines. • There is the potential for a layer of limestone to be present underlying the surficial ground and alternating layers of bedrock below the site. Limestone is water soluble and has the potential to develop karsts voids (sinkholes). • The presence of uncontrolled fills on the site due to historical activities on the site. Previous Land Use Aerial photographs from 1947 to 2018 have been reviewed and summarized below. • An aerial photograph taken in 1930 depicts the site void of any structures. Several small buildings are visible along Beech Street, as well as along the southeastern perimeter of the site. Dillon Consulting Limited Wastewater Treatment Plant Geotechnical Desktop Study - Glace Bay Site SYD-00245234-A0 October 15, 2018 4 M:\SYD-00245234-A0\60 Project Execution\60.2 Reports\Glace Bay\Glace_Bay_Site - Rev1.docx • An aerial photograph taken in 1947 depicts the site void of any building structures. An access roadway crosses the site from the intersection of Lower North Street and Beech Street and heads toward the Glace Bay Harbour wharf. The majority of the site is covered in low-lying vegetation. • An aerial photograph taken in 1963 depicts the site still void of any building structures. The access roadway identified in 1947 has expanded in width and now connects to the intersection of Beech and Main Streets. A new building has been constructed along the eastern perimeter of the site. • An aerial photograph taken in 1973 depicts little to no change since 1963. The surrounding properties show evidence of increased development. • An aerial photograph taken in 1977 depicts continual development of the properties surrounding the site. • An aerial photograph taken in 1993 depicts the site very similar to the site at the time of the investigation. New breakwater was constructed on the northern side of the harbour. • An aerial photograph taken in 2003 shows no change to the site. Proposed Supplemental Ground Investigation Methods It is also recommended that a preliminary geotechnical investigation (land-based drilling program) be completed at the site to verify the presence or absence of authorized and/or bootleg mining activities undertaken in these areas, as well as the potential of future subsidence that could impact structures constructed on the site. Ultimately, the goal of the supplemental geotechnical ground investigation is to collect pertinent information pertaining to the subsurface conditions within the footprint of the proposed new facility. This information will then be used to develop geotechnical recommendations for use in the design and construction of the new facility. Borehole locations should be selected based upon the location of buried infrastructure (sewer, water, electrical and fiber optic lines); the required distance needed from overhead power lines to accommodate drilling operations; and to provide adequate coverage of the site. It is proposed that representative soil samples be collected continually throughout the overburden material of each of the three boreholes advanced at each site. Additionally, it is recommended that during the investigation samples of the bedrock should be collected continuously to a depth of at least 30.5 metres or more, depending upon the elevation to underground mine working within the subject area, in two of the three boreholes. The intent of the bedrock coring is to: • verify the presence or absence of underground mine workings (both authorized commercial activities and/or bootleg pits). • increase the odds of advancing the borehole through the roof of any mine working (to determine the potential void space) and not into a supporting pillar. • accurately characterize the bedrock for design of either driven or drilled piles, if needed. Dillon Consulting Limited Wastewater Treatment Plant Geotechnical Desktop Study - Glace Bay Site SYD-00245234-A0 October 15, 2018 5 M:\SYD-00245234-A0\60 Project Execution\60.2 Reports\Glace Bay\Glace_Bay_Site - Rev1.docx It is recommended that the third borehole be terminated either at 12 metres depth below ground surface or once refusal on assumed bedrock is encountered (whichever comes first). It should be noted that if pillar extraction took place, fractures will likely extend 20 metres above mine workings. If this is the case, drill return water may be lost and rock wedges may be encountered. This will inhibit coring and an alternative method of drilling through fractured rock may have to be examined. A Geotechnical Engineer should oversee the advancement of each of the boreholes. A CME 55 track mounted geotechnical drill rig (or equivalent) equipped with bedrock coring equipment and a two-man crew (driller and helper) should be used to advance each of the boreholes. Representative soil samples should be attained from a 50 mm diameter standard split spoon sampler during Standard Penetrating Tests (SPT) conducted ahead of the casing and/or auger equipment. A preliminary assessment of each recovered sample should be completed for particle size, density, moisture content and color. The SPT should continue until refusal or contact with assumed bedrock. Bedrock should be confirmed through coring of the material using coring equipment and drill casing. Each core sample should be removed from the core barrel and placed into core boxes for identification. Upon completion of the intrusive portion of the program, all boreholes are to be plugged (at various depths within the borehole) using a bentonite plug and backfilled to grade using silica sand. It should be noted that continuous grouting (with neat cement and/or bentonite) may be required to backfill the boreholes to grade. The continuous grouting will protect water supplies from contamination sources; it can prevent the movement of water between aquifers; and prevent and stabilize the water-soluble bedrock that may be present on the site. Following the installation and backfilling activities, the location and elevations are to be determined using Real Time Kinematic (RTK) survey equipment in the AST 77 coordinate system. This letter report is prepared for the Glace Bay site. Should you have any questions or concerns, please contact John Buffett or Gary Landry at 902.562.2394. Sincerely, Sincerely, John Buffett, P.Eng., B.Sc., RSO Gary Landry, P.Eng., B.Sc. Project Engineer Project Manager EXP Services Inc.               Appendix B – Geotechnical Investigation – WWTP Glace Bay Sites  Dillon Consulting Limited Geotechnical Investigation – WWTP Glace Bay Sites Type of Document: Final Project Name: Seven Wastewater Treatment Plant Geotechnical Desktop Study and Investigations Project Number: SYD-00245234-A0 Prepared By: John Buffett, B.Sc., P.Eng., RSO Jamie Harper, P.Eng, ARSO Reviewed By: Gary Landry, B.Sc., P.Eng. EXP Services Inc. 301 Alexandra Street Sydney, NS B1S 2E8 Canada T: +1.902.562.2394 F: +1.902.564.5660 www.exp.com Date Submitted: February 2019 Geotechnical Investigation – WWTP Glace Bay Sites Dillon Consulting Limited Type of Document: Final Project Name: Seven Wastewater Treatment Plant Geotechnical Desktop Study and Investigation Project Number: SYD-00245234-A0 Prepared By: John Buffett, P.Eng., B.Sc., RSO Reviewed By: Jamie Harper, P.Eng., ARSO EXP Services Inc. 301 Alexandra Street, Suite A Sydney, Nova Scotia B1S 2E8 Canada T: +1.902.562.2394 F: +1.902.564.5660 www.exp.com Date Submitted: 2019-02-01 Dillon Consulting Limited Geotechnical Investigation – WWTP Glace Bay Sites SYD-00245234-A0 February 4, 2019 i Legal Notification This report was prepared by EXP Services Inc. for the account of Dillon Consulting Limited. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. EXP Services Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. EXP Quality System Checks Project No.: SYD-00245234-A0 Date: February 4, 2019 Type of Document: Final Revision No.: 0 Prepared By: John Buffett, B.Sc., P.Eng., RSO Jamie Harper, P.Eng., ARSO Reviewed By: Gary Landry, B.Sc., P.Eng. Dillon Consulting Limited Geotechnical Investigation – WWTP Glace Bay Sites SYD-00245234-A0 February 4, 2019 TOC-i Table of Contents 1 Introduction ............................................................................................................................... 1 2 Site Description .......................................................................................................................... 1 3 Field Work .................................................................................................................................. 2 4 Surface and Sub-Surface Conditions ........................................................................................... 4 4.1 Summary of Conditions ..................................................................................................................... 4 4.2 Fill ...................................................................................................................................................... 5 4.3 Glacial Till .......................................................................................................................................... 5 4.4 Residual Soil ...................................................................................................................................... 6 4.5 Bedrock ............................................................................................................................................. 6 4.6 Groundwater ..................................................................................................................................... 6 4.7 Geological Mapping .......................................................................................................................... 6 5 Discussion and Recommendations ............................................................................................. 7 5.1 Site Development .............................................................................................................................. 7 5.2 Excavations ........................................................................................................................................ 8 5.3 Geotechnical Parameters .................................................................................................................. 8 5.1 Structural Fill ..................................................................................................................................... 9 6 Limitations ............................................................................................................................... 10 Appendix 1 Materials Testing Results Appendix 2 Borehole Logs List of Tables Page No. Table 1 Summary of Borehole Locations and Ground Surface Elevations 3 Table 2 Summary of Laboratory Testing Results 4 Table 3 Summary of Sub-Surface Stratigraphy 5 Table 4 Recommended Geotechnical Parameters for Retaining Structures 9 List of Figures Page No. Figure 1 Proposed Locations of the New WWTP in Glace Bay, Nova Scotia 1 Figure 2 Borehole Locations and Ground Surface Elevations 3 Dillon Consulting Limited Geotechnical Investigation – WWTP Glace Bay Sites SYD-00245234-A0 February 4, 2019 1 1 Introduction EXP Services Inc. (EXP) was retained by Dillon Consulting Limited (Dillon) to carry out a geotechnical investigation for the construction of a new wastewater treatment plant (WWTP) at one of two proposed sites in Glace Bay, Nova Scotia. Ultimately, the goal of this project was to provide information pertaining to the sub-surface conditions in the vicinity of the proposed facility. This information was used to develop geotechnical recommendations for use in the design and construction of the new facility. A geotechnical desktop study of one of the sites was completed by EXP in October 2018. Based on the information obtained from the study, a preliminary geotechnical drilling program was recommended in order to verify the presence or absence of authorized and/or bootleg mining activities undertaken in the proposed subject area, as well as the potential of future subsidence that could impact structures proposed to be constructed on the site. The scope of the project included the following components. • Assess the subsurface soil conditions in six boreholes (three at each site). • Characterize uncontrolled fill, native soils, and bedrock within the proposed development footprint. • Determine the ground elevations and locations at each borehole location. • Collect representative soil and bedrock samples for laboratory testing. • Prepare a geotechnical report, including borehole logs and geotechnical recommendations for design. 2 Site Description The proposed sites are located off of Lower North Street in Glace Bay, Nova Scotia on two separate lots across the street from one another. Figure 1 outlines the proposed locations of the site. Figure 1: Proposed Locations of the New WWTP in Glace Bay, Nova Scotia Dillon Consulting Limited Geotechnical Investigation – WWTP Glace Bay Sites SYD-00245234-A0 February 4, 2019 2 The first site, originally reviewed in the desktop study, on the eastern side of Lower North Street is located within the footprint of Fisherman’s Park and is identified by Property Identification Number (PID) Number 15864085. The subject property is relatively level but drops off at the eastern (steeply along coastline), southern (steeply adjacent to the fish plant) and western (gently adjacent to Beech Street) edges of the property. The property is bound by the Atlantic coastline along the eastern portion of the site; commercial buildings, Bell Street and Glace Bay Harbour along the southern portion of the site; Beech Street along the western portion of the site; and Lower North Street along the northern portion of the site. The second site is located on a vacant lot on the western side of Lower North Street and is identified by PID Numbers 15821119, 15395221, 15833007, 15654882 and 15393606. The subject property slightly slopes from the north to the south. The property is bound by the residential properties along the northeastern portion of the site; commercial buildings along the south/southwestern portion of the site; and Lower North Street along the southern portion of the site. 3 Field Work The fieldwork took place between 03 and 12 January 2019. The geotechnical investigation consisted of three boreholes at each proposed site. The investigation was carried out using a CME 75 track- mounted drill rig, supplied and operated by 692691 NB Inc. O/A Lantech Drilling (2016) out of their operation in Moncton, New Brunswick. Borehole locations were selected based upon the location of buried infrastructure (sewer, water, electrical and fiber optic lines); the required distance needed from overhead power lines to accommodate drilling operations, and to provide adequate coverage of the site. The borehole locations were adjusted slightly in the field to avoid underground utilities. EXP understands that minor adjustments to WWTP locations may occur as plans are finalized. The boreholes were advanced using casing and coring equipment. Representative soil samples were attained from the 50 mm diameter split spoon sampler during Standard Penetration Tests (SPTs) conducted ahead of the casing equipment. A preliminary assessment of particle size, density, moisture and colour was recorded for each soil sample. Rock coring was conducted using HQ sized (63.5 mm diameter) coring equipment and drill casing. Bedrock was collected continuously in each of the boreholes to a depth of between 15.4 and 31.4 m below existing grade. All boreholes were backfilled to the existing surface grade to prevent possible tripping hazards. Sand and bentonite were used for backfilling to mitigate the potential for surface waters to flow into the groundwater system at the borehole locations. The general site locations and the locations of the boreholes at each site are shown on the attached figure, labelled Figure 2. Dillon Consulting Limited Geotechnical Investigation – WWTP Glace Bay Sites SYD-00245234-A0 February 4, 2019 3 Figure 2: Borehole Locations and Ground Surface Elevations The borehole location information and ground surface elevations are summarized in Table 1. Coordinates are referenced to the NAD83 (CSRS 2010) System. Table 1: Summary of Borehole Locations and Ground Surface Elevations Borehole Location Northing (m) Easting (m) Elevation (m) BH#1 5118741 24619582 7.22 BH#2 5118794 24619597 6.94 BH#3 5118782 24619548 7.62 BH#4 5118887 24619504 10.47 BH#5 5118838 24619480 10.10 BH#6 5118903 24619462 11.92 Dillon Consulting Limited Geotechnical Investigation – WWTP Glace Bay Sites SYD-00245234-A0 February 4, 2019 4 Recovered samples from the field investigation were reviewed in the laboratory by an EXP Engineer to confirm soil boundaries and descriptions. Representative samples from different soil strata were selected for laboratory analysis. The following tests were carried out: • Moisture Content testing was conducted on two soil samples; • Gradational Analysis testing was conducted on two soil samples to classify soil strata; and • Compressive Strength testing was conducted on eight core samples. The results of all geotechnical laboratory tests are summarized in Table 2. Copies of all laboratory testing plots and detailed test sheets have been included in Appendix 1. Table 2: Summary of Laboratory Testing Results Borehole Location Split Spoon ID Percent Gravel Percent Sand Percent Fines Moisture Content (%) BH#4 SS#3 39.7 25.8 34.4 9.2 BH#6 SS#2 12.0 57.3 30.6 16.9 Borehole Location Rock Core ID Depth Below Grade (m) Load (kN) Compressive Strength (MPa) BH#1 RC#7 9.75 74.0 23.4 BH#1 RC#17 25.91 72.8 23.0 BH#2 RC#11 14.64 61.9 19.6 BH#2 RC#15 22.25 113.0 35.7 BH#3 RC#9 13.41 119.0 37.6 BH#4 RC#15 22.99 122.8 38.8 BH#5 RC#7 9.75 99.8 31.5 BH#5 RC#10 14.02 85.7 27.1 4 Surface and Sub-Surface Conditions 4.1 Summary of Conditions The general stratigraphy encountered on the sites included the following: • Fill • Glacial Till • Residual Soil • Sedimentary Bedrock Dillon Consulting Limited Geotechnical Investigation – WWTP Glace Bay Sites SYD-00245234-A0 February 4, 2019 5 A summary of the thicknesses of the various strata encountered during the investigation is provided in Table 3. Detailed borehole logs are provided in Appendix 2 and summary descriptions of the soil are given below in subsequent sections. Table 3: Summary of Sub-Surface Stratigraphy Borehole ID Thickness of Fill (m) Thickness of Till (m) Thickness of Residual Soil (m) Elevation to Bedrock (m) BH#1 4.9 0.6 n/a 1.7 BH#2 3.4 0.5 n/a 3.0 BH#3 3.9 0.3 n/a 3.4 BH#4 3.2 1.5 3.1 2.7 BH#5 3.4 0.6 0.3 6.1 BH#6 3.4 0.6 0.9 4.6 Notes: n/a refer to not applicable m – metres 4.2 Fill Various types of uncontrolled fill material were encountered in all of the boreholes drilled at both sites. Visually the fill material was described as: • ‘Silty SAND and GRAVEL’ Reworked Till in borehole BH#1; • ‘Silty SAND’ Reworked Till in boreholes BH#2 and BH#3; • ‘Silty GRAVEL’ in borehole BH#4; and • “Sandy SILT and GRAVEL’ in boreholes BH#5 and BH#6. The fill was found to be in very loose to compact state of relative density, moist to wet in terms of moisture content and black to brown/olive brown in colour. It should be noted that varying amounts of cobbles and debris (waste rock, coal, concrete brick) were encountered within the fill materials. 4.3 Glacial Till A layer of Glacial Till was found in all of the boreholes drilled at both sites. Visually the till material was described as being a ‘Silt SAND and GRAVEL with trace cobbles’. Under the Unified Soil Classification System (USCS) the glacial till was classified as ‘Silty SAND’ (SM) in borehole BH#6 SS#2. The glacial till was found to be in compact to dense state of relative density, moist to wet in terms of moisture content, and brown/olive brown to grey in colour. It should be noted that varying amounts of cobbles were encountered within the till materials. Dillon Consulting Limited Geotechnical Investigation – WWTP Glace Bay Sites SYD-00245234-A0 February 4, 2019 6 4.4 Residual Soil A layer of residual soil was found in three (BH#4, BH#5, and BH#6) of the six boreholes drilled at both sites. Under the USCS classification the residual soil was classified as ‘Silty GRAVEL and SAND’ (GM) in borehole BH#4 SS#3. The residual soil was found to be in a dense state of relative density, moist in terms of moisture content, and dark grey in colour. 4.5 Bedrock Alternating layers of sedimentary bedrock (siltstone/sandstone/mudstone) was observed in each of the boreholes installed across both sites. Review of the bedrock core samples indicated that the material was weathered and highly fractured in areas. Based on Rock Quality Designation (RQD), the quality of the bedrock alternated between very poor to good quality. Compressive strength testing on select samples indicated that the bedrock ranged from weak to medium strong. 4.6 Groundwater Groundwater was only encountered in borehole BH#1 at an elevation of 2.4 m. It should be noted that groundwater conditions vary seasonally and in response to recent precipitation events. The boreholes advanced during this investigation represent a limited sampling of the sites. Although limited quantities of groundwater were encountered during the current study, it is possible that more substantial amounts of groundwater may be encountered in mass excavation for construction. 4.7 Geological Mapping Review of the surficial geological mapping of the study area indicated that the subsurface geology consists of a Stony Till Plain. This type of till is generally comprised of a stony, sandy matrix material with varying amounts of cobbles and boulders and can vary in thickness from 2 to 20 m thick. Typically, these materials were released from the base of ice sheets during the melting process of the ice sheet. The native till materials encountered at both sites is consistent with the geological mapping. A review of the existing bedrock mapping for the area indicates that the site is underlain by materials from the late carboniferous period, which are identified in this area as material from the Sydney Mines Formations of the Morien Group. These formations are comprised of fluvial and lacustrine mudstone, shale, siltstone, limestone and coal. The bedrock materials encountered at both sites is consistent with the geological mapping. A review of historical mapping and online reference documents indicated that mining activities have been carried out extensively in the area proposed for construction. These workings were the standard room and pillar coal extraction process. It should be noted that pillars may have been mined at some point during mining activities. Mapping indicates that the site is just north and east of the Harbour Seam and southeast of the Hub Seam outcroppings. Dillon Consulting Limited Geotechnical Investigation – WWTP Glace Bay Sites SYD-00245234-A0 February 4, 2019 7 5 Discussion and Recommendations The following geotechnical recommendations are based on the information obtained through the advancement of six boreholes across the subject properties. Given the information available at the time of this report, the key geotechnical considerations for the development of the site include the following. • The presence of mine workings below the subject property gives rise to the potential for future subsidence, which could impact structures resulting in significant settlements over time. • The presence of uncontrolled fill within the footprint of the new facilities should be excavated and replaced with compacted engineered fill. Since the history of development is unknown, fill may be present to greater depths than was encountered at the borehole locations. Careful inspection of the base of the excavations and proof rolling with appropriately sized equipment will be important to confirm the suitability of the bearing material. The native glacial till materials beneath the fill should provide a suitable bearing stratum. • Groundwater and surficial water control (north side of Lower North Street) should be planned for during construction to avoid softening of the fill and native glacial till soils. Similarly, protection of exposed sub-grade and compacted fill surfaces against freezing and thawing should be planned for. 5.1 Site Development Any surficial rootmat, topsoil, fills and construction debris should be stripped from the new building’s footprint, roadways and parking lot areas in order to expose the underlying native till layer. The surface of the till should be proof rolled with a larger vibratory roller compactor (and/or equivalent) to identify any potential soft areas. Any areas that exhibit excessive displacement should be over excavated and backfilled with an engineered fill in compacted lifts. It is recommended that during the placement of backfills a Geotechnical Engineer or their designate should be on-site to oversee the placement methods used by the Contractor. Select portions of the excavated till/fill may be suitable for use as an engineered fill in building the sub-grade beneath paved roads or in parking lot areas, subject to approval by the Engineer. However, these materials can be very difficult to work with in wet or cold conditions and are not compactable above their optimum moisture content with standard equipment. It may not be possible to use vibration during construction of the sub-grade or fills until the surface being compacted is well above the level of groundwater. The vibratory action has the potential to draw water towards the surface and lower the workability of the sub-grade/fill material. The level at which vibration may be used to assist in compaction will need to be determined in the field during compaction activities on the basis of the results of proof rolling and compaction testing. The Geotechnical Engineer or their designate should be on-site to observe the placement and compaction methods of fills for new construction. Dillon Consulting Limited Geotechnical Investigation – WWTP Glace Bay Sites SYD-00245234-A0 February 4, 2019 8 Construction activities should be carried out in accordance with Nova Scotia Environment’s “Erosion and Sedimentation Control: Handbook for Construction Site”. Due to the fine-grained nature of the glacial till/reworked till/fills encountered during the investigation, the control of site construction water will be important. Exposed soil surfaces will be susceptible to erosion. Hydro-seeding, the installation of sod, armor stone (along coast line) or other erosion control measures should be constructed on permanent excavated slopes and stripped non-traffic areas to combat soil erosion. The grade of the completed ground surface on-site should be sloped such that any and all surface waters will be diverted away from the completed structure. 5.2 Excavations If temporary excavations exceeding 1.2 m depth are required for construction, maximum temporary side slopes of 1:1 (Horizontal:Vertical) should be maintained, the excavation should be benched, or engineered shoring installed. Flatter slopes may be required for stability if groundwater is encountered. The ground around excavations should be graded to prevent infiltration of surface water into the excavations. Groundwater was encountered at shallow depth and a groundwater management plan should be developed and implemented to keep the base of excavation dry for construction. At a minimum, standard dewatering techniques, such as the sloping of the base of the excavation to allow for gravity drainage to sumps for pumping operations should be planned for construction. The ground surface around the excavation should be graded to direct the flow of any surface water away from the excavation. It should be noted that the native till layer is fine-grained and susceptible to softening on exposure to wet or freeze-thaw conditions. Wherever possible, construction activities should be planned to prevent softening of till/till-fill layer. 5.3 Geotechnical Parameters 5.3.1 Bearing Capacity Footings founded directly on engineered fill and/or native till may be designed using a net geotechnical bearing reaction at Serviceability Limit States (SLS) of 150 kPa. Total and differential settlements of the structure are expected to be less than 25 mm and 15 mm, respectively, at this level of applied bearing pressure. A factored net geotechnical bearing resistance and Ultimate Limit States (ULS) of 200 kPa may be used. This includes a geotechnical resistance factor of 0.5. For footings on native glacial till deposit, a minimum of a 300 mm thick layer of structural fill (150 mm or 100 mm minus well graded, quarried material) should be considered below the footings. The structural fill will provide a stable working area for footing construction. This should be reviewed during construction. A 100 mm thick mud slab could be used as an alternative to the 300 mm thick granular layer. Footings should be founded at least 1.2 m below finished exterior grades for frost protection. Alternatively, foundation depths may be reduced if an insulation detail is incorporated in the design. EXP would be pleased to establish an insulation detail upon request. Dillon Consulting Limited Geotechnical Investigation – WWTP Glace Bay Sites SYD-00245234-A0 February 4, 2019 9 5.3.2 Geotechnical Parameters for Retaining Structures The recommended geotechnical parameters for design of elements acting as retaining structures are summarized in Table 4. These parameters are given assuming that the finished surface behind retaining structures will be horizontal, and that compacted granular fill will be used as backfill within the zone of active pressure behind retaining structures. If different types of backfill or inclined slopes behind structures are planned, the Geotechnical Engineer should be consulted for the appropriate earth pressure coefficients for design. Table 4: Recommended Geotechnical Parameters for Retaining Structures Parameter Compacted Structural (Granular) Fill Total Unit Weight, kN/m3 21.5 Buoyant Unit Weight, kN/m3 11.5 Effective Friction Angle, degrees 36 Coefficient of Active Earth Pressure, Ka 0.26 Coefficient of Passive Earth Pressure, Kp 3.90 Coefficient of Earth Pressure at Rest, Ko 0.4 Ultimate Friction Coefficient – concrete on granular fill 0.55 Ultimate Friction Coefficient – concrete on sound rock 0.7 Care should be taken not to damage walls when performing backfilling and compaction operations. Compaction within 1.5 m of retaining structures should be carried out with a walk-behind vibratory plate roller or plate tamper rather than a large vibratory drum roller. 5.3.3 Site Class for Seismic Response We recommend that designers use a site class of C for seismic considerations, in accordance with Table 4.1.8.4.A (Site Classification for Seismic Site Response) in the 2005 National Building Code of Canada. Note that the site class is based on the average conditions of the ground profile in the upper 30 m of the site. 5.1 Structural Fill Structural fills should consist of a well-graded, compactable granular material with less than 10% fines and should be free of organics, soft or elongated particles and other deleterious materials. Typical suitable structural fills for construction are consistent with Nova Scotia Transportation and Infrastructure Renewal, Division 3 – Granular Materials for a Type 1, Type 2, and Fill Against Structure. Other types of fill may be suitable for use, pending approval by the Geotechnical Engineer prior to use. All engineered fills should be compacted to a minimum of 98% of the Maximum Dry Density as determined in a Standard Proctor Test (ASTM D698). The compacted lift thickness should not exceed Dillon Consulting Limited Geotechnical Investigation – WWTP Glace Bay Sites SYD-00245234-A0 February 4, 2019 10 200 mm for fills compacted with a large vibratory drum roller or walk-behind vibratory roller. If a plate tamper is used for compaction the lift thickness should be reduced to 100 mm. 6 Limitations This report has been prepared for the sole use of the Dillon Consulting Limited and their agents. The material within reflects EXP’s best judgement in light of the information available at the time of preparation. Any use which a third party makes of this report, or any reliance on or decision to be made based on it, are the responsibility of such third parties. EXP accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. If conditions differ from those detailed on the test pit logs are noted during construction, the engineer should be notified to allow reassessment of any design assumptions, if necessary. Dillon Consulting Limited Geotechnical Investigation – WWTP Glace Bay Sites SYD-00245234-A0 February 4, 2019 Appendix 1 – Materials Testing Results 0 10 20 30 40 50 60 70 80 90 100 0.001 0.01 0.1 1 10 100 #200 #100 #60 #40 #10 SAMPLE D10D30D60 %Gravel %Sand %Fines DEPTH( m) DEPTH( m) BH#4 BH#6 Residual Soil Glacial Till SAND fine coarse coarse GRAVEL COBBLES U.S. SIEVE NUMBERS LL Cu SILT OR CLAY medium fine HYDROMETER U.S. SIEVE OPENING IN INCHES P ERC ENT F INE R B Y W EIGHT GRAIN SIZE IN MILLIMETERS GRAIN SIZE DISTRIBUTION #20 #4 3/8" 3/4" 1.5" 6"3" PISAMPLEClassification (USCS) PLWC% Cc BH BH BH#4 BH#6 9.2 16.9 SS - 3 SS - 2 5.0 3.7 5.0 3.7 SS - 3 SS - 2 Soil Deposit SILTY GRAVEL with SAND GM SILTY SAND SM 25.5 56.5 34.4 30.6 4.82 1.02 40.1 12.9 AD I H A L I F A X D O U B L E G R A I N S I Z E D I S T R . I W R e v : 5 / 2 4 / 1 2 G L A C E B A Y S I T E . G P J D A T A E N T R Y . G D T 2 / 1 / 1 9 P r i n t e d by : B u f f e t t J LOCATION Lower North Street, Glace Bay PROJECT No.SYD-00245234-A0 CLIENT Dillon Consulting Ltd. ADI LimitedThe new identity of t: +1.902.453.5555 | f: +1.902.453.6325 7071 Bayers Road, Suite 2002 Halifax, NS B3L 2C2 CANADA http://www.exp.com Dillon Consulting Limited Geotechnical Investigation – WWTP Glace Bay Sites SYD-00245234-A0 February 4, 2019 Appendix 2 – Borehole Logs Descriptive Terms - Borehole and Test Pit Logs Grain Size Clay&Silt Sand Gravel Cobble Boulder Compactness N, Range 0 - 4 4 - 10 10 - 30 30 - 50 >50 Soils (gravel, sand, tills)Density V. Loose Loose Compact Dense V. Dense Consistency S, KPa < 12.5 12.5 - 25 25 - 50 50 - 100 100 - 200 (silt, clay)Consistency V. Soft Soft Firm Stiff V. Stiff RQD Overall Quality Fracture Spacing 0 - 25 Very Poor < 50 mm Very Close 25 - 50 Poor 50 - 300 mm Close 50 - 75 Fair 0.3 - 1 m Moderate Rock 75 - 90 Good 1 - 3 m Wide 90 - 100 Excellent > 3 m Very Wide F M C 0.075 0.425 2.0 4.76 76.4 200 0.01 0.1 1.0 10 100 1000 (mm) (mm) y Comp. Str., MPa 0.25 - 1 1 - 5 5 - 25 25 - 50 50 - 100 100 - 250 > 250 Sample Types (location to scale on log) SS Split Spoon B Shovel (bulk) T Shelby Tube H Carved Block P Piston V In Situ Vane F Auger NR No Recovery W Wash Rock Cores: BQ (36.5mm), NQ (47.6mm), HQ (63.5mm) Notation and Symbols N - N-value from standard penetration test; blows by 475 J drop hammer to advance std. 50mm O.D. split spoon sampler 0.3m RQD - percent of core consisting of hard, sound pieces in excess of 100mm long (excluding machine breaks) Recovery - sample recovery expressed as percent or length S - shear strength, kPa PL - plastic limit, percent Sr - shear strength, remoulded LL - liquid limit, percent Dd - dry density, t/m3 - groundwater level W - natural moisture content, percent - seepage Very Strong Extremely StrongDescriptionWeakExtremely Weak Very Weak Medium Strong Strong F M C 0.075 0.425 2.0 4.76 76.4 200 0.01 0.1 1.0 10 100 1000 (mm) (mm) SYMBOLS AND TERMS USED ON THE BOREHOLE AND TEST PIT RECORDS Soil Description Behavioral properties (i.e., plasticity, permeability) take precedence over particle gradation in describing soils. Terminology Describing Soil Structure Desiccated Having visible signs of weathering by oxidation of clay minerals, Fissured Having cracks and, hence, a blocky structure Varved Composed of regular alternating layers of silt and clay Stratified Composed of alternating layers of different soil type, e.g., silt and sand Well Graded Having wide range in grain size and substantial amounts of all Uniformly Graded Predominantly of one grain size Terminology used for describing soil strata based upon the proportion of individual particle sizes present: Trace, or occasional Less than 10% Some 10–20% Adjective (e.g., silty or sandy)20–35% And (e.g., silt and sand)35–50% The standard terminology to describe cohesionless soils includes the relative density, as determined by laboratory test or by the Standard Penetration Test “N”-value: the number of blows of 140 pound (64 kg) hammer falling 30 inches (760 mm), required to drive a 2-inch (50.8 mm) O.D. splitspoon sampler one foot (305 mm) into the soil. Relative Density “N” Value Relative Density % Very Loose <4 <15 Loose 4–10 15–35 Compact 10–30 35–65 Dense 30–50 65–85 Very Dense 50 >85 The standard terminology to describe cohesive soils includes the consistency, which is based on undrained shear strength as measured by in-situ vane tests, penetrometer tests, unconfined compression tests, or occasionally by standard penetration tests. Undrained Shear Strength Consistency kips/sq. ft. kPa “N” Value Very Soft <0.25 <12.5 <2 Soft 0.25–.50 12.5–25 2–4 Firm 0.5–1.0 25–50 4–8 Stiff 1.0–2.0 50–100 8–15 Very Stiff 2.0–4.0 100–200 15–30 Hard >4.0 >200 >30 Descriptive Terms - Borehole and Test Pit Logs Grain Size Clay&Silt Sand Gravel Cobble Boulder Compactness N, Range 0 - 4 4 - 10 10 - 30 30 - 50 >50 Soils (gravel, sand, tills)Density V. Loose Loose Compact Dense V. Dense Consistency S, KPa < 12.5 12.5 - 25 25 - 50 50 - 100 100 - 200 (silt, clay)Consistency V. Soft Soft Firm Stiff V. Stiff RQD Overall Quality Fracture Spacing 0 - 25 Very Poor < 50 mm Very Close 25 - 50 Poor 50 - 300 mm Close 50 - 75 Fair 0.3 - 1 m Moderate Rock 75 - 90 Good 1 - 3 m Wide 90 - 100 Excellent > 3 m Very Wide F M C 0.075 0.425 2.0 4.76 76.4 200 0.01 0.1 1.0 10 100 1000 (mm) (mm) y Comp. Str., MPa 0.25 - 1 1 - 5 5 - 25 25 - 50 50 - 100 100 - 250 > 250 Sample Types (location to scale on log) SS Split Spoon B Shovel (bulk) T Shelby Tube H Carved Block P Piston V In Situ Vane F Auger NR No Recovery W Wash Rock Cores: BQ (36.5mm), NQ (47.6mm), HQ (63.5mm) Notation and Symbols N - N-value from standard penetration test; blows by 475 J drop hammer to advance std. 50mm O.D. split spoon sampler 0.3m RQD - percent of core consisting of hard, sound pieces in excess of 100mm long (excluding machine breaks) Recovery - sample recovery expressed as percent or length S - shear strength, kPa PL - plastic limit, percent Sr - shear strength, remoulded LL - liquid limit, percent Dd - dry density, t/m3 - groundwater level W - natural moisture content, percent - seepage Very Strong Extremely StrongDescriptionWeakExtremely Weak Very Weak Medium Strong Strong F M C 0.075 0.425 2.0 4.76 76.4 200 0.01 0.1 1.0 10 100 1000 (mm) (mm) SYMBOLS AND TERMS USED ON THE BOREHOLE AND TEST PIT RECORDS Soil Description Behavioral properties (i.e., plasticity, permeability) take precedence over particle gradation in describing soils. Terminology Describing Soil Structure Desiccated Having visible signs of weathering by oxidation of clay minerals, Fissured Having cracks and, hence, a blocky structure Varved Composed of regular alternating layers of silt and clay Stratified Composed of alternating layers of different soil type, e.g., silt and sand Well Graded Having wide range in grain size and substantial amounts of all Uniformly Graded Predominantly of one grain size Terminology used for describing soil strata based upon the proportion of individual particle sizes present: Trace, or occasional Less than 10% Some 10–20% Adjective (e.g., silty or sandy)20–35% And (e.g., silt and sand)35–50% The standard terminology to describe cohesionless soils includes the relative density, as determined by laboratory test or by the Standard Penetration Test “N”-value: the number of blows of 140 pound (64 kg) hammer falling 30 inches (760 mm), required to drive a 2-inch (50.8 mm) O.D. splitspoon sampler one foot (305 mm) into the soil. Relative Density “N” Value Relative Density % Very Loose <4 <15 Loose 4–10 15–35 Compact 10–30 35–65 Dense 30–50 65–85 Very Dense 50 >85 The standard terminology to describe cohesive soils includes the consistency, which is based on undrained shear strength as measured by in-situ vane tests, penetrometer tests, unconfined compression tests, or occasionally by standard penetration tests. Undrained Shear Strength Consistency kips/sq. ft. kPa “N” Value Very Soft <0.25 <12.5 <2 Soft 0.25–.50 12.5–25 2–4 Firm 0.5–1.0 25–50 4–8 Stiff 1.0–2.0 50–100 8–15 Very Stiff 2.0–4.0 100–200 15–30 Hard >4.0 >200 >30 FILL (Reworked Till): Silty SAND and GRAVEL, some coal, mudstone, trace cobbles, moist, loose to compact (black and orange) GLACIAL TILL: Silty SAND and GRAVEL, trace cobbles, moist to wet, compact (olive brown) BEDROCK: Sedimentary bedrock, Siltstone, very poor to poor quality, highly fractured, rough joints, slightly weathered, staining on joints (light grey to dark grey) BEDROCK: Sedimentary bedrock, Mudstone, weathered (dark grey) BEDROCK: Sedimentary bedrock, Siltstone, poor to fair quality, highly fractured in areas, rough joints, slightly weathered, staining on joints (light grey) BEDROCK: Sedimentary bedrock, Sandstone, poor to fair quality, highly fractured in areas, rough joints, slightly weathered, staining on joints (light grey) BEDROCK: Sedimentary bedrock, alternating layers of Sandstone and Siltstone, poor to good quality, highly fractured in areas, rough joints (alternating between light and dark grey) 2.4 1.7 -2.1-2.2 -4.4 -5.3 381 0 406 100% 100% 100% 100% 100% 90% 90% 100% 100% 5 17 27 0 0 15 32 52 26 26 42 57 SS SS SS RC RC RC RC RC RC RC RC RC 1 2 3 4 5 6 7 8 9 10 11 12 DESCRIPTION SAMPLES OT H E R TE S T S 20 40 60 80 BOREHOLE RECORD Unconfined Compression Test Water Content & Atterberg Limits Undrained Shear Strength, kPa 10 20 30 40 50 60 70 80 90 Wp W Wl 7.2 DE P T H ( m ) t: +1.902.453.5555 | f: +1.902.453.6325 7071 Bayers Road, Suite 2002 Halifax, NS, B3L 2C2 Canada http://www.exp.com LOCATION Lower North Street, Glace Bay CLIENT Dillon Consulting Ltd. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 EL E V . ( m ) PROJECT No.SYD-00245234-A0 BOREHOLE No.BH#1 DATUMWATER LEVELDATES of BORING Jan 3, 2019The new identity of ADI Limited GE O T E C H N I C A L L O G R e v : 6 / 2 7 / 1 1 G L A C E B A Y S I T E . G P J D A TA E N T R Y . G D T 2 / 1 / 1 9 P r i n t e d b y : B u f f e t t J RemouldedField Vane Test N- V A L U E OR R Q D Standard Penetration Test, blows/0.3mRE C O V E R Y mm ST R A T A P L O T TY P E NU M B E R WA T E R L E V E L BEDROCK: Sedimentary bedrock, alternating layers of Sandstone and Siltstone, poor to good quality, highly fractured in areas, rough joints (alternating between light and dark grey) (continued) -23.6 100% 100% 100% 100% 100% 100% 100% 100% 97 47 42 33 70 65 67 57 RC RC RC RC RC RC RC RC 13 14 15 16 17 18 19 20 DESCRIPTION SAMPLES OT H E R TE S T S 20 40 60 80 BOREHOLE RECORD Unconfined Compression Test Water Content & Atterberg Limits Undrained Shear Strength, kPa 10 20 30 40 50 60 70 80 90 Wp W Wl -10.8 DE P T H ( m ) t: +1.902.453.5555 | f: +1.902.453.6325 7071 Bayers Road, Suite 2002 Halifax, NS, B3L 2C2 Canada http://www.exp.com LOCATION Lower North Street, Glace Bay CLIENT Dillon Consulting Ltd. 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 EL E V . ( m ) PROJECT No.SYD-00245234-A0 BOREHOLE No.BH#1 DATUMWATER LEVELDATES of BORING Jan 3, 2019The new identity of ADI Limited GE O T E C H N I C A L L O G R e v : 6 / 2 7 / 1 1 G L A C E B A Y S I T E . G P J D A TA E N T R Y . G D T 2 / 1 / 1 9 P r i n t e d b y : B u f f e t t J RemouldedField Vane Test N- V A L U E OR R Q D Standard Penetration Test, blows/0.3mRE C O V E R Y mm ST R A T A P L O T TY P E NU M B E R WA T E R L E V E L FILL (Reworked Till): Sandy SILT, some gravel and construction debris (concrete), trace cobbles, moist, loose to compact (dark brown to olive brown) GLACIAL TILL: Silty SAND and GRAVEL, moist, dense (reddish brown) BEDROCK: Sedimentary bedrock, alternating layers of Sandstone and Siltstone, very poor quality, highly fractured, rough joints, slightly weathered, staining on joint (light grey to dark grey) BEDROCK: Sedimentary bedrock, Mudstone, weathered (dark grey) BEDROCK: Sedimentary bedrock, alternating layers of Sandstone and Siltstone, very poor to poor quality, highly fractured in areas, rough joints, slightly weathered (light grey to dark grey) BEDROCK: Sedimentary bedrock, Siltstone, poor to fair quality, highly fractured in areas, mudstone infilling on fracture facing (light grey) BEDROCK: Sedimentary bedrock, Sandstone, fair quality, rough joints (light grey) BEDROCK: 3.6 3.0 -1.0-1.3 -3.1 -7.4 -10.4-10.7 406 508 100% 100% 100% 100% 100% 100% 100% 100% 100% 22 8, 8, 41 and 50 for 75 mm 0 0 0 22 35 63 57 58 65 SS SS RC RC RC RC RC RC RC RC RC 1 2 3 4 5 6 7 8 9 10 11 DESCRIPTION SAMPLES OT H E R TE S T S 20 40 60 80 BOREHOLE RECORD Unconfined Compression Test Water Content & Atterberg Limits Undrained Shear Strength, kPa 10 20 30 40 50 60 70 80 90 Wp W Wl 6.9 DE P T H ( m ) t: +1.902.453.5555 | f: +1.902.453.6325 7071 Bayers Road, Suite 2002 Halifax, NS, B3L 2C2 Canada http://www.exp.com LOCATION Lower North Street, Glace Bay CLIENT Dillon Consulting Ltd. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 EL E V . ( m ) PROJECT No.SYD-00245234-A0 BOREHOLE No.BH#2 DATUMWATER LEVELDATES of BORING Jan 8, 2019The new identity of ADI Limited GE O T E C H N I C A L L O G R e v : 6 / 2 7 / 1 1 G L A C E B A Y S I T E . G P J D A TA E N T R Y . G D T 2 / 1 / 1 9 P r i n t e d b y : B u f f e t t J RemouldedField Vane Test N- V A L U E OR R Q D Standard Penetration Test, blows/0.3mRE C O V E R Y mm ST R A T A P L O T TY P E NU M B E R WA T E R L E V E L Sedimentary bedrock, Mudstone, weathered (dark grey) BEDROCK: Sedimentary bedrock, alternating layers of Sandstone and Siltstone, poor to good quality, highly fractured in areas, rough joints (alternating between light and dark grey) (continued) BEDROCK: Sedimentary bedrock, Sandstone, good to poor quality, rough joints (light grey) BEDROCK: Sedimentary bedrock, alternating layers of Sandstone and Siltstone, poor to good quality, highly fractured in areas, rough joints, slightly weathered (light grey to dark grey) -13.8 -19.0 -24.5 100% 100% 100% 100% 100% 100% 100% 100% 100% 62 58 83 87 85 47 33 68 82 RC RC RC RC RC RC RC RC RC 12 13 14 15 16 17 18 19 20 DESCRIPTION SAMPLES OT H E R TE S T S 20 40 60 80 BOREHOLE RECORD Unconfined Compression Test Water Content & Atterberg Limits Undrained Shear Strength, kPa 10 20 30 40 50 60 70 80 90 Wp W Wl -11.1 DE P T H ( m ) t: +1.902.453.5555 | f: +1.902.453.6325 7071 Bayers Road, Suite 2002 Halifax, NS, B3L 2C2 Canada http://www.exp.com LOCATION Lower North Street, Glace Bay CLIENT Dillon Consulting Ltd. 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 EL E V . ( m ) PROJECT No.SYD-00245234-A0 BOREHOLE No.BH#2 DATUMWATER LEVELDATES of BORING Jan 8, 2019The new identity of ADI Limited GE O T E C H N I C A L L O G R e v : 6 / 2 7 / 1 1 G L A C E B A Y S I T E . G P J D A TA E N T R Y . G D T 2 / 1 / 1 9 P r i n t e d b y : B u f f e t t J RemouldedField Vane Test N- V A L U E OR R Q D Standard Penetration Test, blows/0.3mRE C O V E R Y mm ST R A T A P L O T TY P E NU M B E R WA T E R L E V E L FILL (Reworked Till): Silty SAND, trace to some gravel and cobbles, trace organics, moist to wet, loose to compact (black to olive brown) GLACIAL TILL: Silty SAND and GRAVEL, moist, (olive brown) BEDROCK: Sedimentary bedrock, Siltstone, very poor quality, highly fractured, rough joints, slightly weathered, staining on joints (dark grey) BEDROCK: Sedimentary bedeck, alternating layers of siltstone and mudstone, very poor to poor quality, highly fractured and weathered in areas (dark grey) BEDROCK: Sedimentary bedrock, Siltstone, poor quality, highly fractured, rough joints, slightly weathered, staining on joints (dark grey) BEDROCK: Sedimentary bedrock, alternating layers of Sandstone and Siltstone, poor to good quality, highly fractured in areas, rough joints, slightly weathered (light grey to dark grey) 3.73.4 1.2 -1.8 -5.8 -7.9 305 483 100% 100% 100% 100% 100% 100% 100% 100% 6 18 0 10 15 0 28 27 80 SS SS RC RC RC RC RC RC RC RC 1 2 3 4 5 6 7 8 9 10 DESCRIPTION SAMPLES OT H E R TE S T S 20 40 60 80 BOREHOLE RECORD Unconfined Compression Test Water Content & Atterberg Limits Undrained Shear Strength, kPa 10 20 30 40 50 60 70 80 90 Wp W Wl 7.6 DE P T H ( m ) t: +1.902.453.5555 | f: +1.902.453.6325 7071 Bayers Road, Suite 2002 Halifax, NS, B3L 2C2 Canada http://www.exp.com LOCATION Lower North Street, Glace Bay CLIENT Dillon Consulting Ltd. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 EL E V . ( m ) PROJECT No.SYD-00245234-A0 BOREHOLE No.BH#3 DATUMWATER LEVELDATES of BORING Jan 9, 2019The new identity of ADI Limited GE O T E C H N I C A L L O G R e v : 6 / 2 7 / 1 1 G L A C E B A Y S I T E . G P J D A TA E N T R Y . G D T 2 / 1 / 1 9 P r i n t e d b y : B u f f e t t J RemouldedField Vane Test N- V A L U E OR R Q D Standard Penetration Test, blows/0.3mRE C O V E R Y mm ST R A T A P L O T TY P E NU M B E R WA T E R L E V E L FILL: Silty GRAVEL, trace sand and cobbles, wet, compact (brown) GLACIAL TILL: Silty SAND and GRAVEL, trace cobbles, moist, compact (grey) RESIDUAL SOIL: Silty GRAVEL and SAND (GM), moist, dense (dark grey) BEDROCK: Sedimentary bedeck, alternating layers of siltstone and sandstone, very poor to good quality, highly fractured and weathered in areas (dark grey to light grey) BEDROCK: Sedimentary bedeck, Mudstone, very poor to fair quality (dark grey) BEDROCK: Sedimentary bedeck, alternating layers of siltstone and sandstone, very poor to good quality, highly fractured and weathered in areas (dark grey to light grey) 7.2 5.8 2.7 -2.9 -3.4 406 203 356 100% 85% 100% 100% 100% 100% 80% 100% 95% 11 27 48 0 9 15 0 47 13 52 75 35 SS SS SS RC RC RC RC RC RC RC RC RC 1 2 3 4 5 6 7 8 9 10 11 12 DESCRIPTION SAMPLES OT H E R TE S T S 20 40 60 80 BOREHOLE RECORD Unconfined Compression Test Water Content & Atterberg Limits Undrained Shear Strength, kPa 10 20 30 40 50 60 70 80 90 Wp W Wl 10.5 DE P T H ( m ) t: +1.902.453.5555 | f: +1.902.453.6325 7071 Bayers Road, Suite 2002 Halifax, NS, B3L 2C2 Canada http://www.exp.com LOCATION Lower North Street, Glace Bay CLIENT Dillon Consulting Ltd. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 EL E V . ( m ) PROJECT No.SYD-00245234-A0 BOREHOLE No.BH#4 DATUMWATER LEVELDATES of BORING Jan 10, 2019The new identity of ADI Limited GE O T E C H N I C A L L O G R e v : 6 / 2 7 / 1 1 G L A C E B A Y S I T E . G P J D A TA E N T R Y . G D T 2 / 1 / 1 9 P r i n t e d b y : B u f f e t t J RemouldedField Vane Test N- V A L U E OR R Q D Standard Penetration Test, blows/0.3mRE C O V E R Y mm ST R A T A P L O T TY P E NU M B E R WA T E R L E V E L BEDROCK: Sedimentary bedeck, alternating layers of siltstone and sandstone, very poor to good quality, highly fractured and weathered in areas (dark grey to light grey) (continued) -20.2 100% 100% 100% 97% 100% 85% 100% 100% 90 72 53 62 82 100 40 60 RC RC RC RC RC RC RC RC 13 14 15 16 17 18 19 20 DESCRIPTION SAMPLES OT H E R TE S T S 20 40 60 80 BOREHOLE RECORD Unconfined Compression Test Water Content & Atterberg Limits Undrained Shear Strength, kPa 10 20 30 40 50 60 70 80 90 Wp W Wl -7.5 DE P T H ( m ) t: +1.902.453.5555 | f: +1.902.453.6325 7071 Bayers Road, Suite 2002 Halifax, NS, B3L 2C2 Canada http://www.exp.com LOCATION Lower North Street, Glace Bay CLIENT Dillon Consulting Ltd. 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 EL E V . ( m ) PROJECT No.SYD-00245234-A0 BOREHOLE No.BH#4 DATUMWATER LEVELDATES of BORING Jan 10, 2019The new identity of ADI Limited GE O T E C H N I C A L L O G R e v : 6 / 2 7 / 1 1 G L A C E B A Y S I T E . G P J D A TA E N T R Y . G D T 2 / 1 / 1 9 P r i n t e d b y : B u f f e t t J RemouldedField Vane Test N- V A L U E OR R Q D Standard Penetration Test, blows/0.3mRE C O V E R Y mm ST R A T A P L O T TY P E NU M B E R WA T E R L E V E L FILL: Sandy SILT and GRAVEL (rounded), some construction debris (asphalt and brick), trace cobbles, moist, loose (black to olive brown) GLACIAL TILL: Silty SAND and GRAVEL, trace cobbles, moist, compact (dark brown) RESIDUAL SOIL: Silty GRAVEL and SAND, moist, dense (dark grey) BEDROCK: Sedimentary bedrock, alternating layers of Sandstone and Siltstone, very poor quality, highly fractured in areas, rough joints, staining on fracture faces (alternating between light and dark grey) BEDROCK: Sedimentary bedrock, Siltstone, very poor quality, highly fractured, rough joints, slightly weathered, (dark grey) BEDROCK: Sedimentary bedrock, Mudstone, completely weathered (dark grey) BEDROCK: Sedimentary bedrock, Siltstone, poor to fair quality, rough joints, staining on surface of fractures (dark grey) BEDROCK: Sedimentary bedrock, alternating layers of Sandstone and Siltstone, poor quality, highly fractured in areas, rough joints (alternating between light and dark grey) BEDROCK: Sedimentary bedrock, alternating layers of Sandstone and Mudstone, poor quality, highly fractured in areas, rough joints 6.8 6.15.8 3.7 2.52.2 0.5 -0.9 -1.5 -5.4 150 406 95% 100% 100% 100% 100% 100% 100% 100% 6 52 0 20 13 58 32 38 55 40 SS SS RC RC RC RC RC RC RC RC 1 2 3 4 5 6 7 8 9 10 DESCRIPTION SAMPLES OT H E R TE S T S 20 40 60 80 BOREHOLE RECORD Unconfined Compression Test Water Content & Atterberg Limits Undrained Shear Strength, kPa 10 20 30 40 50 60 70 80 90 Wp W Wl 10.1 DE P T H ( m ) t: +1.902.453.5555 | f: +1.902.453.6325 7071 Bayers Road, Suite 2002 Halifax, NS, B3L 2C2 Canada http://www.exp.com LOCATION Lower North Street, Glace Bay CLIENT Dillon Consulting Ltd. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 EL E V . ( m ) PROJECT No.SYD-00245234-A0 BOREHOLE No.BH#5 DATUMWATER LEVELDATES of BORING Jan 11, 2019The new identity of ADI Limited GE O T E C H N I C A L L O G R e v : 6 / 2 7 / 1 1 G L A C E B A Y S I T E . G P J D A TA E N T R Y . G D T 2 / 1 / 1 9 P r i n t e d b y : B u f f e t t J RemouldedField Vane Test N- V A L U E OR R Q D Standard Penetration Test, blows/0.3mRE C O V E R Y mm ST R A T A P L O T TY P E NU M B E R WA T E R L E V E L (dark grey to black) BEDROCK: Sedimentary bedrock, alternating layers of Sandstone and Siltstone, poor to fair quality, highly fractured in areas, rough joints (alternating between light and dark grey) DESCRIPTION SAMPLES OT H E R TE S T S 20 40 60 80 BOREHOLE RECORD Unconfined Compression Test Water Content & Atterberg Limits Undrained Shear Strength, kPa 10 20 30 40 50 60 70 80 90 Wp W Wl -7.9 DE P T H ( m ) t: +1.902.453.5555 | f: +1.902.453.6325 7071 Bayers Road, Suite 2002 Halifax, NS, B3L 2C2 Canada http://www.exp.com LOCATION Lower North Street, Glace Bay CLIENT Dillon Consulting Ltd. 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 EL E V . ( m ) PROJECT No.SYD-00245234-A0 BOREHOLE No.BH#5 DATUMWATER LEVELDATES of BORING Jan 11, 2019The new identity of ADI Limited GE O T E C H N I C A L L O G R e v : 6 / 2 7 / 1 1 G L A C E B A Y S I T E . G P J D A TA E N T R Y . G D T 2 / 1 / 1 9 P r i n t e d b y : B u f f e t t J RemouldedField Vane Test N- V A L U E OR R Q D Standard Penetration Test, blows/0.3mRE C O V E R Y mm ST R A T A P L O T TY P E NU M B E R WA T E R L E V E L FILL: Silty SAND and GRAVEL, saturated, very loose (brown) GLACIAL TILL: Silty SAND (SM), trace gravel and cobbles, moist to wet, compact (olive brown) RESIDUAL SOIL: Silty GRAVEL and SAND, moist, dense (dark grey) BEDROCK: Sedimentary bedrock, Sandstone, very poor quality, highly fractured in areas, rough joints, staining on fracture faces (alternating between light and dark grey) BEDROCK: Sedimentary bedrock, alternating layers of Mudstone and Siltstone, poor quality, highly fractured in areas, rough joints, weathered (alternating between light and dark grey) BEDROCK: Coal (black) BEDROCK: Sedimentary bedrock, Mudstone, poor quality (dark grey) BEDROCK: Sedimentary bedrock, alternating layers of Sandstone and Siltstone, poor quality, highly fractured in areas, rough joints (alternating between light and dark grey) BEDROCK: Sedimentary bedrock, Siltstone, very poor to fair quality, highly fractured in areas, rough joints, (alternating between light and dark grey) 8.6 8.0 7.0 4.64.5 4.03.9 2.5 -3.6 152 406 100% 100% 100% 100% 100% 100% 100% 100% 3 24 0 23 8 40 22 23 70 28 SS SS RC RC RC RC RC RC RC RC 1 2 3 4 5 6 7 8 9 10 DESCRIPTION SAMPLES OT H E R TE S T S 20 40 60 80 BOREHOLE RECORD Unconfined Compression Test Water Content & Atterberg Limits Undrained Shear Strength, kPa 10 20 30 40 50 60 70 80 90 Wp W Wl 11.9 DE P T H ( m ) t: +1.902.453.5555 | f: +1.902.453.6325 7071 Bayers Road, Suite 2002 Halifax, NS, B3L 2C2 Canada http://www.exp.com LOCATION Lower North Street, Glace Bay CLIENT Dillon Consulting Ltd. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 EL E V . ( m ) PROJECT No.SYD-00245234-A0 BOREHOLE No.BH#6 DATUMWATER LEVELDATES of BORING Jan 12, 2019The new identity of ADI Limited GE O T E C H N I C A L L O G R e v : 6 / 2 7 / 1 1 G L A C E B A Y S I T E . G P J D A TA E N T R Y . G D T 2 / 1 / 1 9 P r i n t e d b y : B u f f e t t J RemouldedField Vane Test N- V A L U E OR R Q D Standard Penetration Test, blows/0.3mRE C O V E R Y mm ST R A T A P L O T TY P E NU M B E R WA T E R L E V E L               Appendix C – Wastewater Treatment Plant Geotechnical Evaluation  Glace Bay Site  301 Alexandra Street, Sydney, NS B1S 2E8 t: 902.562.2394 f: 902.564.5660 www.exp.com April 15, 2018 SYD-00245234-A0/60.2 Mr. Terry Boutilier Dillon Consulting Limited 275 Charlotte Street Sydney, NS B1P 1C6 Re: Wastewater Treatment Plant Geotechnical Evaluation Glace Bay Site Dear Mr. Boutilier: 1.0 Introduction It is the pleasure of EXP Services Inc. (EXP) to provide Dillon Consulting Limited (Dillon) with this letter regarding the risk of ground surface subsidence associated with historical mining activities within the proposed construction area of the new wastewater treatment facility in Glace Bay, Nova Scotia. The potential for future subsidence due to collapse in the mine working was assessed using historical mine working plans obtained from the Nova Scotia Department of Natural Resources and from field data obtained through the advancement of two boreholes down through the coal seam and/or abandoned mine workings. A review of historical mining records shows extensive mining activities have been carried out under the proposed construction sites. 2.0 Subsidence Mechanisms Coal mine subsidence is the downward movement of the earth’s surface caused by the collapsing/ failing of either the mine working’s roof and/or support pillars. The effect of the mine subsidence can manifest itself on the ground surfaces in the form of holes, cracks, tilting and/or troughs. Many factors contribute to the risk of subsidence in the ground surface due to historical mining activities. Some of the more common factors include the depth of the mine workings, the geometry of the mine, how much coal was extracted, the overlying geology and groundwater fluctuations. The two main mechanisms of surface subsidence for this project are the caving of mining roofs and/or crushing/collapse of pillars. Dillon Consulting Limited Wastewater Treatment Plant Geotechnical Evaluation Glace Bay Site SYD-00245234-A0 April 15, 2019 2 \\trow.com\PROJECTS\SYD\SYD-00245234-A0\60 Project Execution\60.2 Reports\Subsidence Letter\Glace_Bay_Site - Subsidence Rev 1.docx Caving of the mine working’s roof from room-and-pillar mining can show itself as trough subsidence or ‘sinkholes’ in the ground surface. This type of surface subsidence is more of a concern for shallow mine workings as opposed to deep mine workings due to the bulking characteristic of the mine roof materials. When the roof collapses and the material accumulates in the mine void, the volume of space occupied by the collapsed rubble is always greater than the volume occupied by that same rock prior to collapse (10 to 30% bulking factor). Typically, caving height will be limited in advancement to approximately 12 times the mining void height. Crushing or collapsing of a singular pillar causes an increase in the overburden stress acting on adjacent supporting pillars. The increase in stress to the adjacent pillars may exceed the strength of the pillars and cause a chain reaction of pillar failures over a large area and encompassing all or parts of multiple mine rooms. As such, the effects associated with ground surface subsidence can cover a footprint that is hundreds of feet in width. Roof collapse from short/long wall mining can possibly create trough subsidence on the ground surface depending on the depth of the mine and the strata above the coal seam. 3.0 Site Location and Underground Mine Working As previously reported, the proposed construction sites are located off of Lower North Street in Glace Bay, Nova Scotia on two separate lots across the street from one another. The first site (Option 1) is located on the eastern side of Lower North Street, within the footprint of Fisherman’s Park, and is identified by Property Identification Number (PID) 15864085. A review of historical mining records shows that mining activities (room-and-pillar) in the Phalen Seam have been completed under a small portion of the site directly under the proposed location of the proposed wastewater treatment facility (see Figure 1). The historical drawing also suggested that some of the support pillars, along the western perimeter of the proposed water treatment building, may have been extracted. The second site (Option 2) is located on a vacant lot on the western side of Lower North Street and is identified by PIDs 15821119, 15395221, 15833007, 15654882 and 15393606. A review of historical mining records for this subject area indicated that both the Phalen and Harbour Seams were mined (room-and-pillar method) at some point and to varying degrees under this site. For the Phalen Seam, the historical drawings suggest that the entire footprint of the subject site has been mined and that the vast majority of support pillars have been extracted (see Figures 2 and 3). The historical drawing for the Harbour Seam suggests that only a portion of the proposed site was mined at some point during the operational life of the mine, but no pillar extraction was conducted in the subject area. 3.1 Phalen Mine Seam Historical records indicated that the Phalen Seam ranges from 2.0 metres (6 feet 7 inches) to 2.18 metres (7 feet 2 inches) in thickness and is located approximately 175 metres (574 feet) below ground surface at each site. These workings were initially of the standard room-and-pillar type mining. The historical records also indicate that extensive pillar extraction was completed within the proposed Dillon Consulting Limited Wastewater Treatment Plant Geotechnical Evaluation Glace Bay Site SYD-00245234-A0 April 15, 2019 3 \\trow.com\PROJECTS\SYD\SYD-00245234-A0\60 Project Execution\60.2 Reports\Subsidence Letter\Glace_Bay_Site - Subsidence Rev 1.docx construction zone of Option 2. The calculated extraction ratio in the Phalen Seam below the site was calculated to be 0.52; however, due to the removal of support pillars in the area the value should be closer to 1.00. Neglecting the effect of the support pillar removal and assuming that the Phalen Seam has been flooded to approximately sea level within the footprint of the proposed construction site, the factor of safety for the Phalen Seam approximately ranges between 0.4 (Holland-Gaddy Formula) and 1.9 (Salamon-Munro Formula) well below the 2.0 recommended criteria. When the removal of the support columns is taken into consideration, the factor of safety value drops significantly. As such, we consider the risk of subsidence above this portion of the Phalen Seam to be: • Low to Moderate for Option 1; and • Moderate to High for Option 2. It is our opinion that the Phalen Seam is relatively deep, and settlement of the surface would be small and gradual. 3.2 Harbour Seam Historical records indicate that the Harbour Seam has a thickness of 2.06 metres (6 feet 9 inches) and was estimated to 30 to 50 metres (98 to 164 feet) below ground surface. The mine workings in this area were of the standard room-and-pillar excavation method. As such, the extraction ratio in the Harbour Seam below the site was calculated to be 0.60. Confirmatory boreholes (two) were installed by EXP in March 2019 on Option 2 to verify the presence and/or absence of mine workings within the footprint of the treatment facility. The first borehole (BH#6A) was an advancement of BH#6 to confirm the presence of historical mine workings (voids and rubble) within the footprint of the facility at approximately 50 metres (164 feet) below grade while the second borehole (BH#4A) was an advancement of BH#4 to confirm the presence of a 3.1 metre (10.2 feet) thick coal seam at an elevation similar to BH#6A. Assuming that water within the mine seam is approximately at sea level, and incorporating the empirical data collected from the borehole program, the factor of safety for the Harbour Seam approximately ranges between 1.3 (Holland-Gaddy Formula) and 4.1 (Salamon-Munro Formula). As such, we consider the risk of subsidence associated with Harbour Mine seam to be: • Low to moderate for Option 1 (as no historical records show any evidence that the Harbour Seam has been previously mined); and • Moderate to high for Option 2. Although this information is positive, we caution that the stability calculations are based on parameters that have a relatively high degree of uncertainty. Also, the location of mine activities documented are subject to some horizontal and rotational variations. 4.0 Discussion and Recommendations Based on the information obtained from the available mine working information and exploratory boreholes completed, the factor of unacceptable subsidence associated with mine workings in the Dillon Consulting Limited Wastewater Treatment Plant Geotechnical Evaluation Glace Bay Site SYD-00245234-A0 April 15, 2019 4 \\trow.com\PROJECTS\SYD\SYD-00245234-A0\60 Project Execution\60.2 Reports\Subsidence Letter\Glace_Bay_Site - Subsidence Rev 1.docx Phalen and Harbour Seams are considered to be low to moderate for Option 1 and moderate to high for Option 2. To improve the confidence in Option 2 the following mitigations methods could be considered. • Design the proposed structure to be able to withstand significant ground movements (a thick concrete slab below the structure sitting on a layer of compacted sand). • Support the facility on drilled steel pipe piles filled with concrete or piles socked into the mine floor of the Harbour Seam. • Form concrete pillars in historical mine workings (Harbour Seam) on a grid system below the facility. • Fill the mine cavity (Harbour Seam) below the site with granular materials. Based on the knowledge that Option 2 appears to have a footprint that has some amount of mine activity from the Harbour Seam under the west portion of the proposed facility, the placement of granular material to fill the mine cavity could possibly introduce differential settlement if the pillars failed. It is for this reason that we recommend any of the other three mitigation methods be considered for this project to address the issue of the possible failure of the pillars in the Harbour Seam. If Option 2 could be re-orientated on the Option 2 site it may also lessen the potential to be positioned over the Harbour Seam mine workings. Any re-orientation should follow with additional drilling to investigate for mine workings. 5.0 Conclusion Although the preliminary recommendations for mitigations in this letter will not eliminate the possibility of settlement of the ground surface below the new structure, it is intended that these steps would result in movements within tolerable limits. This letter report is prepared for the Glace Bay site. Should you have any questions or concerns, please contact John Buffett or Gary Landry at 902.562.2394. Sincerely, Sincerely, John Buffett, P.Eng., B.Sc., RSO Gary Landry, P.Eng., B.Sc. Project Engineer Project Manager EXP Services Inc. Attachments POLE EXIST. BUILDING (BAYPLEX) GLACE BAY HARBOUR MAIN ST. CAMERON'S BLDG. SUPPLIES ATLANTIC OCEANOPTION 2 OPTION 1 LO W E R N O R T H S T . B E A C H S T . FISH PLANT FISH PLANT BH1 7.224 N5118741.483 E24619582.358 BH2 6.937 N5118794.313 E24619596.540 BH3 7.624 N5118781.507 E24619548.494 BH4/BH4A 10.469 N5118887.202 E24619504.232 BH6/BH6A 11.921 N5118903.004 E24619461.970 BH5 10.101 N5118837.635 E24619480.459 Project Title Dwg. Title: c 2018 Project No. Dwg. No.Rev. No. Drawn By: Dwg Standards Ckd By: www.exp.com BUILDINGS · EARTH & ENVIRONMENT · ENERGY · INDUSTRIAL · INFRASTRUCTURE · SUSTAINABILITY EXP EXP. Services Inc. Design Checked By: Designed By: 11 Services Inc. 7 WATER TREATMENT PLANTS STUDY GEOTECHNICAL DESKTOP STUDY WWTP BUILDING (OPTIONS 1 & 2) 4/ 1 5 / 2 0 1 9 2 : 1 0 P M NE I L B A C H M:\ S Y D - 0 0 2 4 5 2 3 4 - A 0 \ 6 0 P R O J E C T E X E C U T I O N \ 6 0 . 1 C A D D \ W T P S T U D Y 2 0 1 8 \ C O N T 0 1 \ G L A C E B A Y _ W T P S I T E _ A P R 2 0 1 9 _ M I N E W O R K I N G S _ R E V 1 . D W G FOR INFORMATION ONLY NB JB GL SYD-00245234-A0 Fig1 0 t: +1.902.562.2394 | f: +1.902.564.5660 301 Alexandra St., Sydney, NS B1S 2E8 CANADA NB SCALE: 1:2500 POLE SB R WTP B L D G . S B R SB R SB R S B R S B R SMFDSMFDSMFD ■■ ■ X X EXIST. BUILDING (BAYPLEX) EXIST. FENCED AREA (MINE VENT) EXIST. FENCED AREA (MINE VENT) BH1 7.224 N5118741.483 E24619582.358 BH2 6.937 N5118794.313 E24619596.540 BH3 7.624 N5118781.507 E24619548.494 BH4/BH4A 10.469 N5118887.202 E24619504.232 BH6/BH6A 11.921 N5118903.004 E24619461.970 BH5 10.101 N5118837.635 E24619480.459 GLACE BAY HARBOUR MAIN ST. CAMERON'S BLDG. SUPPLIES ATLANTIC OCEAN OPTION 2 OPTION 1 LO W E R N O R T H S T . B E A C H S T . WTP B L D G . FISH PLANT FISH PLANT Project Title Dwg. Title: c 2018 Project No. Dwg. No.Rev. No. Drawn By: Dwg Standards Ckd By: www.exp.com BUILDINGS · EARTH & ENVIRONMENT · ENERGY · INDUSTRIAL · INFRASTRUCTURE · SUSTAINABILITY EXP EXP. Services Inc. Design Checked By: Designed By: 11 Services Inc. 7 WATER TREATMENT PLANTS STUDY GEOTECHNICAL DESKTOP STUDY GLACE BAY BOREHOLE LOCATIONS & DOMINION No.2 PHALEN MINE HISTORIC WORKINGS 4/ 8 / 2 0 1 9 4 : 4 7 P M NE I L B A C H M:\ S Y D - 0 0 2 4 5 2 3 4 - A 0 \ 6 0 P R O J E C T E X E C U T I O N \ 6 0 . 1 C A D D \ W T P S T U D Y 2 0 1 8 \ C O N T 0 1 \ G L A C E B A Y _ W T P S I T E _ A P R 2 0 1 9 _ M I N E W O R K I N G S _ R E V 1 . D W G FOR INFORMATION ONLY NB JB GL SYD-00245234-A0 Fig2 0 t: +1.902.562.2394 | f: +1.902.564.5660 301 Alexandra St., Sydney, NS B1S 2E8 CANADA NB SCALE: 1:2000 NOTE: COORDINATES SHOWN ARE IN REFERENCE TO THE NAD83 (CSRS 2010) SYSTEM POLE SB R WTP B L D G . S B R SB R SB R S B R S B R SMFDSMFDSMFD ■■ ■ X X EXIST. BUILDING (BAYPLEX) EXIST. FENCED AREA (MINE VENT) EXIST. FENCED AREA (MINE VENT) GLACE BAY HARBOUR MAIN ST. CAMERON'S BLDG. SUPPLIES ATLANTIC OCEAN OPTION 2 OPTION 1 LO W E R N O R T H S T . B E A C H S T . WTP B L D G . FISH PLANT FISH PLANT BH1 7.224 N5118741.483 E24619582.358 BH2 6.937 N5118794.313 E24619596.540 BH3 7.624 N5118781.507 E24619548.494 BH4/BH4A 10.469 N5118887.202 E24619504.232 BH6/BH6A 11.921 N5118903.004 E24619461.970 BH5 10.101 N5118837.635 E24619480.459 Project Title Dwg. Title: c 2018 Project No. Dwg. No.Rev. No. Drawn By: Dwg Standards Ckd By: www.exp.com BUILDINGS · EARTH & ENVIRONMENT · ENERGY · INDUSTRIAL · INFRASTRUCTURE · SUSTAINABILITY EXP EXP. Services Inc. Design Checked By: Designed By: 11 Services Inc. 7 WATER TREATMENT PLANTS STUDY GEOTECHNICAL DESKTOP STUDY GLACE BAY BOREHOLE LOCATIONS & DOMINION No.4 PHALEN MINE HISTORIC WORKINGS 4/ 8 / 2 0 1 9 4 : 4 9 P M NE I L B A C H M:\ S Y D - 0 0 2 4 5 2 3 4 - A 0 \ 6 0 P R O J E C T E X E C U T I O N \ 6 0 . 1 C A D D \ W T P S T U D Y 2 0 1 8 \ C O N T 0 1 \ G L A C E B A Y _ W T P S I T E _ A P R 2 0 1 9 _ M I N E W O R K I N G S _ R E V 1 . D W G FOR INFORMATION ONLY NB JB GL SYD-00245234-A0 Fig3 0 t: +1.902.562.2394 | f: +1.902.564.5660 301 Alexandra St., Sydney, NS B1S 2E8 CANADA NB SCALE: 1:2000 NOTE: COORDINATES SHOWN ARE IN REFERENCE TO THE NAD83 (CSRS 2010) SYSTEM FILL: Silty GRAVEL, trace sand and cobbles, wet, compact (brown) GLACIAL TILL: Silty SAND and GRAVEL, trace cobbles, moist, compact (grey) RESIDUAL SOIL: Silty GRAVEL and SAND (GM), moist, dense (dark grey) BEDROCK: Sedimentary bedeck, alternating layers of siltstone and sandstone, very poor to good quality, highly fractured and weathered in areas (dark grey to light grey) BEDROCK: Sedimentary bedeck, Mudstone, very poor to fair quality (dark grey) BEDROCK: Sedimentary bedeck, alternating layers of siltstone and sandstone, very poor to good quality, highly fractured and weathered in areas (dark grey to light grey) 7.2 5.8 2.7 -2.9 -3.4 DESCRIPTION SAMPLES OT H E R TE S T S 20 40 60 80 BOREHOLE RECORD Unconfined Compression Test Water Content & Atterberg Limits Undrained Shear Strength, kPa 10 20 30 40 50 60 70 80 90 Wp W Wl 10.5 DE P T H ( m ) t: +1.902.453.5555 | f: +1.902.453.6325 7071 Bayers Road, Suite 2002 Halifax, NS, B3L 2C2 Canada http://www.exp.com LOCATION Lower North Street, Glace Bay CLIENT Dillon Consulting Ltd. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 EL E V . ( m ) PROJECT No.SYD-00245234-A0 BOREHOLE No.BH#4A DATUMWATER LEVELDATES of BORING Mar 22, 2019The new identity of ADI Limited GE O T E C H N I C A L L O G R e v : 6 / 2 7 / 1 1 G L A C E B A Y S I T E . G P J D A TA E N T R Y . G D T 4 / 1 1 / 1 9 P r i n t e d b y : B u f f e t t J RemouldedField Vane Test N- V A L U E OR R Q D Standard Penetration Test, blows/0.3mRE C O V E R Y mm ST R A T A P L O T TY P E NU M B E R WA T E R L E V E L BEDROCK: Sedimentary bedeck, alternating layers of siltstone and sandstone, very poor to good quality, highly fractured and weathered in areas (dark grey to light grey) (continued) BEDROCK: Sedimentary, sandstone (medium to fine grain), horizontal fractures (5 to 15 degrees), fair to good, grey -thin mudstone seam (>1mm) infilling fracture facing at 32.3 m. BEDROCK: Sedimentary, conglomerate (medium grain sand), excellent quality, grey to dark grey BEDROCK: Sedimentary, sandstone (medium to fine grain), horizontal fractures (5 to 15 degrees), excellent , grey BEDROCK: Sedimentary, conglomerate (medium grain sand), excellent quality, grey to dark grey BEDROCK: Sedimentary, alternating layer of sandstone (fine grain) to siltstone, -20.2 -23.2 -23.6-23.7 -24.6 -25.0 -25.8 -28.8 71% 95% 95% 92% 99% 98% 61 91 97 84 50 83 RC RC RC RC RC RC 1 2 3 4 5 6 DESCRIPTION SAMPLES OT H E R TE S T S 20 40 60 80 BOREHOLE RECORD Unconfined Compression Test Water Content & Atterberg Limits Undrained Shear Strength, kPa 10 20 30 40 50 60 70 80 90 Wp W Wl -9.5 DE P T H ( m ) t: +1.902.453.5555 | f: +1.902.453.6325 7071 Bayers Road, Suite 2002 Halifax, NS, B3L 2C2 Canada http://www.exp.com LOCATION Lower North Street, Glace Bay CLIENT Dillon Consulting Ltd. 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 EL E V . ( m ) PROJECT No.SYD-00245234-A0 BOREHOLE No.BH#4A DATUMWATER LEVELDATES of BORING Mar 22, 2019The new identity of ADI Limited GE O T E C H N I C A L L O G R e v : 6 / 2 7 / 1 1 G L A C E B A Y S I T E . G P J D A TA E N T R Y . G D T 4 / 1 1 / 1 9 P r i n t e d b y : B u f f e t t J RemouldedField Vane Test N- V A L U E OR R Q D Standard Penetration Test, blows/0.3mRE C O V E R Y mm ST R A T A P L O T TY P E NU M B E R WA T E R L E V E L horizontal fractures (5 to 10 degrees), excellent to good, grey BEDROCK: Sedimentary, mudstone and siltstone, weathered, grey BEDROCK: Sedimentary, alternating layers of sandstone (medium to fine grain) and siltstone, poor to good quality, horizontal fractures (5 to 15 degrees), light to dark grey BEDROCK: Sedimentary, sandstone (fine to medium grain), horizontal fractures (5 to 10 degrees), good quality, grey (continued) BEDROCK: Sedimentary, alternating layers of sandstone (fine to medium grain), shale and siltstone, horizontal fractures, good to excellent quality, light to dark grey -one 45 degree fracture at 44.1 meters below grade BEDROCK: Sedimentary, sandstone (fine to medium grain), horizontal fractures (0 to 10 degrees), good to excellent, grey to dark grey BEDROCK: Sedimentary, alternating siltstone and shale, excellent quality, dark grey BEDROCK: Sedimentary, sandstone (fine to medium grain), horizontal fracture, grey BEDROCK: (Harbour Seam) Coal, black BEDROCK: Sedimentary, sandstone (fine to medium grain), dark grey BEDROCK: (Harbour Seam) Coal, black BEDROCK: Sedimentary, mudstone, dark grey BEDROCK: -31.9 -34.9 -37.6 -38.0 -39.5 -41.3-41.5 -42.6-42.7-42.8 100% 99% 96% 97% 100% 95% 100% 100% 95% 88 80 90 98 83 94 87 0 40 RC RC RC RC RC RC RC RC RC 7 8 9 10 11 12 13 14 15 DESCRIPTION SAMPLES OT H E R TE S T S 20 40 60 80 BOREHOLE RECORD Unconfined Compression Test Water Content & Atterberg Limits Undrained Shear Strength, kPa 10 20 30 40 50 60 70 80 90 Wp W Wl -29.5 DE P T H ( m ) t: +1.902.453.5555 | f: +1.902.453.6325 7071 Bayers Road, Suite 2002 Halifax, NS, B3L 2C2 Canada http://www.exp.com LOCATION Lower North Street, Glace Bay CLIENT Dillon Consulting Ltd. 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 EL E V . ( m ) PROJECT No.SYD-00245234-A0 BOREHOLE No.BH#4A DATUMWATER LEVELDATES of BORING Mar 22, 2019The new identity of ADI Limited GE O T E C H N I C A L L O G R e v : 6 / 2 7 / 1 1 G L A C E B A Y S I T E . G P J D A TA E N T R Y . G D T 4 / 1 1 / 1 9 P r i n t e d b y : B u f f e t t J RemouldedField Vane Test N- V A L U E OR R Q D Standard Penetration Test, blows/0.3mRE C O V E R Y mm ST R A T A P L O T TY P E NU M B E R WA T E R L E V E L Sedimentary, sandstone, grey DESCRIPTION SAMPLES OT H E R TE S T S 20 40 60 80 BOREHOLE RECORD Unconfined Compression Test Water Content & Atterberg Limits Undrained Shear Strength, kPa 10 20 30 40 50 60 70 80 90 Wp W Wl -49.5 DE P T H ( m ) t: +1.902.453.5555 | f: +1.902.453.6325 7071 Bayers Road, Suite 2002 Halifax, NS, B3L 2C2 Canada http://www.exp.com LOCATION Lower North Street, Glace Bay CLIENT Dillon Consulting Ltd. 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 EL E V . ( m ) PROJECT No.SYD-00245234-A0 BOREHOLE No.BH#4A DATUMWATER LEVELDATES of BORING Mar 22, 2019The new identity of ADI Limited GE O T E C H N I C A L L O G R e v : 6 / 2 7 / 1 1 G L A C E B A Y S I T E . G P J D A TA E N T R Y . G D T 4 / 1 1 / 1 9 P r i n t e d b y : B u f f e t t J RemouldedField Vane Test N- V A L U E OR R Q D Standard Penetration Test, blows/0.3mRE C O V E R Y mm ST R A T A P L O T TY P E NU M B E R WA T E R L E V E L FILL: Silty SAND and GRAVEL, saturated, very loose (brown) GLACIAL TILL: Silty SAND (SM), trace gravel and cobbles, moist to wet, compact (olive brown) RESIDUAL SOIL: Silty GRAVEL and SAND, moist, dense (dark grey) BEDROCK: Sedimentary bedrock, Sandstone, very poor quality, highly fractured in areas, rough joints, staining on fracture faces (alternating between light and dark grey) BEDROCK: Sedimentary bedrock, alternating layers of Mudstone and Siltstone, poor quality, highly fractured in areas, rough joints, weathered (alternating between light and dark grey) BEDROCK: Coal (black) BEDROCK: Sedimentary bedrock, Mudstone, poor quality (dark grey) BEDROCK: Sedimentary bedrock, alternating layers of Sandstone and Siltstone, poor quality, highly fractured in areas, rough joints (alternating between light and dark grey) BEDROCK: Sedimentary bedrock, Siltstone, very poor to fair quality, highly fractured in areas, rough joints, (alternating between light and dark grey) 8.6 8.0 7.0 4.64.54.03.9 2.5 -3.6 100% 88% 95% 90 54 95 RC RC RC 1 2 3 DESCRIPTION SAMPLES OT H E R TE S T S 20 40 60 80 BOREHOLE RECORD Unconfined Compression Test Water Content & Atterberg Limits Undrained Shear Strength, kPa 10 20 30 40 50 60 70 80 90 Wp W Wl 11.9 DE P T H ( m ) t: +1.902.453.5555 | f: +1.902.453.6325 7071 Bayers Road, Suite 2002 Halifax, NS, B3L 2C2 Canada http://www.exp.com LOCATION Lower North Street, Glace Bay CLIENT Dillon Consulting Ltd. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 EL E V . ( m ) PROJECT No.SYD-00245234-A0 BOREHOLE No.BH#6A DATUMWATER LEVELDATES of BORING Mar 22, 2019The new identity of ADI Limited GE O T E C H N I C A L L O G R e v : 6 / 2 7 / 1 1 G L A C E B A Y S I T E . G P J D A TA E N T R Y . G D T 4 / 1 1 / 1 9 P r i n t e d b y : B u f f e t t J RemouldedField Vane Test N- V A L U E OR R Q D Standard Penetration Test, blows/0.3mRE C O V E R Y mm ST R A T A P L O T TY P E NU M B E R WA T E R L E V E L BEDROCK: Sedimentary, alternating layers of sandstone (fine grain) to siltstone, excellent to good quality, horizontal fractures (5 to 15 degrees), grey Loss of water at 20.1 meters - Verticle fracture at 20.1 meters (continued) BEDROCK: Sedimentary, mixture of mudstone and siltstone, highly fractured, poor quality, grey BEDROCK: Sedimentary, alternating layers of siltstone and sandstone (fine grain), horizontal fractures, poor to good quality, grey - thin seam of mudstone on fracture facing BEDROCK: Sedimentary, alternating layer of siltstone and mudstone, highly fractured, grey BEDROCK: Sedimentary, sandstone, highly fractured, fair to poor quality, grey -one 45 degree fracture at 27.4 meters BEDROCK: Sedimentary, mudstone, highly weathered, grey BEDROCK: Sedimentary, alternating layers of sandstone (fine to medium grain) and siltstone, horizontal fractures (5 to 15 degrees), poor to good quality, grey - 45 degree fracture at 30.8 meters BEDROCK: Sedimentary, sandstone (fine to medium grain), horizontal fractures, good to fair quality, grey BEDROCK: Sedimentary, alternating layers of sandstone (fine grain) and shale, horizontal fractures (5 to 20 degrees), fair to good quality, grey to dark grey - -10.2 -12.4 -14.1-14.4 -15.7-15.8 -20.1 -22.7 -23.2 -25.9 100% 70% 76% 91% 92% 95% 83% 78% 93% 89% 91% 100% 78% 100% 100% 86 81 27 31 78 73 33 89 68 77 80 73 80 93 74 RC RC RC RC RC RC RC RC RC RC RC RC RC RC RC 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 DESCRIPTION SAMPLES OT H E R TE S T S 20 40 60 80 BOREHOLE RECORD Unconfined Compression Test Water Content & Atterberg Limits Undrained Shear Strength, kPa 10 20 30 40 50 60 70 80 90 Wp W Wl -8.1 DE P T H ( m ) t: +1.902.453.5555 | f: +1.902.453.6325 7071 Bayers Road, Suite 2002 Halifax, NS, B3L 2C2 Canada http://www.exp.com LOCATION Lower North Street, Glace Bay CLIENT Dillon Consulting Ltd. 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 EL E V . ( m ) PROJECT No.SYD-00245234-A0 BOREHOLE No.BH#6A DATUMWATER LEVELDATES of BORING Mar 22, 2019The new identity of ADI Limited GE O T E C H N I C A L L O G R e v : 6 / 2 7 / 1 1 G L A C E B A Y S I T E . G P J D A TA E N T R Y . G D T 4 / 1 1 / 1 9 P r i n t e d b y : B u f f e t t J RemouldedField Vane Test N- V A L U E OR R Q D Standard Penetration Test, blows/0.3mRE C O V E R Y mm ST R A T A P L O T TY P E NU M B E R WA T E R L E V E L vertical fracture 35.9 meters BEDROCK: Sedimentary, alternating layers of siltstone and sandstone (fine grain), horizontal fractures (5 to 15 degrees), grey -thin seams of mud of some fracture faces BEDROCK: Sedimentary, mudstone, dark grey (continued) BEDROCK: Sedimentary, alternating layers of sandstone (fine to medium grain) to siltstone, fair to good quality, horizontal fractures, grey -45 degree fractures at 43.3, 44.1 and 45.4 meters BEDROCK: Sedimentary, alternating sandstone (fine grain) to shale, horizontal fractures (5 to 15 degrees), fair quality, grey BEDROCK: Sedimentary, sandstone (fine grain), fair quality, horizontal fractures, grey VOID CAVE-IN / rubble (mudstone and shale) VOID CAVE-IN / rubble (shale and coal) VOID CAVE-IN / rubble (mudstone and shale) BEDROCK: Sedimentary, mudstone to sandstone (fine to medium grain), horizontal fractures, grey -30.4 -34.8 -36.3 -38.5 -39.3 -39.9-40.2 -40.6-40.9 -42.3 -44.5 98% 100% 92% 92% 71% 100% 100% 45% 52% 5% 89% 67% 47 69 63 93 87 59 54 0 0 0 0 55 RC RC RC RC RC RC RC RC RC RC RC RC 19 20 21 22 23 24 25 26 27 28 29 30 DESCRIPTION SAMPLES OT H E R TE S T S 20 40 60 80 BOREHOLE RECORD Unconfined Compression Test Water Content & Atterberg Limits Undrained Shear Strength, kPa 10 20 30 40 50 60 70 80 90 Wp W Wl -28.1 DE P T H ( m ) t: +1.902.453.5555 | f: +1.902.453.6325 7071 Bayers Road, Suite 2002 Halifax, NS, B3L 2C2 Canada http://www.exp.com LOCATION Lower North Street, Glace Bay CLIENT Dillon Consulting Ltd. 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 EL E V . ( m ) PROJECT No.SYD-00245234-A0 BOREHOLE No.BH#6A DATUMWATER LEVELDATES of BORING Mar 22, 2019The new identity of ADI Limited GE O T E C H N I C A L L O G R e v : 6 / 2 7 / 1 1 G L A C E B A Y S I T E . G P J D A TA E N T R Y . G D T 4 / 1 1 / 1 9 P r i n t e d b y : B u f f e t t J RemouldedField Vane Test N- V A L U E OR R Q D Standard Penetration Test, blows/0.3mRE C O V E R Y mm ST R A T A P L O T TY P E NU M B E R WA T E R L E V E L               Appendix D – Rock Mechanics Investigation Proposed Wastewater  Treatment Plants, Glace Bay, Nova Scotia  885 Regent Street | Sudbury, Ontario, P3E 5M4 | Canada t: +1.705.674.9681 | f: +1.705.674.5583 | exp.com Rock Mechanics Investigation Proposed Waste Water Treatment Plants Glace Bay, Nova Scotia Dillon Consulting Limited Type of Document: Final, Revision 1 Project Name: Rock Mechanics investigation, WWTP Facility Glace Bay, Nova Scotia Project Number: SYD-00245234-A0 Prepared By: Gregory Hunt, M. Eng., P.Eng. Senior Rock Engineer, Earth and Environmental, Northeastern Ontario EXP Services Inc. 885 Regent Street Sudbury, Ontario, P3E 5M4 Tel. 1.705.674.9681 Fax. 1.705.674.5583 Date Submitted: 2019-10-02 (Revised 2020-01-29) Dillon Consulting Limited Rock Mechanics Investigation SYD-00245234-A0 i Revised: 2020-01-29 Table of Contents 1. Background ................................................................................................................................... 1 2. Project Understanding ................................................................................................................... 1 3. Field Work ..................................................................................................................................... 2 4. Rock-Mass Assessment .................................................................................................................. 2 5. Failure Mechanisms ....................................................................................................................... 3 6. Subsidence Analysis ....................................................................................................................... 3 7. Foundation Discussions .................................................................................................................. 4 Appendix A: Site Plan, Borehole Records, Photographs and UCS Dillon Consulting Limited Rock Mechanics Investigation SYD-00245234-A0 1 885 Regent Street | Sudbury, Ontario, P3E 5M4 | Canada t: +1.705.674.9681 | f: +1.705.674.5583 | exp.com 1. Background A new waste water treatment plant (WWTP) is being considered in Glace Bay, Nova Scotia together with a new sewage lift station as indicated on the attached site plan, SK-1C REV. 2. Both locations are close to the ocean shoreline along Lower North Street in an area where underground coal mining was historically undertaken. EXP Services Inc. (EXP) has previously carried out a geotechnical investigation at both sites (initially labelled sites Option 1 and 2, respectively) to determine the existing subsoil conditions (EXP’s Geotechnical Investigation – WWTP Glace Bay Sites, May 2019). As part of this initial investigation a supplementary preliminary assessment of the underground mine workings was undertaken to address the potential of settlement under the proposed WWTP (site – Option2), including the potential for ground subsidence resulting from the collapse of the bedrock above the mined-out portions of the coal seam. The findings of the supplementary assessment, titled: Wastewater Treatment Plant Geotechnical Evaluation Glace Bay Site, was that there was a low to moderate risk of subsidence at the site labelled Option 1 and a moderate to high risk of subsidence at the site called Option 2, which is due to the proximity of known worked coal seam areas in the Harbour Seam (that was mined closer to surface). The basis of this latter conclusion was upon the assessment of pillar strength in the mined-out areas that suggested a range of possible pillar Factor of Safety that increased uncertainty. The factor of safety for pillar design is defined as the strength of the pillar divided by the pillar load. 𝐹𝑎𝑐𝑡𝑜𝑟 𝑜𝑒 𝑆𝑎𝑒𝑒𝑡𝑦=𝑆𝑝 σ𝑝 Where Sp is the pillar strength and σp is the pillar load. Pillar strength is a function of both its size and shape. Pillar strength increases when the pillar width increases and/or pillar height decreases. The pillar load (σp) is attributed to the stress associated with supporting the tributary area of the overburden. It was, however, recommended that additional testing of the bedrock be undertaken using four new diamond drilled boreholes to assist with the determination of the strength of the rock mass between the coal seam and surface. The resulting Rock Mechanics Investigation has now been completed at both sites and this report presents the findings and recommendations of our Rock Mechanics Investigation. 2. Project Understanding It is understood the new WWTP will involve sequencing batch reactors, SBR technology, that requires continuous, reinforced concrete slab foundations. The designer, Harbour Engineering, joint-venture, has indicated that the slabs and associated facility footings will be constructed at about elevation 4.5m (on engineered fill described in the geotechnical report), which favours the site Option 2 as the preferred location. The point about the type of structure, its foundation and length, is important considering the amount of induced strain that can result from the gradual convergence of mined coal seams. There are, furthermore, other mechanisms of failure to consider, and the conditions influencing these failure mechanisms are dependent on the geometry, strength and depth of the coal seam, as well as the strength characteristics of the overlying rock. This report addresses the various factors involved, and the rock mass rating, Rock Mass Rating (RMR), and geological strength index (GSI), of the bedrock between the coal seam and the proposed foundation locations. Dillon Consulting Limited Rock Mechanics Investigation SYD-00245234-A0 2 Revised: 2020-01-29 The mining records and available mine plans were searched out and reviewed by our Sydney geotechnical group and discussed in the Wastewater Treatment Plant Geotechnical Evaluation letter report, dated May 10, 2019, specifically identifying that the Dominion No. 2 Colliery workings on the Phalen Seam underly both locations at a depth of approximately 175 m, and the Harbour Seam underlies Options 1 and 2 locations at depths ranging from 30 to 50m. On the Harbour Seam mine workings associated with the Sterling Mine and Harbour Pit worked this area, but the exact extent is unknown. As part of our current Rock Mechanics Investigation, we reviewed various sources of mining record documentation, including Provincial and Federal sources, such as the Nova Scotia Abandoned Mine Openings Database; Guidelines on Abandoned Coal Mines for Municipalities in Nova Scotia; NSDNR, Geological Map of Nova Scotia, Map 2000-1; journal reports on recent subsidence events, including in Glace Bay, and various other records as pertain to the long history of coal mining in Nova Scotia. Specific mine closure plans for most historical coal operations have not been found and there are no accurate mine plans for the Phalen or Harbour Mine s upon which reliable ground stability designs can be offered. The coal seams are typically flat, dipping about 2-4 degrees easterly, mined with room and pillar/post pillar techniques. Rockfalls from the roof of the seams were common occurrences as opposed to gradual convergence leading to seam closure. The mines have not been worked for many years and the coal seams are presumed to be flooding with sea water. Geological data confirms the bedrock description is of the Morien Group, Sydney Mines formation, weathered sequences of weak fluvial and lacustrine mudstone and shale, and medium strength siltstone, sandstone/ limestone, coal. The coal seams are typically 2m to 3.5m thick, good quality, high volatile, B&A grade bituminous and metallurgical types. The presence of calcites, halides and other erodible rock is apparently negligible but the influence of groundwater on processes of gasification and erosion of the coal is not well documented. 3. Field Work EXP completed the field work for the Rock Mechanics Investigation August 15, 2019 and the rock core samples were brought to our laboratory in Sydney, Nova Scotia for examination and compre ssive strength testing. The field work was comprised of advancing four vertical NQ diamond drill borehole to a depth of 60m. The location of the boreholes, denoted RMS1-4, are shown on the attached site Drawing Number SK-1C, revision 2. Borehole core logs have been prepared by our Sydney geotechnical group and are attached in Appendix A below as Borehole Records, RMS 1 through RMS 4. Photographs of the core advanced for the Rock Mechanics Investigation are included with the borehole records. Laboratory testing on select core specimens, consisting of Uniaxial Compressive Strength tests, Appendix A, were undertaken for assessment of the RMR and GSI determinations used to describe the bedrock and determine rock- mass classification and overall stability. 4. Rock-Mass Assessment The rock-mass encountered in our rock mechanic boreholes, RMS 1-4, is overlain at surface by approximately 4m to 6m of sand gravel, sorted moist brown fill and silt, sand gravel till. The bedrock is described as alternating grey siltstone, sandstone. Overall the bedrock is comprised essentially of bedded siltstone with shale. Uniaxial compressive strength tests for rock units of these alternating sequences range from 35MPa to 126MPa for NQ size core. The average rock mass strength is about 55MPa to 60MPa. Previously, two boreholes were advance d using HQ size core that suggests weaker rock, typically 35MPa to 40MPa. The coal has a unconfined compressive strength Dillon Consulting Limited Rock Mechanics Investigation SYD-00245234-A0 3 Revised: 2020-01-29 (UCS) value of 11MPa and the seam is firm to hard, bedded with stress induced fractures. The bulking factor for coal is estimated to be about 20%. The jointing characteristics of the siltstone is dominated by horizontal bedding; a flat, fluvial bedding pattern with shale interbedding with random alterations. This suggest assigning two bedding joint sets as part of the joint number assessment. Two other primary cross joints are observed (40-60 degrees), and lesser vertical fracturing. The joint set number is estimated to be 4. Jointing is tightly spaced, with alterations including smooth to rough, mud filled joints. The rock quality designation (RQD) is predominately in the range of 30% to 80% and is considered fair to good quality. The classic NGI tunnelling value Q = 10, fair to good rating, is a reasonable estimate for the rock mass based on the four boreholes recently advanced. Developments in rock mechanics by various experts have led to a better understanding of rock mass characterization and behaviour. This work involves the determination of the rock mass ratin g RMR for bedrock and we have calculated a value of 40 for this parameter. And correspondingly, we estimate the value of the GSI to be 30, which is lower than the corresponding RMR. The lower compressive strength values reported for BH6A, however, reduces the GSI to about 11. Based on boreholes RMS 1-4, the GSI value 30 will be selected for the stability assessment of the rock mass lying above both Option 1 and Option 2 sites, this is in the poor to fair range. For the purpose of understanding the behaviour of the bedrock that lies above the shallow Harbour coal seam, we have determined the failure criteria parameters “m” and “s” as defined in the generalized Hoek and Brown relationship. The corresponding values of m = 0.38 and s = 0.009, UCS = 60MPa. Based on similar rock type date, we inferred the siltstone has a deformation modulus E = 3.0GPa and unit weight 2.60t/m3. The principal stress acting on the Harbour mine coal seam is likely horizontal and about 4.0MPa. Vertical stress is less and about 1.5MPa. 5. Failure Mechanisms The failure mechanisms for surface subsidence resulting from mining are complex. The traditional consideration is that three geometries of failure patterns commonly develop from near surface coal mining. A relatively large regional rectangular failure pattern, that can also apply to more isolated column type failures. A wedge failure that involves adverse jointing, or structural failure. And conical failures involving break and cave angles respectively that are relatively steep. Coal seams usually fail gradually by convergence and depending on the thickness of the coal, open spans and nature and thickness of cover rock, it can take considerable time before subsidence at surface occurs, if any. Most situations are described by determining the extent of the cave zone, fracture zone and bending zone in the overlying bedrock. Long-term settlement predictions of building structures above a coal seam have been reasonably predicted using empirical methods and these methods will be discussed below. Recent methods involving advanced numerical models and programing such as Phase 2 requires proper modelling of the mine plans, which do not exist for this project. 6. Subsidence Analysis In regards, to the coal seams lying approximately 175m below surface, the Phalen Mine, influencing both sites Option 1 and 2, and indeed the entire area, the impact on surface structures is negligible based on the reported Dillon Consulting Limited Rock Mechanics Investigation SYD-00245234-A0 4 Revised: 2020-01-29 average coal seam thickness of 3.0m and empirical relationships developed National Coal Board of Great Britain NCB, 1975 which suggests rock mass strain to a maximum height above the mined out seam should be less than 2mm at about 90m above the seams. This also implies that the problem of multiple seam situations such as where the Harbour Mine is above the Phalen Mine is not significant and we can focus on the issue of the Harbour Mine separately. The potential for subsidence at the proposed Lift station site Option 1 (south side of street) is therefore very low and our boreholes RMS 3 and RMS 4 did not encounter mine voids and confirmed intact coal is present. Our assessment for the Harbour Mine conditions underlying the current WWTP site is based on the British NCB Method, and this method suggests that for a room size approximating 6m by 50m with the voids or seam thickness encountered at both RMS 2 and BH6A, that up to 50mm to 75mm of settlement could occur at this site over time. Factors affecting the rheology of the rock, that is the time related aspects, are not known but settlement of this nature occurs typically within 50 years of mining. It is our understanding that this amount of settlement has not been observed at this location and therefore the NCB method of analysis may be too conservative for the Glace Bay coal mining region. Of interest is the fact that more than 50 to 75 mm of settlement has occurred as recently as 7 years ago on Main Street (Harbour Seam workings), which is approximately 116 years after the mine in this area closed. We have also considered the crown pillar aspect of a room and pillar configuration using the Scaled Span Method, Carter T. G., 2000. This method uses the above RMR/GSI values and is widely accepted and includes a large range of crown pillar data. It does not specifically have coal mine applications but in recent work Carter has used it for shallow dipping orebodies including coal. With the Harbour Mine case, a critical span value of Cs = 1.9 has been determined and when using the RMR value of 40, the probability of rock-mass failure is less than 0.5%. Therefore, our Rock Mechanics Investigation suggests the subsidence potential is low at this location. 7. Foundation Discussions It is understood the proposed foundation type is engineered slab and strip footings on structural fill at both locations. It is our recommendation that the structural slabs at the new WWTP be designed with a potential differential settlement of 75mm in consideration of the low potential of settlement rating due to subsidence. The slab and footing foundations for the proposed lift station can be designed with of 25mm differential settlement given the very low potential of settlement rating at this location. It is recognized that existing structures near the proposed WWTP facility locations, such as the nearby Bayplex Building and other structures in the area, have not experienced settlement due to subsidence but there have been situations in Glace Bay generally where unexpected sink holes have formed due possibly to mine access shafts and raises that were not properly sealed. The precautionary design to a larger predicted settlement value at the WWTP is a conservative approach; however, our analysis, has not considered the issue of seismic design nor the issue of unknown mine workings that may for example result in problematic settlement which has historically been occurring in the Glace Bay area over the years and most recently as in August, 2019. 8. Closure We thank you for the opportunity to submit this report and should you have any questions concerning the above, please do not hesitate to contact the undersigned directly. Dillon Consulting Limited Rock Mechanics Investigation SYD-00245234-A0 6 Revised: 2020-01-29 Yours truly, EXP Services Inc. Gregory Hunt, P. Eng. Senior Rock Mechanics Engineer, Sudbury, Ontario Gary Landry, P. Eng. Project Manager, Sydney, Nova Scotia Yves Beauparlant, P.Eng. Manager of Earth and Environmental Services, Sudbury, Ontario Dillon Consulting Limited Rock Mechanics Investigation SYD-00245234-A0 6 Revised: 2020-01-29 Appendix A: Site Plan, Borehole Records, Photographs and UCS Site Plan POLE BH1 7.224 N5118741.483 E24619582.358 BH2 6.937 N5118794.313 E24619596.540 BH3 7.624 N5118781.507 E24619548.494 BH4/4A 10.469 N5118887.202 E24619504.232 BH6/6A 11.921 N5118903.004 E24619461.970 BH5 10.101 N5118837.635 E24619480.459 RMS#1 RMS3 6.792 N5118795.411 E24619595.809 RMS1 10.987 N5118868.613 E24619449.001 RMS2 11.288 N5118925.422 E24619430.479 RMS4 7.616 N5118752.592 E24619573.068 Project Title Dwg. Title: c 2018 Project No. Dwg. No.Rev. No. Drawn By: Dwg Standards Ckd By: www.exp.com BUILDINGS · EARTH & ENVIRONMENT · ENERGY · INDUSTRIAL · INFRASTRUCTURE · SUSTAINABILITY EXP EXP. Services Inc. Design Checked By: Designed By: 11 Services Inc. 7 WATER TREATMENT PLANTS STUDY GEOTECHNICAL DESKTOP STUDY GLACE BAY PROPOSED LOCATIONS FOR BOREHOLES ASSOCIATED WITH ROCK MECHANICS STUDY 8/ 2 0 / 2 0 1 9 9 : 2 4 A M NE I L B A C H M: \ S Y D - 0 0 2 4 5 2 3 4 - A 0 \ 6 0 P R O J E C T E X E C U T I O N \ 6 0 . 1 C A D D \ W T P S T U D Y 2 0 1 8 \ C O N T 0 1 \ G L A C E B A Y _ W T P S I T E _ A U G 2 0 1 9 _ R E V 1 . D W G FOR INFORMATION ONLY NB JB GL SYD-00245234-A0 SK-1C 2 t: +1.902.562.2394 | f: +1.902.564.5660 301 Alexandra St., Sydney, NS B1S 2E8 CANADA NB SCALE: 1:1500 NOTE: 1.COORDINATES SHOWN ARE IN REFERENCE TO THE NAD83 (CSRS 2010) SYSTEM Borehole Records FILL:SAND and GRAVEL, someconstruction debris (asphalt andbrick), trace cobbles, moist,compact (black to olive brown) RESIDUAL SOIL:Silty GRAVEL and SAND, moist, dense (dark grey) SEDIMENTARY BEDROCK:Alternaitng layers of siltstone, sandstone (fine/medium grain),mudstone COAL SEDIMENTARY BEDROCK:Siltstone, horizontal fractures, greyto black COAL SEDIMENTARY BEDROCK: Alternating layer of siltstone andsandstone, horizontal fractures, 175 75% 100% 97% 100% 100% 100% 97% 100% 100% 98% 100% 100% 100% 100% 97% 90% 98% 101% 100% 100% 100% 100% 100% 100% 100% 102% 100% 100% 97% 97% 95% 88% 100% 16 27 44 14 68 49 91 46 66 53 86 97 59 68 44 38 72 40 95 54 49 24 82 85 89 84 42 66 84 77 7 29 71 SS RC RC RC RC RC RC RC RC RC RC RC RC RC RC RC RC RC RC RC RC RC RC RC RC RC RC RC RC RC RC RC RC RC 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 DESCRIPTION SAMPLES OT H E R TE S T S 20 40 60 80 BOREHOLE RECORD Unconfined Compression Test Water Content & Atterberg Limits Undrained Shear Strength, kPa 10 20 30 40 50 60 70 80 90 Wp W Wl DE P T H ( m ) t: +1.902.453.5555 | f: +1.902.453.6325 7071 Bayers Road, Suite 2002Halifax, NS, B3L 2C2 Canadahttp://www.exp.com LOCATION Glace Bay, NS CLIENT Dillon Consulting Limited 0123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960 EL E V . ( m ) PROJECT No.SYD-00245234-A0 TEST PIT No.RMS#1 DATUMWATER LEVELDATES DUG Aug 12, 2019 GE O T E C H N I C A L L O G R e v : 6 / 2 7 / 1 1 L O G S . G P J D A T A E N T R Y . G D T 8 / 2 2 / 1 9 P r i n t e d b y : C o r m i e r M A RemouldedField Vane Test N- V A L U E OR R Q D Standard Penetration Test, blows/0.3mRE C O V E R Y mm ST R A T A P L O T TY P E NU M B E R WA T E R L E V E L grey DESCRIPTION SAMPLES OT H E R TE S T S 20 40 60 80 BOREHOLE RECORD Unconfined Compression Test Water Content & Atterberg Limits Undrained Shear Strength, kPa 10 20 30 40 50 60 70 80 90 Wp W Wl DE P T H ( m ) t: +1.902.453.5555 | f: +1.902.453.6325 7071 Bayers Road, Suite 2002Halifax, NS, B3L 2C2 Canadahttp://www.exp.com LOCATION Glace Bay, NS CLIENT Dillon Consulting Limited 60616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120 EL E V . ( m ) PROJECT No.SYD-00245234-A0 TEST PIT No.RMS#1 DATUMWATER LEVELDATES DUG Aug 12, 2019 GE O T E C H N I C A L L O G R e v : 6 / 2 7 / 1 1 L O G S . G P J D A T A E N T R Y . G D T 8 / 2 2 / 1 9 P r i n t e d b y : C o r m i e r M A RemouldedField Vane Test N- V A L U E OR R Q D Standard Penetration Test, blows/0.3mRE C O V E R Y mm ST R A T A P L O T TY P E NU M B E R WA T E R L E V E L TOPSOIL:Silty SAND, trace gravel andorganics (grass/roots), moist, loose(olive brown to brown) RESIDUAL SOIL:Silty GRAVEL and SAND, moist,dense (light grey) SEDIMENTARY BEDROCK:Alternaitng layers of siltstone,sandstone (fine/medium grain),mudstone VOID:Mine workings Rubble - Coal / mudstone SEDIMENTARY BEDROCK: 330 250 95% 108% 98% 96% 103% 100% 100% 100% 100% 100% 95% 101% 99% 100% 100% 93% 105% 101% 97% 103% 85% 120% 93%100% 97% 100% 100% 100% 100% 97% 100% 100% 100% 100% 114% 100% 7 15, 50for 100mm02879 28 28 29 7 8 39 59 57 32 53 80 25 63 49 57 63 59 65 8552 79 73 31 92 93 89 61 69 79 49 44 33 SS SS RC RC RC RC RC RC RC RC RC RC RC RC RC RC RC RC RC RC RC RC RC RC RCRC RC RC RC RC RC RC RC RC RC RC RC RC 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 2526 27 28 29 30 31 32 33 34 35 36 37 38 DESCRIPTION SAMPLES OT H E R TE S T S 20 40 60 80 BOREHOLE RECORD Unconfined Compression Test Water Content & Atterberg Limits Undrained Shear Strength, kPa 10 20 30 40 50 60 70 80 90 Wp W Wl DE P T H ( m ) t: +1.902.453.5555 | f: +1.902.453.6325 7071 Bayers Road, Suite 2002Halifax, NS, B3L 2C2 Canadahttp://www.exp.com LOCATION Glace Bay, NS CLIENT Dillon Consulting Limited 0123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960 EL E V . ( m ) PROJECT No.SYD-00245234-A0 TEST PIT No.RMS#2 DATUMWATER LEVELDATES DUG Aug 15, 2019 GE O T E C H N I C A L L O G R e v : 6 / 2 7 / 1 1 L O G S . G P J D A T A E N T R Y . G D T 8 / 2 2 / 1 9 P r i n t e d b y : C o r m i e r M A RemouldedField Vane Test N- V A L U E OR R Q D Standard Penetration Test, blows/0.3mRE C O V E R Y mm ST R A T A P L O T TY P E NU M B E R WA T E R L E V E L Siltstone / mudstone, horizontalfractures, grey to black COAL/SILTSTONE Mixture SEDIMENTARY BEDROCK:Sandstone, horizontal fractures, grey DESCRIPTION SAMPLES OT H E R TE S T S 20 40 60 80 BOREHOLE RECORD Unconfined Compression Test Water Content & Atterberg Limits Undrained Shear Strength, kPa 10 20 30 40 50 60 70 80 90 Wp W Wl DE P T H ( m ) t: +1.902.453.5555 | f: +1.902.453.6325 7071 Bayers Road, Suite 2002Halifax, NS, B3L 2C2 Canadahttp://www.exp.com LOCATION Glace Bay, NS CLIENT Dillon Consulting Limited 60616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120 EL E V . ( m ) PROJECT No.SYD-00245234-A0 TEST PIT No.RMS#2 DATUMWATER LEVELDATES DUG Aug 15, 2019 GE O T E C H N I C A L L O G R e v : 6 / 2 7 / 1 1 L O G S . G P J D A T A E N T R Y . G D T 8 / 2 2 / 1 9 P r i n t e d b y : C o r m i e r M A RemouldedField Vane Test N- V A L U E OR R Q D Standard Penetration Test, blows/0.3mRE C O V E R Y mm ST R A T A P L O T TY P E NU M B E R WA T E R L E V E L FILL:Sandy SILT, some gravel andconstruction debris (concrete), tracecobbles, moist, loose to compact(dark brown to olive brown) TILL:Silty SAND and GRAVEL, moist, dense (reddish brown) SEDIMENTARY BEDROCK:Alternaitng layers of siltstone, sandstone (fine/medium grain),mudstone COAL SEDIMENTARY BEDROCK:Siltstone / sandstone (fine grain), horizontal fractures, grey COAL SEDIMENTARY BEDROCK:Sandstone (fine to medium grain),horizontal fractures, grey 610 508%100% 93% 58%15% 100% 100% 100% 101% 100% 100%100%100%100%90%100% 97% 100% 100% 100% 101% 98% 101% 100% 100% 100% 100% 100% 88% 97% 90% 72 25020 16 00 36 12 27 64 86 5656055090 81 73 78 49 70 40 75 64 88 47 84 40 18 70 SS SSRCRC RC RCRC RC RC RC RC RC RCRCRCRCRCRC RC RC RC RC RC RC RC RC RC RC RC RC RC RC RC 1 234 5 67 8 9 10 11 12 131415161718 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 DESCRIPTION SAMPLES OT H E R TE S T S 20 40 60 80 BOREHOLE RECORD Unconfined Compression Test Water Content & Atterberg Limits Undrained Shear Strength, kPa 10 20 30 40 50 60 70 80 90 Wp W Wl DE P T H ( m ) t: +1.902.453.5555 | f: +1.902.453.6325 7071 Bayers Road, Suite 2002Halifax, NS, B3L 2C2 Canadahttp://www.exp.com LOCATION Glace Bay, NS CLIENT Dillon Consulting Limited 0123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960 EL E V . ( m ) PROJECT No.SYD-00245234-A0 TEST PIT No.RMS#3 DATUMWATER LEVELDATES DUG Aug 9, 2019 GE O T E C H N I C A L L O G R e v : 6 / 2 7 / 1 1 L O G S . G P J D A T A E N T R Y . G D T 8 / 2 2 / 1 9 P r i n t e d b y : C o r m i e r M A RemouldedField Vane Test N- V A L U E OR R Q D Standard Penetration Test, blows/0.3mRE C O V E R Y mm ST R A T A P L O T TY P E NU M B E R WA T E R L E V E L FILL (Reworked Till):Sandy SILT, some gravel andconstruction debris (concrete), tracecobbles, moist, loose to compact(dark brown to olive brown) GLACIAL TILL:Silty SAND and GRAVEL, moist, dense (reddish brown) SEDIMENTARY BEDROCK:Alternaitng layers of siltstone, sandstone (fine/medium grain),mudstone COAL SEDIMENTARY BEDROCK:Sandstone, horizontal fractures,grey COAL SEDIMENTARY BEDROCK:Sandstone, horizontal fractures,grey 482 533 610 61015%93% 103% 102% 100%100% 100% 98% 103% 103% 103% 100%100%103% 98% 100%100%100%100%100%100%100%100%100%100%105% 100% 100% 100%100%100%50%80%93%100% 34 4 24 2107 25 14 2263 67 72 43 40 64 08682 73 071534662811910053082 64 92 5456710243181 SS SS SS SSRCRC RC RC RCRC RC RC RC RC RC RCRCRC RC RCRCRCRCRCRCRCRCRCRCRC RC RC RCRCRCRCRCRCRC 1 2 3 456 7 8 910 11 12 13 14 15 161718 19 2021222324252627282930 31 32 33343536373839 DESCRIPTION SAMPLES OT H E R TE S T S 20 40 60 80 BOREHOLE RECORD Unconfined Compression Test Water Content & Atterberg Limits Undrained Shear Strength, kPa 10 20 30 40 50 60 70 80 90 Wp W Wl DE P T H ( m ) t: +1.902.453.5555 | f: +1.902.453.6325 7071 Bayers Road, Suite 2002Halifax, NS, B3L 2C2 Canadahttp://www.exp.com LOCATION Glace Bay, NS CLIENT Dillon Consulting Limited 0123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960 EL E V . ( m ) PROJECT No.SYD-00245234-A0 TEST PIT No.RMS#4 DATUMWATER LEVELDATES DUG Aug 7, 2019 GE O T E C H N I C A L L O G R e v : 6 / 2 7 / 1 1 L O G S . G P J D A T A E N T R Y . G D T 8 / 2 2 / 1 9 P r i n t e d b y : C o r m i e r M A RemouldedField Vane Test N- V A L U E OR R Q D Standard Penetration Test, blows/0.3mRE C O V E R Y mm ST R A T A P L O T TY P E NU M B E R WA T E R L E V E L Photographs PHOTOGRAPHIC RECORD OF ROCK MECHANIC BOREHOLES GLACE BAY, NOVA SCOTIA Recovered NQ core from RMS#1, bottom of borehole in forefront. Recovered NQ core from RMS#2, Glace Bay, top of core in forefront Recovered NQ core, RMS#3, bottom of core in forefront Recovered NQ core, RMS#4, top of borehole in forefront. UCS Concrete Cylinder Compressive Strength Client: File No.: Project: Date Cast and Time: Task Date and Time Collected: Type of Mould:Date Received and Time: 19 44.5 36.8 21 44.5 71.3 40 44.5 28.8 50 44.5 34.4 60 44.5 45.6 70 44.5 61.8 81 44.5 42.1 92 44.5 72.1 104 44.5 79.9 118 44.5 75.8 128 44.5 102.5 138 Broken 44.5 148 44.5 126.0 157 44.5 43.7 Supplier: Contractor: Cast by:MPa Truck No.: Time cast: Minimum Maximum Measured slump, mm:to Minimum Maximum Measured air, %:to Minimum Maximum Nominal MSA, mm:to Ambient temp., °C: Location: Initial Curing Location: Comments: CERTIFIED Testing Laboratories Concrete Testing A283 RELEASED BY: 301 Alexandra Street, Suite A, Sydney NS, B1S 2E8 T: +1.902.562.2394 ● www.exp.com 65.5 SA#1 SA#2 SA#5 SA#6 112.1 124.2 118.0 SA#8 SA#3 SA#4 71.0 44.8 53.5 SA#7 Date Tested Compressive Strength (MPa) Specimen Number 96.2 Dillon Consulting Limited 57.3 Average Width (mm) (per Core) 110.9 Break TypeLoad (kN)Depth ft Weight (g) SYD-00245234-A0 WWTP - Geotechnical Investigation Ticket No.: Initial curing temp., °C: Concrete temp., °C: Specified Air, %: John Buffett, P.Eng., B.Sc., RSO Time batched: Specified slump, mm: RMS#1 SA#9 SA#11 SA#14 SA#10 SA#13 SA#12 159.5 NA 196.0 68.0 Spec Str. @ 28 days : Concrete Cylinder Compressive Strength Client: File No.: Project: Date Cast and Time: Task Date and Time Collected: Type of Mould:Date Received and Time: 20 44.5 32.9 25 44.5 69.6 30 44.5 31.1 38 Broken 44.5 53 Broken 44.5 63 44.5 29.9 75 44.5 40.9 89 Broken 44.5 108 44.5 50.5 140 44.5 85.5 160 44.5 54.3 168 44.5 34.1 Supplier: Contractor: Cast by:MPa Truck No.: Time cast: Minimum Maximum Measured slump, mm:to Minimum Maximum Measured air, %:to Minimum Maximum Nominal MSA, mm:to Ambient temp., °C: Location: Initial Curing Location: Comments: CERTIFIED Testing Laboratories Concrete Testing A283 RELEASED BY: 301 Alexandra Street, Suite A, Sydney NS, B1S 2E8 T: +1.902.562.2394 ● www.exp.com SA#1 SA#2 SA#5 SA#6 NA 78.5 133.0 SA#8 SA#3 SA#4 NA 48.4 NA SA#7 63.7 Date Tested Compressive Strength (MPa) Specimen Number 46.5 Dillon Consulting Limited 51.2 Average Width (mm) (per Core) 108.2 Break TypeLoad (kN)Depth ft Weight (g) SYD-00245234-A0 WWTP - Geotechnical Investigation Ticket No.: Initial curing temp., °C: Concrete temp., °C: Specified Air, %: John Buffett, P.Eng., B.Sc., RSO 84.5 Time batched: Specified slump, mm: Spec Str. @ 28 days : SA#12 53.1 RMS#2 SA#9 SA#11 SA#10 Concrete Cylinder Compressive Strength Client: File No.: Project: Date Cast and Time: Task Date and Time Collected: Type of Mould:Date Received and Time: 33 44.5 62.9 46 44.5 68.8 56 44.5 46.3 61 44.5 61.4 72 44.5 44.6 77 44.5 53.7 91 44.5 60.7 101 44.5 126.5 114 44.5 74.1 125 44.5 39.2 130 44.5 56.0 Supplier: Contractor: Cast by:MPa Truck No.: Time cast: Minimum Maximum Measured slump, mm:to Minimum Maximum Measured air, %:to Minimum Maximum Nominal MSA, mm:to Ambient temp., °C: Location: Initial Curing Location: Comments: CERTIFIED Testing Laboratories Concrete Testing A283 RELEASED BY: 301 Alexandra Street, Suite A, Sydney NS, B1S 2E8 T: +1.902.562.2394 ● www.exp.com SA#1 SA#2 SA#5 SA#6 196.8 60.9 SA#8 SA#3 SA#4 69.3 71.9 95.5 SA#7 94.5 Date Tested Compressive Strength (MPa) Specimen Number 83.6 Dillon Consulting Limited 97.9 Average Width (mm) (per Core) 106.9 Break TypeLoad (kN)Depth ft Weight (g) SYD-00245234-A0 WWTP - Geotechnical Investigation Ticket No.: Initial curing temp., °C: Concrete temp., °C: Specified Air, %: John Buffett, P.Eng., B.Sc., RSO Time batched: Specified slump, mm: Spec Str. @ 28 days : RMS#3 SA#9 SA#11 SA#10 87.1 115.2 Concrete Cylinder Compressive Strength Client: File No.: Project: Date Cast and Time: Task Date and Time Collected: Type of Mould:Date Received and Time: 36 Broken 44.5 38 44.5 112.0 48 44.5 45.4 58 44.5 58.3 69 44.5 50.5 81 44.5 55.1 91 44.5 106.9 99.5 Broken 44.5 106 44.5 144.1 116.5 44.5 49.8 135 44.5 51.8 Supplier: Contractor: Cast by:MPa Truck No.: Time cast: Minimum Maximum Measured slump, mm:to Minimum Maximum Measured air, %:to Minimum Maximum Nominal MSA, mm:to Ambient temp., °C: Location: Initial Curing Location: Comments: CERTIFIED Testing Laboratories Concrete Testing A283 RELEASED BY: 301 Alexandra Street, Suite A, Sydney NS, B1S 2E8 T: +1.902.562.2394 ● www.exp.com Spec Str. @ 28 days : RMS#4 SA#9 SA#11 SA#10 80.5 Time batched: Specified slump, mm: John Buffett, P.Eng., B.Sc., RSO Initial curing temp., °C: Concrete temp., °C: Specified Air, %: Ticket No.: Break TypeLoad (kN)Depth ft Weight (g) SYD-00245234-A0 WWTP - Geotechnical Investigation Date Tested Compressive Strength (MPa) Specimen Number 85.7 Dillon Consulting Limited NA Average Width (mm) (per Core) 174.2 224.2 77.4 SA#8 SA#3 SA#4 78.5 70.7 90.7 SA#7 166.3 SA#1 SA#2 SA#5 SA#6 NA               Appendix E – Site Discussions and Client Questions – November 21,  2019    HEJV Glace Bay Wastewater System Pre‐Design Summary Report Appendices APPENDIX E  Glace Bay Wastewater System  Archaeological Resources Impact  Assessment                                          HEJV Glace Bay Wastewater System Pre‐Design Summary Report Appendices APPENDIX F  Glace Bay Wastewater System Phase I  Environmental Site Assessment    187116 ●April 8, 2019 Environmental Risk Assessments & Preliminary Design of Seven Future Wastewater Treatment Systems in CBRM Phase I Environmental Site Assessment (Draft Report) Parcel Identification Designation Numbers (PID Nos.) 15393606, 15524481, 15654882, 15821119, 15395221, 15833007, 15864085 and 15408867 in Glace Bay, Nova Scotia Prepared by: NJWPrepared for: CBRM Phase I Environmental Site Assessment (Draft Report) Parcel Identification Designation Numbers (PID Nos.) 15393606, 15524481, 15654882, 15821119, 15395221, 15833007, 15864085 and 15408867 in Glace Bay, Nova Scotia April 8, 2019 Nadine Wambolt, B.Tech., CET Andrew Blackmer, M.Sc., P.Geo. Darrin McLean, MBA, FEC., P.Eng Darrin McLean, MBA, FEC., P.Eng. Project Manager Issue or Revision Date Prepared By:Reviewed By:Issued By: This document was prepared for the party indicated herein. The material and information in the document reflects the opinion and best judgment of Harbour Engineering Joint Venture (HEJV) based on the information available at the time of preparation. Any use of this document or reliance on its content by third parties is the responsibility of the third party. HEJV accepts no responsibility for any damages suffered as a result of third party use of this document. 182402.00 275 Charlotte Street Sydney, Nova Scotia Canada B1P 1C6 Tel: 902-562-9880 Fax: 902-562-9890 _________________ PHASE I ESA GLACE BAY_DRAFT REPORT_8APRIL2019/wu ED: 09/04/2019 10:25:00/PD: 09/04/2019 10:25:00 April 8, 2019 Cape Breton Regional Municipality 320 Esplanade Sydney, Nova Scotia B1P 7B9 ATTENTION: Matthew D. Viva, P.Eng. Manager of Wastewater Operations Phase I Environmental Site Assessment (Draft Report) Parcel Identification Designation Numbers (PID Nos.) 15393606, 15524481, 15654882, 15821119, 15395221, 15833007, 15864085 and 15408867 Glace Bay, Nova Scotia Harbour Engineering Joint Venture (HEJV) is pleased to provide you with this Phase I Environmental Site Assessment (ESA) for eight properties (i.e., PID Nos. 15393606, 15524481, 15654882, 15821119, 15395221, 15833007, 15864085 and 15408867) located in Glace Bay, Nova Scotia. Should you have any questions or comments, please contact the undersigned at (902) 562-9880 extension 5206. Sincerely, Harbour Engineering Joint Venture DRAFT DRAFT Nadine J. Wambolt, CET, B.Tech. Darrin McLean, MBA, FEC., P.Eng. Lead Assessor Project Manager DRAFT Andrew J. Blackmer, M.Sc., P.Geo. Senior Reviewer NJW:kme Project No: 187116 (Dillon) and 182402.00 (CBCL) Harbour Engineering Joint Venture Phase I ESA Glace Bay, NS i Contents Executive Summary ........................................................................................................................... i CHAPTER 1 Introduction ............................................................................................................. 1 1.1 Purpose .................................................................................................................... 1 1.2 Background .............................................................................................................. 1 1.3 Standards and Limiting Conditions ............................................................................ 1 CHAPTER 2 Methodology ........................................................................................................... 2 2.1 Records Review ........................................................................................................ 2 2.2 Site Reconnaissance ................................................................................................. 2 2.3 Interviews ................................................................................................................ 2 CHAPTER 3 Phase I ESA Findings ................................................................................................ 3 3.1 Site Location and General Description ...................................................................... 3 3.2 Regional Geology/Hydrogeology............................................................................... 4 3.3 Chain-of-Title-Search ................................................................................................ 5 3.4 City Directories ......................................................................................................... 6 3.5 Aerial Photographs ................................................................................................... 6 3.6 Fire Insurance Plans and Inspection Reports ............................................................. 8 3.7 A.F. Church Mapping ................................................................................................ 8 3.8 Previous Environmental Reports/Client File Review .................................................. 8 3.9 Regulatory Agency and Database Files ...................................................................... 9 3.9.1 Department of Environment ......................................................................... 9 3.9.2 Environment and Climate Change Canada ................................................... 10 3.10 Site Visit ................................................................................................................. 10 3.10.1 Site Description ......................................................................................... 10 3.10.2 Site Services and Utilities .......................................................................... 12 3.10.3 Storage Tanks ........................................................................................... 12 3.10.4 Mechanical Equipment ............................................................................. 12 3.10.5 Drains and Sumps ..................................................................................... 12 3.10.6 Special Attention Items ............................................................................. 12 3.10.6.1 Asbestos Containing Materials .................................................... 13 3.10.6.2 Polychlorinated Biphenyls (PCBs) ................................................ 13 3.10.6.3 Lead ............................................................................................ 14 3.10.6.4 Mercury ...................................................................................... 14 3.10.6.5 Ozone-depleting Substances (ODS) ............................................. 14 3.10.6.6 Urea Formaldehyde Foam Insulation (UFFI) ................................ 15 Harbour Engineering Joint Venture Phase I ESA Glace Bay, NS ii 3.10.6.7 Noise .......................................................................................... 15 3.10.6.8 Magnetic Fields ........................................................................... 15 3.10.6.9 Radon ......................................................................................... 15 3.10.7 Chemical and Hazardous Materials Management ...................................... 15 3.10.8 Pesticides .................................................................................................. 15 3.10.9 Unidentified Substances ........................................................................... 15 3.10.10 Solid Waste Management ....................................................................... 15 3.10.11 Fill Materials ........................................................................................... 15 3.10.12 Spills, Stained Areas and Stressed Vegetation.......................................... 16 3.10.13 Pits and Lagoons ..................................................................................... 16 3.10.14 Watercourses, Ditches or Standing Water ............................................... 16 3.10.15 Air Emissions and Odours ........................................................................ 16 3.10.16 Observation of Adjoining Properties........................................................ 16 CHAPTER 4 Summary and Recommendations .......................................................................... 17 CHAPTER 5 Limitations ............................................................................................................. 19 CHAPTER 6 Closing ................................................................................................................... 20 CHAPTER 7 References ............................................................................................................. 21 Appendices Appendix A – Figures Appendix B – Site Photographs Appendix C – Regulatory Correspondence Harbour Engineering Joint Venture Phase I ESA Glace Bay i EXECUTIVE SUMMARY Harbour Engineering Joint Venture (HEJV) has been engaged by the Cape Breton Regional Municipality (CBRM) to conduct a Phase I Environmental Site Assessment (ESA) on eight properties denoted by Parcel Identification Designation Numbers (PID Nos.): 15393606, 15524481, 15654882, 15821119, 15395221, 15833007, 15864085 and 15408867 located in Glace Bay, Nova Scotia (herein referred to as “the site” or “subject property”). The site has an approximate combined area of 31.08 acres with designations of “commercial”, “residential” and “resource” zoning based on the Service Nova Scotia and Municipal Relations Property Online database (accessed March 2019). The Phase I ESA is being undertaken prior to potential purchase of the properties and future development of a Waste Water Treatment Plant (WWTP) and lift station on the site. This Phase I Environmental Site Assessment (ESA) was conducted in accordance with the guidelines and principles established by the Canadian Standard Association (CSA) Standard Z768-01 for Phase I ESAs CSA, 2001 (updated April 2003 and reaffirmed in 2016) and included a records review, site visit, interviews with knowledgeable persons and reporting of the findings. The following is a summary of the findings and potential sources of environmental contamination identified during the Phase I ESA conducted at the site and the associated recommendations: ®Buildings associated with fish plant operations (Hopkins H. Ltd.) are located on the south portion of the site (i.e., PID No. 15408867). Available fire insurance plans show a petroleum storage tank historically located on this portion of the site. The fish plant building interiors and the immediately surrounding grounds of these buildings were not accessible at the time of the site visit. Current petroleum storage on this portion of the site is unknown. Further, the exact use of these fish plant buildings is also unknown. As these on-site buildings are located down gradient of the proposed WWTP and lift station locations, and as the anticipated groundwater flow direction is expected to be easterly toward Glace Bay Harbour, these buildings are unlikely to represent an environmental concern relative to the proposed locations of the WWTP and lift station. ®Findings of a Nova Scotia Environment (NSE) environmental registry search identified a contaminated sites complaint file for 57, 59, 61 and 63 Oceancrest Drive (located immediately west of the site). These records, which were subject to the Freedom of Information and Protection of Privacy (FOIPOP)Act, were subsequently requested. Findings of the FOIPOP Act request indicate that the records were not available and that the file was destroyed as per the NSE retention schedule. Therefore, the contents and nature of the contaminated sites complaint are unknown. Although located immediately adjacent to the site (i.e., immediately Harbour Engineering Joint Venture Phase I ESA Glace Bay ii west of PID No. 15393606), these properties are approximately 200 meters (m) and 325 m northwest of the proposed WWTP and lift station locations, respectively. Further, as the groundwater flow direction is anticipated to be easterly, the potential for impacts to the actual proposed WWTP and lift station locations within the site from 57, 59, 61 and 63 Oceancrest Drive are considered to be low. ®Based on the age of the fish plant buildings located on the southeast portion of the site (i.e., PID No. 15408867), asbestos containing materials (ACM) may be present on-site. Testing would be required to confirm/refute the presence of ACM. It is noted that an asbestos survey was not conducted as part of this ESA. Further, building interiors were not accessible at the time of the site visit. Demolition practices associated with former on-site buildings, which may have contained ACM, are unknown. ®A pad-mounted transformer was observed on the west portion of the site (i.e., PID No. 15654882) adjacent to the Bay Plex Building. It is unknown if this transformer contains polychlorinated biphenyls (PCBs). The transformer was observed to be in good condition and situated on a concrete pad. No evidence of leakage or staining was observed. ®An aboveground storage tank (AST) was observed on the west portion of the site (i.e., on PID No. 15654882) in association with the Bay Plex Building. The AST was observed to be in fair condition with some surface rusting apparent. The tank was located within a fenced enclosure. The tank tag was not visible. Although not observed, petroleum storage tanks are suspected on the southeast portion of the site (i.e., on PID No. 15408867) in association with the on-site fish plant buildings. Historical heating sources and practices associated with former on-site buildings are unknown. Further assessment would be required to assess if former or current petroleum storage on-site has resulted in an environmental concern for the site. ®Based on the age of the fish plant buildings located on the southeast portion of the site (i.e., PID No. 15408867), lead-containing paint and/or solder may be present. Testing would be required to confirm/refute the presence of lead. Precautionary measures should be taken for individuals considered sensitive to lead if paint is peeling or in poor condition. Paint with elevated lead concentrations, which is in poor condition should be removed using a qualified lead abatement contractor. Precaution should be exercised during renovations that disturb lead-containing surfaces to minimize exposures. Demolition practices associated with former on-site buildings, which may have had lead-containing paint and/or solder, are unknown. ®Mercury containing equipment may be present within the on-site buildings, the interiors of which were not accessible at the time of the site visit. Further, based on the age of the fish plant buildings, located on the southeast portion of the site (i.e., PID No. 15408867), mercury containing paints may be present. Disposal of mercury containing paints or equipment, if found on-site, should be in accordance with Provincial regulations. Demolition practices associated with former on-site buildings, which may have had mercury-containing paint and/or equipment, are unknown. ®The on-site building interiors were inaccessible at the time of the site visit; however, based on the nature of on-site building use (i.e., fish plant and rink), ozone depleting substances (ODS) equipment is expected to be present on-site. Maintenance to units containing ODS should be conducted using licensed contractors. Refrigerant gases are required to be drained and recovered by a licensed contractor prior to disposal. Harbour Engineering Joint Venture Phase I ESA Glace Bay iii ®The on-site building interiors were inaccessible at the time of the site visit. Due to the age of the on-site fish plant buildings, located on the southeast portion of the site (i.e., PID No. 15408867), there is potential that urea formaldehyde foam insulation (UFFI) may be present. If found on-site, UFFI should be removed as per provincial regulations. ®Potential sources of magnetic fields observed during the site visit include a communication tower located west and south of the site. ®Miscellaneous debris, including household appliances, metal, plastic, wood, and rubber, were observed across the site. Debris should be removed to a licenced disposal facility. ®Portions of the site (i.e., PID Nos. 15393606, 15833007, 15395221 and 15821119) were observed to be in-filled. Concrete, asphalt, rubber, wood, plastic and metal debris was observed within the in-filled areas of the site. Seven fill piles were observed on the east portion of the site (i.e., on PID No. 15408867). A gravel fill pile was observed on the southwest portion of the site (i.e., on PID No. 15654882) in the gravel parking area of the Bay Plex. This fill pile may be associated with snow removal activities. Sampling would be require to confirm if impacts are present on-site from the observed fill materials. ®As noted above, the interior of the on-site Bay Plex building was not accessible at the time of the site visit. Based on available public information, the Bay Plex building reportedly requires mould abatement and remediation prior to planned renovation and upgrades to the facility. ®Findings of the Environment and Climate Change Canada search request are currently pending and will be incorporated into the Final report if available at that time. This report was prepared by Harbour Engineering Joint Venture (HEJV) for the sole benefit of our client, the Cape Breton Regional Municipality (CBRM). The conclusions reflect HEJV’s judgment in light of the information available to it at the time of preparation. Any use which a third party makes of this report or any reliance on or decisions made based on it are the responsibilities of such third parties. HEJV accepts no responsibilities for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. Harbour Engineering Joint Venture Phase I ESA Glace Bay 1 CHAPTER 1 INTRODUCTION 1.1 Purpose Harbour Engineering Joint Venture (HEJV) has been engaged by the Cape Breton Regional Municipality (CBRM) to conduct a Phase I Environmental Site Assessment (ESA) on eight properties denoted by Parcel Identification Designation Numbers (PID Nos.): 15393606, 15524481, 15654882, 15821119, 15395221, 15833007, 15864085 and 15408867 located in Glace Bay, Nova Scotia (herein referred to as “the site” or “subject property”). The Phase I ESA is being undertaken prior to potential purchase of the property and future development of a Waste Water Treatment Plant (WWTP) and lift station on the site. 1.2 Background The objective of the Phase I ESA was to assess whether sources or potential sources of contamination are present. Contamination is defined as “the presence of a substance of concern, or a condition, in concentrations above appropriate pre-established criteria in soil, sediment, surface water, groundwater, air, or structures” (CSA, 2016). To fulfill the objective of the Phase I ESA, the following scope of work was agreed to: ®Review of records that were reasonably attainable for the site and surrounding area; ®A site visit to observe the site, building exteriors (building interiors were not accessible at the time of the site visit) and surrounding property (as could be viewed from the site and surrounding public lands); ®Interviews of available persons knowledgeable with respect to past and current uses of the site; and, ®Evaluation of the findings and reporting. 1.3 Standards and Limiting Conditions This Phase I ESA was performed in accordance with the Phase I ESA guideline document produced by the Canadian Standards Association (CSA Z768-01 - reaffirmed in 2016). As such, this report is based on limited visual observations made during the site visit, interviews with available persons, a review of available historical records, and requests for information filed with government or other regulatory agencies. This ESA did not include sample collection, analysis or measurements, and is not intended to be a definitive investigation of contamination or other environmental concerns at the site. It is noted that the site had patches of snow cover present on the site grounds at the time of the site visit. On-site building interiors were not accessible. The grounds immediately surrounding the on-site fish plant buildings (PID No. 15408867) were also not accessible at the time of the site visit. Harbour Engineering Joint Venture Phase I ESA Glace Bay 2 CHAPTER 2 METHODOLOGY This section describes the methods used to conduct the historical records review, site visits and interview activities. 2.1 Records Review The records review consisted of requesting and reviewing information available from the client, government, public and other agencies or parties. Information was reviewed from the following sources: Agencies, Information, Source Documents and Publications: ®Nova Scotia Environment (NSE) Information Access and Privacy Environmental Registry; ®Environment and Climate Change Canada; ®National Air Photo Library (NAPL) (via Environmental Risk Information Services (ERIS)); ®Access Nova Scotia; ®CBRM Public Works Department; ®The Beaton Institute (local archives); ®Surficial and bedrock geology mapping; ®Topographic mapping; ®Service Nova Scotia and Municipal Relations Registry and Information Management Services; and, ®Canadian Standard Association (CSA) Standard Z768-01 for Phase I ESAs CSA, 2001 (reaffirmed in 2016). 2.2 Site Reconnaissance HEJV conducted a site visit on January 30, 2019. Activities conducted during the site visit included: ®Observation of the on-site building exteriors (building interiors were not accessible at the time of the site visit) and surrounding land at the site; and, ®Observation of the properties adjacent and nearby the site (to the extent possible) to assess use, as could be viewed from the site and adjoining public lands. 2.3 Interviews The interview portion of the Phase I ESA consisted of interviewing Mr. Glenn MacLeod, a former Cape Breton Development Corporation (CBDC) employee, via email. Information obtained through the interview has been incorporated into Section 3.10.1. Harbour Engineering Joint Venture Phase I ESA Glace Bay 3 CHAPTER 3 PHASE I ESA FINDINGS This section presents and discusses the findings of the Phase I ESA. A summary of the significant environmental issues that were identified is presented in Section 4.0. Report figures are presented in Appendix A. Photographs taken during the site visit are presented in Appendix B. 3.1 Site Location and General Description The site consists of the following eight properties as follows: Site Summary PID No./ Address Current Owner Zoning Designation1 Site Use2 15393606/ Dolphin Crescent Cape Breton Regional Housing Authority Residential/ Commercial Property consists of mainly vacant land with a baseball field located on the north portion. 15524481/ Lower North Street CBRM Vacant land with a drainage ditch located at the east boundary. 15654882/ 151 Lower North Street Glace Bay Miners Forum CO. LTD., CBRM, Nova Scotia Housing and Municipal Affairs, Richard Beaver, Jessie MacRae, Her Majesty the Queen in Right of the Province of Nova Scotia Commercial Bay Plex Recreation Centre building and associated parking area. 15821119/ Lower North Street Charles H. Rigby No Information Vacant in-filled land with a drainage ditch located at the east boundary. 15395221/ Lower North Street Marilyn Gillard Residential Vacant in-filled land. Harbour Engineering Joint Venture Phase I ESA Glace Bay 4 PID No./ Address Current Owner Zoning Designation1 Site Use2 15833007/ Lower North Street Marilyn Gillard No Information Vacant in-filled land. 15864085/ Lower North Street CBRM Resource Exempt Parking area (west portion), shoreline (central portion) of Glace Bay Harbour and partial water lot (east portion). 15408867/ 502 Main Street Hopkins H. Ltd.Commercial Parking area (west portion) and fish plant buildings (east portion). 1.Based on the Service Nova ScoƟa and Municipal RelaƟons Property Online database (accessed March 2019). 2.As observed during the January 30, 2019 site visit. The site has an approximate combined area of 31.08 acres based on the Service Nova Scotia and Municipal Relations Property Online database (accessed March 2019). The site location is illustrated on Figure 1,Appendix A. 3.2 Regional Geology/Hydrogeology To describe the regional physiography and expected hydrogeological conditions in association with the property, the following documents were reviewed: ®Grant, D.R., 1988: Surficial Geology, Cape Breton Island, Nova Scotia; Geological Survey of Canada, Map 1631A, scale 1:125,000; and, ®Bujak, J.P. and Donohoe, H.V., Jr., 1980. Geological Highway Map of Nova Scotia, Atlantic Geoscience Society, Special Publications Number 1. The surficial geology of the site is mapped as consisting of till, sandy; continuous veneer less than 2 to 4 meters (m) thick, with scattered thicker accumulations as crag-and-tail and drumlinoid hills. Bedrock geology mapping for the area indicates the site is underlain by the Morien Group, which consists of sandstone, siltstone, shale, conglomerate and coal. The site is relatively flat, with slight sloping to the south and southeast. The topographic gradient suggests that the regional shallow groundwater flow direction could be easterly toward the Atlantic Ocean. The local shallow groundwater flow direction below the site may vary from the regional context and be influenced by underground structures and utilities, which may be present in the vicinity of the site. Such features are typically back-filled with coarse grain materials, which may provide a more permeable conduit for groundwater flow when compared to the lower permeability of the native soils. Harbour Engineering Joint Venture Phase I ESA Glace Bay 5 3.3 Chain-of-Title-Search A chain-of-title search for the site was not requested as part of this assessment. Historical information was derived from aerial photography and additional sources as noted. Review of available information on Service Nova Scotia and Municipal Relations Registry and Information Management Services (accessed March 2019) included the following: Service Nova Scotia and Municipal Relations Registry and Information Management Services Summary PID No.Current Owner Available Documents 15393606 Cape Breton Regional Housing Authority ·An indenture, dated August 24, 1967, between Lynk Enterprises Limited (Grantor) and Nova Scotia Housing Commission (Grantee). 15524481 CBRM ·No documents available. 15654882 Glace Bay Miners Forum CO. LTD., CBRM, NS Housing and Municipal Affairs, Richard Beaver, Jessie MacRae and Her Majesty the Queen in Right of the Province of Nova Scotia ·A survey plan, dated January 20, 1995, depicting the current Bay Plex Recreation Centre building (noted as proposed on the plan) on the northeast portion of the property and the Glace Bay Miners Forum building on the southwest portion (this building no longer exists). ·A notice of approval of a plan of subdivision, dated January 17, 1995. The site owners are listed as the Glace Bay Miners Forum Company Limited, The Town of Glace Bay and Nova Scotia Housing Commission. 15821119 Charles H. Rigby ·Survey plans and a request to register deeds, dated November 22, 2016 and March 2, 2017. ·A registry of deeds, dated January 1, 1892 (additional details illegible). 15395221 Marilyn Gillard ·A warranty deed, dated May 29, 2007, between Isabelle Margaret O’Reilly and Joseph Blaise O’Reilly (Grantors) and Marilyn Gillard (Grantee). 15833007 Marilyn Gillard ·A registrar of deeds, dated November 8, 2007, submitted by Stephen Gillard. 15864085 CBRM ·A request to registrar deeds, dated March 10, 2005, and submitted by CBRM. 15408867 Hopkins H. Ltd.·No documents available. Harbour Engineering Joint Venture Phase I ESA Glace Bay 6 3.4 City Directories Available city directories were reviewed for the site and surrounding properties. Findings are summarized in the following table. City Directory Summary Year Listings1 1928 North Street: Residential property listings and commercial property listing Cameron Hugh & Sons Lumber (civic address 11 North Street). Minto Street: Residential property listings. 1948 North Street: Residential properties2 and a commercial property of Cameron Hugh & Sons Lumber (dealers) (civic address 11 North Street). Minto Street: Mainly residential listings, one commercial listing of Phalen’s Bakery (civic address 41) and some vacant property listings. 1961 North Street: On-site: Glace Bay Miners Forum Co Ltd (skating rink) (no civic address provided). Remaining listings consist of residential properties2, vacant properties, and commercial properties Cameron’s Hugh Sons Ltd. yard (no civic address provided) and Cameron Hugh Sons Ltd. lumber. Beach Street: Residential properties. Minto Street: Mainly residential listings; three commercial listings of Army Navy and Air Force Veterans welfare assistance (civic number 8), Rockets Club social club (civic number 18) and Phalen’s Bakery (civic address 39); and some vacant property listings. 1998 and 1999 Lower North Street: On-site: Bay Plex Recreation Centre (civic address 151 North Street. Remaining listings consist of residential properties, properties denoted as unverified, apartments, and commercial property Cameron’s Buildings Supplies Ltd. (building supplies and lumber yard) (152 North Street), Beach Street: Noted; however, there are no associated listings provided. Minto Street: Residential listings, including apartments; commercial listings of Jones Manor Home for Special Care (civic number 1), Sharon’s Trickle Trunk (pawn shop) and Army Navy & Air Force Club (civic number 7), Family Services of Glace Bay (civic number 9), Cape Breton Recycling Bottle Exchange (civic number 39); vacant listings and unverified listings. Dolphin Crescent: Residential, vacant and unverified listings. Oceancrest Drive: Residential, vacant and unverified listings.3 1.Relevant streets searched were not available/included in some directories years. 2.Including civic numbers 19 and 21 North Street, which coincide with the civic addresses of the former on-site residenƟal homes (i.e., PID Nos. 15833007, 15395221 and 15821119) based on available fire insurance mapping. 3.Including 57, 59, 61 and 63 Oceancrest Drive, discussed below in SecƟon 3.9.1. 4.Earlier directories include North Street; later directories include Lower North Street. 3.5 Aerial Photographs Aerial photographs obtained from NAPL (via ERIS) included photographs for the years 1931, 1947, 1953, 1965, 1971, 1987, 1990 and 1999. Google Earth images for 2003, 2010, 2012, 2013, 2014, 2017 and 2018 were also reviewed. A summary of the review of the available aerial photographs and images is presented in the following table. It is noted that the scale and resolution of the photographs varied Harbour Engineering Joint Venture Phase I ESA Glace Bay 7 and did not always allow for a detailed evaluation of the surface conditions at the site or adjacent properties. Aerial Photograph Review Summary Year Observations 1931,1947, 1953 and 1965 PID Nos. 15408867 and 15864085:The portion of the site located east of North Street/Lower North Street is visible as vacant land and a water lot portion (i.e., portion of PID No.15864085). In the 1953 aerial photograph, a commercial building is visible on the south portion of on-site PID No. 15408867. In the 1965 aerial photograph two additional buildings and what appear to be two storage trailers or seacans are also visible on the south portion of PID No. 15408867. A wharf and several buildings/structures are visible immediately northeast and east of this portion of the site. Beech Street is visible northeast of the site. Several buildings, which appear to be a residential and commercial mix, are visible on the southwest side of Beech Street. PID No. 15654882: What appears to be a road is visible on the north portion of the site, running southeast to northwest from Lower North Street/North Street. The Glace Bay Miners Forum building is visible on-site in the 1947 aerial photograph. Adjoining properties appear to be mainly residential with some commercial use. PID Nos. 15833007, 15395221 and 15821119: What appears to be two residential homes are visible on-site (denoted as 19 and 21 North Street on available fire insurance mapping). A third residential home is visible immediately northeast of what appears to be the northeast site boundary (i.e., northeast of PID No. 15821119). PID Nos. 15524481 and 15393606: a building (denoted as a tennis club in the 1928 revised to 1938 Fire Insurance Mapping) and what appears to be a clearing are visible on the southwest portion of PID No. 15393606 in the 1931 and 1947 aerial photographs; however, it is no longer present in the 1953 aerial photograph. A driveway, from an off-site residential home, is visible on-site intersecting both PID Nos. 15524481 and 15393606 and connecting to Lower North Street. What appears to be two residential homes are also visible on the northwest portion of PID No. 15393606. The remainder of these site PIDs is visible as vacant land with paths/trails intersecting. Surrounding properties appear mainly residential in nature with some commercial development. 1971 The storage trailers/seacans are no longer visible on-site at PID No. 15408867. Dolphin Crescent, Bluewater Drive and Oceancrest Drive have been developed west of the site. Several multi-unit duplex buildings are now visible along these roadways. The residential home previously visible immediately adjacent to the northeast site boundary of PID No. 15821119 has been removed. 1987 and 1990 In total, five commercial buildings (which appear to be associated with a fish plant) are visible on the south portion of the site on PID No. 15408867 (southeast of Lower North Street/North Street). A breakwater is now visible extending into Glace Bay Harbour northeast of the site (i.e., northeast of on-site PID No. 15864085). A baseball field is visible on the north portion of the site on PID No. 15393606. The residential homes previously visible on-site on PID Nos. 15833007, 15395221 and 15821119 have been removed. The driveway (from an off-site residential home, which remains present) previously visible intersecting both PID Nos. 15524481 and 15393606, and connecting to Lower North Street, is now vegetation covered (i.e., this off-site Harbour Engineering Joint Venture Phase I ESA Glace Bay 8 Year Observations 1987 and 1990 (cont.) property is now accessible from Oceancrest Drive). Further residential development is visible on the surrounding properties. 1999, 2003, 2010, 2012, 2013, 2017 and 2018 The on-site Glace Bay Miners Forum building, previously visible on-site on PID No. 15654882 has been removed. The Bay Plex Recreation Centre is now visible on-site on PID No. 15654882. In the 2017 image, infilling is visible on-site on PID Nos. 15833007, 15395221 and 15821119, with further infilling in this area apparent in the 2018 image. 3.6 Fire Insurance Plans and Inspection Reports Fire Insurance Plans, dated February 1928 revised to October 1938, show a foundation/skating rink on the southwest portion of the site (PID No. 15654882). Two residential dwellings (civic number 19 and 21 North Street) and three sheds are mapped on the central portion of the site (i.e., PID Nos. 15833007, 15395221 and 15821119). A club house and tennis court are also mapped centrally on-site on PID No. 15393606. The east and southeast portions of the site (east of lower North Street) is mapped as vacant land. Surrounding properties are mapped as mainly residential, with a lumberyard mapped immediately south of the site (south of PID No. 15654882), a garage with a petroleum storage tank mapped immediately south of the site (south of PID No. 1564882) and an auto junk yard/auto parts yard is mapped further south, across Main Street. Hugh Cameron & Sons lumber yard is mapped southeast of the site, across North Street (i.e., southeast of PID No. 15654885). Sheds, a boat house and warehouse are mapped southeast of the site (i.e., southeast of PID No. 15408867). Due to the anticipated groundwater flow direction, the former garage and auto junk yard/auto parts yard are not expected to represent a potential environmental concern for the site. Fire insurance plans, dated March 1959, show the Glace Bay Miners Forum (skating rink) on the southwest portion of the site (PID No. 15654882). The east portion of the site (east side of lower North Street) (PID No. 15864085) is mapped as vacant. A packing and cold storage building (fish plant), with two fuel oil tanks is mapped on the southeast portion of the site (east of Lower North Street) (i.e., PID No. and 15408867). Two residential dwellings and two sheds are mapped on the central portion of the site (i.e., PID Nos. 15833007, 15395221 and 15821119). Surrounding properties are mainly residential, with Hugh Cameron & Sons Lumber Piling Building Materials and grounds mapped south and southwest of the site. No inspection reports were available for the site. 3.7 A.F. Church Mapping A.F. Church mapping, dated March 1864, was reviewed for the site. The site is mapped; however, labelling is mostly illegible. Legible labelling on, or near, the site includes residential listings. 3.8 Previous Environmental Reports/Client File Review No previous environmental reports were located through the historical search request or were provided by the client for review. Harbour Engineering Joint Venture Phase I ESA Glace Bay 9 3.9 Regulatory Agency and Database Files 3.9.1 Department of Environment NSE Information Access and Privacy was contacted on January 23, 2019 to request an Environmental Registry Search for historical information regarding environmental infractions, including reported spills, approvals and/or orders issued at the site or on the immediately surrounding properties, and if the lands have been used for waste disposal. Between February 1 and 4, 2019, NSE responded that no information was located through the Environmental Registry with regard to the site or the surrounding properties searched. However, two records, which were subject to the Freedom of Information and Protection of Privacy (FOIPOP)Act, were identified as follows. ®A contaminated sites complaint file pertaining to 57, 59, 61 and 63 Oceancrest Drive; and, ®A water resource management complaint file pertaining to 30 Bell Street. Requests for these records were subsequently submitted through the FOIPOP Act. On February 19, 2019, Dillon received a response from NSE indicating that the requested FOIPOP Act records pertaining to a contaminated sites complaint file for 57, 59, 61 and 63 Oceancrest Drive (which is located immediately west of the site) were not available and that the file was destroyed as per the appropriate NSE retention schedule. On March 11, 2019, Dillon received a response from NSE providing a portion of the FOIPOP Act records requested pertaining to the water resource management complaint file for 30 Bell Street. The provided records for 30 Bell Street include: ®A sequence of events record, with dates spanning between February 26 and March 5, 2012, pertaining to dredge spoils from Glace Bay Harbour; ®A file activity report, dated February 26, 2019, indicating that John Phalen (CBRM Public Works East Division) had received complaints from citizens regarding the disposal of dredged materials being deposited on the lands of Joe Parsons off of Dominion Street in Glace Bay; ®A file activity report, dated February 27, 2012, regarding notification of the NSE inspector regarding a Glace Bay Harbour dredging complaint. Correspondence indicated that NSE received a call regarding dredge spoils from Glace Bay Harbour being deposited on lands on Dominion Street in Glace Bay. Public Works Government Services Canada was reportedly managing the dredge removals and a contractor was locating suitable disposal sites. The complaint was reportedly made by CBRM East Division Public Works; ®A file activities report, dated March 2, 2012, regarding complaints related to dredge spoils from Glace Bay Harbour; and, ®A file activity report, dated March 5, 2012, in regard to an inspection to be conducted where the dredge spoils were stored. Due to the distance of the disposal property on Dominion Street from the site, this record is not expected to represent an environmental concern for the site. These records and NSE correspondence is presented in Appendix D. Harbour Engineering Joint Venture Phase I ESA Glace Bay 10 3.9.2 Environment and Climate Change Canada Environment and Climate Change Canada was contacted on February 5, 2019 to request a search under the Access to Information Act. On March 7, 2019, Environment and Climate Change Canada responded that an extension was required beyond the statutory 30 day limit allowed for processing of the request. Environment and Climate Change Canada correspondence received to date is presented in Appendix D. 3.10 Site Visit The site visit was conducted on January 30, 2019 to identify visual or other physical evidence of actual or potential sources of environmental impact from current or historical site use, as well as surrounding land uses. At the time of the site visit, the site grounds had sparse patches of snow cover. 3.10.1 Site Description The site consists of six adjoining properties on the west side of North Street/Lower North Street and two adjoining properties on the east side of North Street/Lower North Street including: Site Summary PID No.Current Owner Site Use 15393606 Cape Breton Regional Housing Authority This portion of the site consists of mainly vacant land with a baseball field located on the north portion. Miscellaneous debris (i.e., household appliances, rubber, plastic, wood and metal) was observed scattered across the property. Several trails, which appeared to be in use by all-terrain vehicles (ATVs) were also observed across this portion of the site. The southeast portion of the site was observed to be in-filled. Concrete, asphalt, rubber, wood, plastic and metal debris was observed within the in-filled areas of the site. Areas of frozen standing water were observed across the site. 15524481 CBRM This portion of the site consists of vacant land, with a drainage ditch located at the east boundary. Miscellaneous debris (i.e., a steel barrel, plastic and wood) was observed on the ditch banks at the time of the site visit. Water in the ditch was frozen at the time of the site visit. 15654882 Glace Bay Miners Forum CO. LTD., CBRM, NS Housing and Municipal Affairs, Richard Beaver, Jessie MacRae, Her Majesty the Queen in Right of the Province of Nova Scotia This portion of the site consists of the Bay Plex Recreation Centre building and associated asphalt and gravel parking areas. The interior of the Bay Plex building was not accessible at the time of the site visit. Small gravel piles were observed in the parking lot area, which may be associated with snow removal activities. Two propane tanks were observed on the northwest side of the Bay Plex building. A high voltage equipment enclosure was Harbour Engineering Joint Venture Phase I ESA Glace Bay 11 PID No.Current Owner Site Use 15654882 Continued observed on the northwest portion of the site. A pad- mounted transformer, a third propane tank, a fuel oil aboveground storage tank (AST), metal and plastic debris was observed on the northeast side of the Bay Plex Building. Fire hydrants were also observed on-site. Based on available public information, the Bay Plex building reportedly requires mould abatement and remediation prior to planned renovation and upgrades to the facility. 15821119 Charles H. Rigby This portion of the site consists of vacant in-filled land. Concrete, asphalt, rubber, wood, plastic and metal debris was observed within the in-filled areas of the site. A drainage ditch is located on the east site boundary. Miscellaneous debris (i.e., plastic and wood) was observed on the ditch banks at the time of the site visit. Water in the ditch was frozen at the time of the site visit. 15395221 and 15833007 Marilyn Gillard This portion of the site consists of vacant in-filled land. Concrete barriers were observed on site. Concrete, asphalt, rubber, wood, plastic and metal debris was observed within the in-filled areas of the site. A drainage ditch was observe along the southwest portion of the site. Water within the ditch was frozen at the time of the site visit. 15864085 CBRM This portion of the site consists of a parking area (southwest portion), shoreline (central portion) of Glace Bay Harbour and partial water lot (northeast portion). A black pipe was observed on the central portion of the site heading east to the breakwater and Glace Bay Harbour (use unknown). 15408867 Hopkins H. Ltd.This portion of the site consists of a parking area (east portion) and fish plant buildings (west portion). The interior and grounds immediately surrounding the fish plant buildings were not accessible at the time of the site visit. Seven fill piles were observed on the northwest portion of the site. A ditch was observed on the southeast portion of the site, immediately northwest of the on-site fish plant buildings. Debris (i.e., plastic and cardboard) was observed along the length of, and in, the ditch. A ditch was also observed at the southwest site boundary adjacent to Beech Street. Ponded water in both ditches was frozen at the time of the site visit. The subject and surrounding properties are illustrated on Figure 2 and the site plan is illustrated on Figures 3A and 3B,Appendix A. Harbour Engineering Joint Venture Phase I ESA Glace Bay 12 Discussions with Mr. Glenn MacLeod, a former CBDC employee, indicate that the portion of the site designated for the proposed WWTP and lift station locations (i.e., portions of PID Nos. 15864085, 15408867, 15821119, 15395221, 15833007 and 15393606) are underlain by coal seams as follows: ®There is approximately 30 m to 50 m of cover over the Harbour Seam at the proposed lift station location. There are no documented mine workings on the Harbour Seam under the proposed lift station location; however, it is highly suspected that the Old Harbour Pit worked this area. Sterling Mine workings (also on the Harbour Seam and west of the site) approach to within approximately 100 m. Further, there is approximately 46 to 57 m of cover over the Harbour Seam at the proposed WWTP location. The Sterling Mine (Harbour Seam) underlies the northwest corner of the proposed WWTP location. There are no documented workings on the Harbour Seam beneath the remainder of the site; however, it is likely the Old Harbour Pit worked in this area. ®Phalen and Emery Seam workings also underlie the proposed on-site lift station location, and their depths are approximately 175 m and 225 m, respectively. Phalen Seam workings also underlie the site at a depth of approximately 182 m in the area of the proposed on-site WWTP location. The Emery Seam also underlies the site at the proposed WWTP location at the depth of approximately 227 m; however, there are no documented workings at the site on the seam. 3.10.2 Site Services and Utilities The site and surrounding area are serviced by municipal water and sewer. Fire hydrants were observed on the southwest portion of the site. Overhead power lines were observed on roadways adjacent to the site. 3.10.3 Storage Tanks Three propane tanks and one fuel oil storage tank were observed on the west portion of the site (i.e., on PID No. 15654882) in association with the Bay Plex Building. The AST was observed to be in fair condition with some surface rusting apparent. The tank was located within a fenced enclosure. The tank tag was not visible. Although not observed, petroleum storage tanks are suspected on the southeast portion of the site (i.e., on PID No. 15408867) in association with the on-site fish plant buildings. Heating sources and practices associated with former on-site buildings are unknown. 3.10.4 Mechanical Equipment Mechanical equipment was observed on the west and southeast portion of the site in association with the Bay Plex building and the fish plant buildings. 3.10.5 Drains and Sumps It is unknown if drains or sumps are present within the on-site buildings, the interiors of which were inaccessible at the time of the site visit. 3.10.6 Special Attention Items Materials such as asbestos, polychlorinated biphenyls (PCBs), lead, ozone depleting substances (ODS), mercury, urea formaldehyde foam insulation (UFFI), radon, excess noise and electric/magnetic fields may be of special significance, if present, because of the heightened public concern regarding their use. The following paragraphs address remaining special attention items relative to the site. Harbour Engineering Joint Venture Phase I ESA Glace Bay 13 3.10.6.1 ASBESTOS CONTAINING MATERIALS Due to its good insulation and fire retardant properties, asbestos and asbestos containing materials (ACM) were frequently used in building materials from the 1920s to the late 1970s. Uses included, but were not limited to, insulation, flooring, fire rated doors, gaskets, siding and roofing materials, drainage piping and wallboard. The use of friable ACM generally ceased in the late 1970s, with the exception of vermiculite. Vermiculite is a naturally occurring clay mineral, which has been used in residential and commercial buildings as insulation and as an additive in a variety of building products. Health Canada issued a health advisory bulletin in April 2004 regarding the potential risks to health associated with vermiculite insulation that may contain asbestos. The health risk associated with asbestos occurs when asbestos fibres are released from various materials into the ambient air. Asbestos may also be present in manufactured materials (e.g., cement, plaster, industrial furnaces and heating systems, building insulation, floor and ceiling tiles and siding) manufactured after the 1970s. Friable ACMs are materials that when dry can be crumbled, pulverized or powdered with hand pressure and are a potential health concern should asbestos fibres become exposed and airborne. Friable ACM can remain in a building provided that it is appropriately managed (e.g., encapsulation) through implementation of an ACM management plan. If friable asbestos is found to be present in or around an air supply or return system it should be removed. Non-friable asbestos may be considered friable if disturbed. A non-friable asbestos product is one in which the asbestos fibers are bound or locked into the product matrix, so that the fibers are not readily released. Those materials that when dry, cannot easily be crumbled, pulverized or reduced to a powder by hand or moderate pressure. Such a product would present a risk for fiber release only when it is subject to significant abrasion through activities such as sanding or cutting with electric power tools. Examples of nonfriable asbestos products include vinyl asbestos floor tiles, acoustic ceiling tiles, and asbestos cement products. Those materials that when dry, cannot easily be crumbled, pulverized or reduced to a powder by hand or moderate pressure. Based on the age of the fish plant buildings located on the southeast portion of the site (i.e., PID No. 15408867), ACM may be present on-site. Testing would be required to confirm/refute the presence of ACM. It is noted that an asbestos survey was not conducted as part of this ESA. Further, building interiors were not accessible at the time of the site visit. Demolition practices associated with former on-site buildings, which may have contained ACM, are unknown. 3.10.6.2 POLYCHLORINATEDBIPHENYLS (PCBS) PCBs are commonly associated with dielectric fluids within electrical equipment manufactured in Canada prior to approximately 1979. A pad-mounted transformer was observed on the west portion of the site (i.e., PID No. 15654882) adjacent to the Bay Plex Building. It is unknown if this transformer is PCB containing. The transformer was observed to be in good condition and situated on a concrete pad. No evidence of leakage or staining was observed. Harbour Engineering Joint Venture Phase I ESA Glace Bay 14 Pole-mounted transformers, which may be PCB containing, were observed both on, and adjacent to, the site. The pole-mounted transformers are the property of Nova Scotia Power Incorporated (NSPI). These transformers are not expected to result in an environmental concern for the site. 3.10.6.3 LEAD Paint manufacturers historically added heavy metals, including lead, to paint, because of their desirable property such as rust prevention or as a bactericide. In 1976, Canadian regulators established the Hazardous Materials Product Act - Liquid Coating that limited the amount of lead in interior paint to 0.5%. In 1990, an industry agreement ceased the use of lead in exterior paint in Canada. Subsequent to this, the Surface Coating Materials Regulations were promulgated (in 2005), reducing the allowable lead content of paints to 0.06% (600 ppm). Other historical uses of lead in buildings include, but are not limited to, water pipes, pipe fitting solder, roof flashings, equipment and column base pads and concrete anchors. Based on the age of the fish plant buildings located on the southeast portion of the site (i.e., PID No. 15408867), lead-containing paint and/or solder may be present. Testing would be required to confirm/refute the presence of lead. Precautionary measures should be taken for individuals considered sensitive to lead if paint is peeling or in poor condition. Paint with elevated lead concentrations, which is in poor condition should be removed using a qualified lead abatement contractor. Precaution should be exercised during renovations that disturb lead-containing surfaces to minimize exposures. Demolition practices associated with former on-site buildings, which may have had lead-containing paint and/or solder, are unknown. 3.10.6.4 MERCURY Mercury is a metal with a tendency to bioaccumulate in the environment and is listed in Schedule I of the Canadian Environmental Protection Act (1999), the list of toxic substances. Some species of mercury, prevalent in the vapour phase, pose a concern to human health. Prior to 1991, mercury compounds were used in interior latex paints. The use of mercury based compounds ceased in 1991. Mercury containing equipment may be present within the on-site buildings, the interiors of which were not accessible at the time of the site visit. Further, based on the age of the fish plant buildings, located on the southeast portion of the site (i.e., PID No. 15408867), mercury containing paints may be present. Disposal of mercury containing paints or equipment, if found on-site, should be in accordance with provincial regulations. 3.10.6.5 OZONE-DEPLETING SUBSTANCES (ODS) ODS, such as chlorofluorocarbons (CFCs), are manufactured compounds used in a variety of applications such as air-conditioning coolants, industrial solvents, foam products, fire suppressants etc. Each province in Canada has passed legislation requiring mandatory recovery and reclamation of refrigerants during the maintenance of air-conditioning equipment. The on-site building interiors were inaccessible at the time of the site visit. However, based on the nature of on-site building use (i.e., fish plant and rink), ODS equipment is expected to be present on- Harbour Engineering Joint Venture Phase I ESA Glace Bay 15 site. Maintenance to units containing ODS should be conducted using licensed contractors. Refrigerant gases are required to be drained and recovered by a licensed contractor prior to disposal. 3.10.6.6 UREA FORMALDEHYDE FOAM INSULATION (UFFI) UFFI was used as an insulaƟon product during the mid-1970s and was banned in Canada in 1980. The on-site building interiors were inaccessible at the Ɵme of the site visit.Due to the age of the on-site fish plant buildings,located on the southeast porƟon of the site (i.e., PID No. 15408867), UFFI may be present. If found on-site, UFFI should be removed as per provincial regulaƟons. 3.10.6.7 NOISE No issues related to noise were identified. 3.10.6.8 MAGNETIC FIELDS The environmental effects of magnetic fields have been the subject of extensive study and are the subject of heightened public concern, particularly in residential areas. There are no generally accepted guidelines at present to provide specific guidance on this issue. Potential sources of magnetic fields observed during the site visit include a communication tower located west and south of the site. 3.10.6.9 RADON Radon is produced due to the natural decay of radium from some soil and rock types. Radon gas may be a concern in buildings if there is an unventilated space for gas to accumulate, such as a basement or crawlspace. Due to the local geology, radon is not suspected. Testing of radon was not completed as part of this Phase I ESA. Testing would be required to confirm the presence/absence of radon. 3.10.7 Chemical and Hazardous Materials Management No chemicals or hazardous materials were observed on-site. It is noted that the on-site building interiors were not accessible at the time of the site visit. 3.10.8 Pesticides No known pesticide application has occurred on-site. 3.10.9 Unidentified Substances No unidentified substances were observed on-site. 3.10.10 Solid Waste Management Solid waste management practices associated with the on-site fish plant buildings and Bay Plex building are unknown. Miscellaneous debris, including household appliances, metal, plastic, wood, and rubber, were observed across the site. 3.10.11 Fill Materials Portions of the site (i.e., PID Nos. 15393606, 15833007, 15395221 and 15821119) were observed to be in-filled. Concrete, asphalt, rubber, wood, plastic and metal debris was observed within the in-filled Harbour Engineering Joint Venture Phase I ESA Glace Bay 16 areas of the site. Seven fill piles were observed on the east portion of the site (i.e., on PID No. 15408867). A gravel fill pile was observed on the southwest portion of the site (i.e., on PID No. 15654882) in the gravel parking area of the Bay Plex. This fill pile may be associated with snow removal activities. 3.10.12 Spills, Stained Areas and Stressed Vegetation No spills, stained areas or stressed vegetation were observed. It is noted that at the time of the site visit, the site grounds had patches of snow cover. 3.10.13 Pits and Lagoons No pits or lagoons were observed. 3.10.14 Watercourses, Ditches or Standing Water The northeast portion of the site consists of a water lot (Glace Bay Harbour). A watercourse intersects the east portion of the site. Ditches are located on southeast, east and central portions of the site. Standing water in the ditches was observed to be frozen at the time of the site visit. Areas of ponded frozen standing water were observed across the site. 3.10.15 Air Emissions and Odours No air emissions or odours were noted on-site at the time of the site visit. 3.10.16 Observation of Adjoining Properties This site is surrounded to the north, northeast and northwest by residential housing. A fish plant and Glace Bay Harbour border the site to the east and southeast. Residential homes, a lumber business and lumber yard border the site to the south. Southeast of the site are residential homes along Edgar Street. North Street/Lower North Street intersects the site. Harbour Engineering Joint Venture Phase I ESA Glace Bay 17 CHAPTER 4 SUMMARY AND RECOMMENDATIONS ®Buildings associated with fish plant operations (Hopkins H. Ltd.) are located on the south portion of the site (i.e., PID No. 15408867). Available fire insurance plans show a petroleum storage tank historically located on this portion of the site. The fish plant building interiors and the immediately surrounding grounds of these buildings were not accessible at the time of the site visit. Current petroleum storage on this portion of the site is unknown. Further, the exact use of these fish plant buildings is also unknown. As these on-site buildings are located down gradient of the proposed WWTP and lift station locations, and as the anticipated groundwater flow direction is expected to be easterly toward Glace Bay Harbour, these buildings are unlikely to represent an environmental concern relative to the proposed locations of the WWTP and lift station. ®Findings of a NSE environmental registry search identified a contaminated sites complaint file for 57, 59, 61 and 63 Oceancrest Drive (located immediately west of the site). These records, which were subject to the FOIPOP Act, were subsequently requested. Findings of the FOIPOP Act request indicate that the records were not available and that the file was destroyed as per the NSE retention schedule. Therefore, the contents and nature of the contaminated sites complaint are unknown. Although located immediately adjacent to the site (i.e., immediately west of PID No. 15393606), these properties are approximately 200 m and 325 m northwest of the proposed WWTP and lift station locations, respectively. Further, as the groundwater flow direction is anticipated to be easterly, the potential for impacts to the actual proposed WWTP and lift station locations within the site from 57, 59, 61 and 63 Oceancrest Drive are considered to be low. ®Based on the age of the fish plant buildings located on the southeast portion of the site (i.e., PID No. 15408867), ACM may be present on-site. Testing would be required to confirm/refute the presence of ACM. It is noted that an asbestos survey was not conducted as part of this ESA. Further, building interiors were not accessible at the time of the site visit. Demolition practices associated with former on-site buildings, which may have contained ACM, are unknown. ®A pad-mounted transformer was observed on the west portion of the site (i.e., PID No. 15654882) adjacent to the Bay Plex Building. It is unknown if this transformer contains PCBs. The transformer was observed to be in good condition and situated on a concrete pad. No evidence of leakage or staining was observed. ®An AST was observed on the west portion of the site (i.e., on PID No. 15654882) in association with the Bay Plex Building. The AST was observed to be in fair condition with some surface rusting apparent. The tank was located within a fenced enclosure. The tank tag was not visible. Although not observed, petroleum storage tanks are suspected on the southeast Harbour Engineering Joint Venture Phase I ESA Glace Bay 18 portion of the site (i.e., on PID No. 15408867) in association with the on-site fish plant buildings. Historical heating sources and practices associated with former on-site buildings are unknown. Further assessment would be required to assess if former or current petroleum storage on-site has resulted in an environmental concern for the site. ®Based on the age of the fish plant buildings located on the southeast portion of the site (i.e., PID No. 15408867), lead-containing paint and/or solder may be present. Testing would be required to confirm/refute the presence of lead. Precautionary measures should be taken for individuals considered sensitive to lead if paint is peeling or in poor condition. Paint with elevated lead concentrations, which is in poor condition should be removed using a qualified lead abatement contractor. Precaution should be exercised during renovations that disturb lead-containing surfaces to minimize exposures. Demolition practices associated with former on-site buildings, which may have had lead-containing paint and/or solder, are unknown. ®Mercury containing equipment may be present within the on-site buildings, the interiors of which were not accessible at the time of the site visit. Further, based on the age of the fish plant buildings, located on the southeast portion of the site (i.e., PID No. 15408867), mercury containing paints may be present. Disposal of mercury containing paints or equipment, if found on-site, should be in accordance with Provincial regulations. Demolition practices associated with former on-site buildings, which may have had mercury-containing paint and/or equipment, are unknown. ®The on-site building interiors were inaccessible at the time of the site visit; however, based on the nature of on-site building use (i.e., fish plant and rink), ODS equipment is expected to be present on-site. Maintenance to units containing ODS should be conducted using licensed contractors. Refrigerant gases are required to be drained and recovered by a licensed contractor prior to disposal. ®The on-site building interiors were inaccessible at the time of the site visit. Due to the age of the on-site fish plant buildings, located on the southeast portion of the site (i.e., PID No. 15408867), there is potential that UFFI may be present. If found on-site, UFFI should be removed as per provincial regulations. ®Potential sources of magnetic fields observed during the site visit include a communication tower located west and south of the site. ®Miscellaneous debris, including household appliances, metal, plastic, wood, and rubber, were observed across the site. Debris should be removed to a licenced disposal facility. ®Portions of the site (i.e., PID Nos. 15393606, 15833007, 15395221 and 15821119) were observed to be in-filled. Concrete, asphalt, rubber, wood, plastic and metal debris was observed within the in-filled areas of the site. Seven fill piles were observed on the east portion of the site (i.e., on PID No. 15408867). A gravel fill pile was observed on the southwest portion of the site (i.e., on PID No. 15654882) in the gravel parking area of the Bay Plex. This fill pile may be associated with snow removal activities. Sampling would be require to confirm if impacts are present on-site from the observed fill materials. ®As noted previously, the interior of the on-site Bay Plex building was not accessible at the time of the site visit. Based on available public information, the Bay Plex building reportedly requires mould abatement and remediation prior to planned renovation and upgrades to the facility. ®Findings of the Environment and Climate Change Canada search request are currently pending and will be incorporated into the Final report if available at that time. Harbour Engineering Joint Venture Phase I ESA Glace Bay 19 CHAPTER 5 LIMITATIONS This report was prepared exclusively for the purposes, project and site location outlined in the report. The report is based on information provided to, or obtained by HEJV as indicated in the report, and applies solely to site conditions existing at the time of the site investigation. Although a reasonable investigation was conducted by HEJV, HEJV’s investigation was by no means exhaustive and cannot be construed as a certification of the absence of any contaminants from the site. Rather, HEJV 's report represents a reasonable review of available information within an agreed work scope, schedule and budget. It is therefore possible that currently unrecognized contamination or potentially hazardous materials may exist at the site, and that the levels of contamination or hazardous materials may vary across the site. Further review and updating of the report may be required as local and site conditions, and the regulatory and planning frameworks, change over time. Harbour Engineering Joint Venture Phase I ESA Glace Bay 20 CHAPTER 6 CLOSING This report was prepared by HEJV for the sole benefit of our client, CBRM. The material in the report reflects HEJV's judgment in light of the information available to HEJV at the time of preparation. Any use which a third party (i.e. a party other than our Client) makes of this report, or any reliance on or decisions made based on it, are the responsibilities of such third parties. HEJV accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. Harbour Engineering Joint Venture Phase I ESA Glace Bay 21 CHAPTER 7 REFERENCES ®Nova Scotia Environment (NSE) Information Access and Privacy Environmental Registry. ®National Air Photo Library (NAPL) (via Environmental Risk Information Services (ERIS). ®The Beaton Institute (archive records). ®Grant, D.R., 1988: Surficial Geology, Cape Breton Island, Nova Scotia; Geological Survey of Canada, Map 1631A, scale 1:125,000; and, ®Bujak, J.P. and Donohoe, H.V., Jr., 1980. Geological Highway Map of Nova Scotia. Atlantic Geoscience Society, Special Publications Number 1. ®Service Nova Scotia and Municipal Relations Registry and Information Management Services. ®Canadian Standard Association (CSA) Standard Z768-01 for Phase I ESAs CSA, 2001 (updated April 2003 and reaffirmed in 2016). Harbour Engineering Joint Venture Phase I ESA Glace Bay 23 APPENDIX A Figures MAP/DRAWING INFORMATIONNational Topographic System Mapsheets 11J/04.SITE LOCATION MAPFIGURE 1 CREATED BY: TLRCHECKED BY: NJWDESIGNED BY: NJW PROJECT: 18-7116 DATE: APRIL 2019 1000m500 SCALE 1:50,000 0 N S EW250 SITE LOCATION CAPE BRETON REGIONAL MUNICIPALITY PHASE I ESA PROPOSED WWTP SITE GLACE BAY, NS N O V A S C O T I A NOVA SCOTIA KEY MAP Harbour Engineering Joint Venture Phase I ESA Glace Bay 24 APPENDIX B Site Photographs 1. Overview of the east portion of the site (i.e., PID No. 15408867) looking southwest. 3. View of debris observed on the on-site drainage ditch northwest of the fish plant buildings (PID No. 15408867). 2. Overview of the fish plan buildings on the east portion of the site (i.e., PID No. 15408867). 4. View of the east portion of the site, with fill piles and Glace Bay Harbour visible in the background (i.e., PID Nos. 15864085 and 154088867), looking north. 5. View of the in-filled area of the site (i.e., PID Nos. 15833007, 15395221 and 15821119) looking north. 7. Overview of the central portion of the site (i.e., PID No. 15393606) looking southwest, with the on-site Bay Plex building visible in the background (i.e., PID No. 15654882). 6. Overview of the central portion of the site (i.e., PID No. 15393606) looking south, with the on-site Bay Plex building visible in the background (i.e., PID No. 15654882). 8. Overview of the north portion of the site (i.e., PID No. 15396306) looking north to the on-site ball field. 9. Overview of the north portion of the site (i.e., PID No. 15396306) looking southwest to the on-site ball field. 11. View of the on-site transformer adjacent to the Bay Plex building (i.e., PID No. 15654882) looking northeast. 10. View of miscellaneous debris observed on the west portion of the site (i.e., PID No. 15393606) looking east. 12. View of the on-site AST at the Bay Plex building (i.e., PID No. 15654882) looking west. Harbour Engineering Joint Venture Phase I ESA Glace Bay 25 APPENDIX C Regulatory Correspondence PO Box 442 Halifax, Nova Scotia B3J 2P8 Information Access ph: (902) 424-2549 and Privacy fax: (902) 424-6925 February 1, 2019 Our file # ENV-2019-0186/0197 Email: nwambolt@dillon.ca Nadine Wambolt Dillon Consulting Ltd. 275 Charlotte Street Sydney NS B1P 1C6 Dear Ms. Wambolt: RE: 151 Lower North St. Lot 1 (PID 15654882); 540 Main St. Lot 1 (PID 15575814); 23 Main St. (PID 15395080); 27 Main St. (PID 15395072); 554 Main St. (PID 15395064); 556 Main St. (PID 15395056); 12 Minto St. (PID 15394968); 9 Minto ST. (PID 15395551); 15 Minto St. (PID 15395643); Minto St. (PID 15525132); 22 Minto St. (PID 15394943); and 1-7 Dolphin Cres. (PID 15856784), Glace Bay I refer to your enquiry of the Environmental Registry received January 23, 2019. We acknowledge receipt of payment for 12 properties. No information was located through the Environmental Registry with regards to the above referenced properties. Nova Scotia Environment makes no representations or warranties on the accuracy or completeness of the information provided. Sincerely, Tina Skeir Information Access Office PO Box 442 Halifax, Nova Scotia B3J 2P8 Information Access ph: (902) 424-2549 and Privacy fax: (902) 424-6925 February 1, 2019 Our file # ENV-2019-0232/0241 Email: nwambolt@dillon.ca Nadine Wambolt Dillon Consulting Ltd. 275 Charlotte Street Sydney NS B1P 1C6 Dear Ms. Wambolt: RE: 9,11,13&15 Dolphin Cres. (PID 15856784); 17,19,21&23 Dolphin Cres. (PID 15856784); 25,27,29&31 Dolphin Cres. (PID 15856784); 33&35 Dolphin Cres. (PID 15856784); 45&47 Oceancrest Dr. (PID 15856750); 49&51 Oceancrest Dr. (PID 15856750); 26&28 Oceancrest Dr. (PID 15854292); 30&32 Oceancrest Dr. Lot 3 (PID 15854292); 34&36 Oceancrest Dr. Lot 3 (PID 15854292); and 38&40 Oceancrest Dr. Lot 3 (PDI 15854292), Glace Bay I refer to your enquiry of the Environmental Registry received January 23, 2019. We acknowledge receipt of payment for 10 properties. No information was located through the Environmental Registry with regards to the above referenced properties. Nova Scotia Environment makes no representations or warranties on the accuracy or completeness of the information provided. Sincerely, Tina Skeir Information Access Office PO Box 442 Halifax, Nova Scotia B3J 2P8 Information Access ph: (902) 424-2549 and Privacy fax: (902) 424-6925 February 1, 2019 Our file # ENV-2019-0203/0222 Email: nwambolt@dillon.ca Nadine Wambolt Dillon Consulting Ltd. 275 Charlotte Street Sydney NS B1P 1C6 Dear Ms. Wambolt: RE: 15&29 Dolphin Cres. (PID 15393606); 2,4,6,&8 Dolphin Cres. (PID 15856776); 69&71 Oceancrest Dr. (PID 15393820); 57,59,61&63 Oceancrest Dr. Lot 5 (PID 15856768); 41&43 Oceancrest Dr. Lot 4 (PID 15856750); 22&24 Oceancrest Dr. Lot 3 (PID 15854292); 35 Oceancrest Dr. (PID 15394703); 29 Oceancrest Dr. (PID 15394695); 722 Minto St. (PID 15394612); 72 Minto St. (PID 15394604); 76 Minto St. (PID 15394596); 80 Minto St. (PID 15394588); 84 Minto St. (PID 15394570); 86 Minto St. (PID 15394562); 90 Minto St. (PID 15394554); 4 Devison Lane (PID 15394521); 14 Devison Lane (PID 15394505); 18 Devison Lane (PID 15394497): 22 Devison Lane (PID 15394489); and 26 Devison Lane (PID 15394471), Glace Bay I refer to your enquiry of the Environmental Registry received January 23, 2019. We acknowledge receipt of payment for 20 properties. No information was located through the Environmental Registry with regards to the above referenced properties. A contaminated sites complaint file (file# 33000-40-SYD-2010-1960588) pertaining to 57,59,61&63 Oceancrest Dr., Glace Bay was located. These records, while not in the Environmental Registry, may be relevant to your request. Should you feel you require these records, they are subject to the Freedom of Information and Protection of Privacy (FOIPOP) Act. FOIPOP applications can be submitted by filling out the attached application form. Please quote the Environmental Registry number in your FOIPOP application. Nova Scotia Environment makes no representations or warranties on the accuracy or completeness of the information provided. Sincerely, Tina Skeir Information Access Office PO Box 442 Halifax, Nova Scotia B3J 2P8 Information Access ph: (902) 424-2549 and Privacy fax: (902) 424-6925 February 4, 2019 Our file # ENV-2019-0270/0280 Email: nwambolt@dillon.ca Nadine Wambolt Dillon Consulting Ltd. 275 Charlotte Street Sydney NS B1P 1C6 Dear Ms. Wambolt: RE: 161&163 Lower North St. (PID 15395114); 169 Lower North St. (PID 15395122); 165 Lower North St. (PID 15395130); 502 Main St. (PID 15408867); 30 Bell St. (PID 15408883); 500 Main St. (PID 15408883); 25 Harbour St. (PID 15408883); 48 Harbour St. (PID 15408883); Lot 98-1 Lower North St. (PID 15864085); Lower North St. (PDI 15525165); and Lower North St. (PID 15524473), Glace Bay I refer to your enquiry of the Environmental Registry received January 24, 2019. We acknowledge receipt of payment for 10 properties. No information was located through the Environmental Registry with regards to the above referenced properties. A water resource management complaint file (file# 95100-40-SYD-2012-1721855) pertaining to 30 Bell St., Glace Bay was located. These records, while not in the Environmental Registry, may be relevant to your request. Should you feel you require these records, they are subject to the Freedom of Information and Protection of Privacy (FOIPOP) Act. FOIPOP applications can be submitted by filling out the attached application form. Please quote the Environmental Registry number in your FOIPOP application. Nova Scotia Environment makes no representations or warranties on the accuracy or completeness of the information provided. Sincerely, Tina Skeir Information Access Office PO Box 442 Halifax, Nova Scotia B3J 2P8 Information Access ph: (902) 424-3600 and Privacy fax: (902) 424-6925 March 11, 2019 Nadine Wambolt 275 Charlotte St Sydney NS B1P 1C6 Dear Nadine Wambolt: Re: You are entitled to part of the information you requested – 2019-08468-ENV Environment received your application for access to information under the Freedom of Information and Protection of Privacy Act on February 10, 2019. In your application, you requested a copy of the following records: A water resource management complaint file #95100-40-SYD-2012-1721855 pertaining to 30 Bell Street, Glace Bay, Nova Scotia as identified in Environmental Registry Search ENV-2019-0270/0280. You are entitled to part of the records requested. However, we have removed some of the information from this record according to subsection 5(2) of the Act. The severed information is exempt from disclosure under the Act for the following reason: • Section 20: unreasonable invasion of personal privacy. The remainder of the records are enclosed. You have the right to ask for a review of this decision by the Information Access and Privacy Commissioner (formerly the Review Officer). You have 60 days from the date of this letter to exercise this right. If you wish to ask for a review, you may do so on Form 7, a copy of which is attached. Send the completed form to the Information Access and Privacy Commissioner, P.O. Box 181, Halifax, Nova Scotia B3J 2M4. Please contact Haley Kenny at 902-424-6920 or by e-mail at Haley.Kenny@novascotia.ca, if you need further assistance in regards to this application. Yours truly, Haley Kenny IAP Administrator Attch. 1 Intended for Applicant Use Only 2 Intended for Applicant Use Only 3 Intended for Applicant Use Only 4 Intended for Applicant Use Only 5 Intended for Applicant Use Only 6 Intended for Applicant Use Only 7 Intended for Applicant Use Only 8 Intended for Applicant Use Only 9 Intended for Applicant Use Only 10 Intended for Applicant Use Only 11 Intended for Applicant Use Only 12 Intended for Applicant Use Only 13 Intended for Applicant Use Only I*I Environment and Climate Change Canada Environnement et Changement climatique Canada Fonlqine Building 200 Sacri Coeur Bh,d. l3th Floor Gatineau, Qutbec KIA 0H3 YourFrle Volrerelere.ce lD: 1 168991 Our Frle Nolre rele.ence E-2018-O2146 IMK February 5, 2019 Dear lvls. Wambolt, This is to acknowledge receipt on February 5, 2019 of your request under the Access lo lnformation Act Ior: "Owners: Her Majesty the Queen in Right of Canada & Public Works and Government Services Canada Properties/addresses (PWGSC): PID Number: 15408883 with associated civic addresses: 30 Bell Street, Glace Bay, Cape Breton County, NS; 500 Main Street, Glace Bay, Cape Breton County, NS; 25 & 48 Harbour Street, Glace Bay, Cape Breton County, NS; PID Numbers: 15599798 and 1552M73 Lower North Street, Glace Bay, Cape Breton County, NS; and PID Number: 15525165 (Her Majesty the Queen & PWGSC) Lower North Street, Glace Bay, Cape Breton County, NS I would like to request any available records you have associated with the Properties/addresses. Also, see the maps for location of sites. Authorization: {Signed consent will be provide prior to receipt of the located information)" l2 Canadei Irils. Nadine Wambolt Dillon Consulting Limited 275 Charlotte Street Sydney, Nova Scotia 81 P 1C6 Please note thal this also serves as a receipt for the $5.00 application fee We have started processing your request and will contact you as soon as possible. Please find enclosed our principles for assisting your request. lf you have any questions regarding this request, do not hesitate to contact me at 819-938-3761 or by email at lvlarla.Komadina@Canada.ca. Please quote the above file number on all future correspondence concerning this request. Yours sincerely, /,"rdMarla Komadina Access to lnformation and Privacy Division Enclosure /.* Our principles for assisting your request ln processing your request under the Access to lnformation Act or Privacy Act, we will: 1. Process your request without regard to your identity. 2. Offer reasonable assistance throughout the request process. 3. Provide information on the Access to lnformation Act or Privacy Act, including information on the processing of your request and your right to complain to the lnformation Commissioner of Canada or Privacy Commissioner of Canada. 4. lnform you as appropriate and without undue delay when your request needs to be clarified. 5. Make every reasonable effort to locate and retrieve the requested records/personal information under the control of Environment and Climate Change Canada. 6. Apply limited and specific exemptions to the requested records/personal information 7. Provide accurate and complete responses. B. Provide timely access to the requested information/personal information. 9. Provide records/personal information in the format and official language requested, as appropriate. 10. Provide an appropriate location to examine the requested information/personal information.